update upload assemble and upload scripts
Browse files- src/02.2_assemble_K50_dG_dataset.R +10 -32
- src/02.2_check_assembled_datasets.R +33 -2
- src/02.3_assemble_structure_datasets.R +49 -0
- src/03.1_upload_data.py +22 -22
- src/03.2_check_uploaded_data.py +17 -17
src/02.2_assemble_K50_dG_dataset.R
CHANGED
|
@@ -11,38 +11,10 @@ ThermoMPNN_splits <- arrow::read_parquet("intermediate/ThermoMPNN_splits.parquet
|
|
| 11 |
# Dataset1 consists of all cDNA proteolysis measurements of stability
|
| 12 |
dataset1 <- readr::read_csv(
|
| 13 |
file = "data/Processed_K50_dG_datasets/Tsuboyama2023_Dataset1_20230416.csv",
|
| 14 |
-
|
| 15 |
-
name = readr::col_character(),
|
| 16 |
-
dna_seq = readr::col_character(),
|
| 17 |
-
log10_K50_t = readr::col_double(),
|
| 18 |
-
log10_K50_t_95CI_high = readr::col_double(),
|
| 19 |
-
log10_K50_t_95CI_low = readr::col_double(),
|
| 20 |
-
log10_K50_t_95CI = readr::col_double(),
|
| 21 |
-
fitting_error_t = readr::col_double(),
|
| 22 |
-
log10_K50unfolded_t = readr::col_double(),
|
| 23 |
-
deltaG_t = readr::col_double(),
|
| 24 |
-
deltaG_t_95CI_high = readr::col_double(),
|
| 25 |
-
deltaG_t_95CI_low = readr::col_double(),
|
| 26 |
-
deltaG_t_95CI = readr::col_double(),
|
| 27 |
-
log10_K50_c = readr::col_double(),
|
| 28 |
-
log10_K50_c_95CI_high = readr::col_double(),
|
| 29 |
-
log10_K50_c_95CI_low = readr::col_double(),
|
| 30 |
-
log10_K50_c_95CI = readr::col_double(),
|
| 31 |
-
fitting_error_c = readr::col_double(),
|
| 32 |
-
log10_K50unfolded_c = readr::col_double(),
|
| 33 |
-
deltaG_c = readr::col_double(),
|
| 34 |
-
deltaG_c_95CI_high = readr::col_double(),
|
| 35 |
-
deltaG_c_95CI_low = readr::col_double(),
|
| 36 |
-
deltaG_c_95CI = readr::col_double(),
|
| 37 |
-
deltaG = readr::col_double(),
|
| 38 |
-
deltaG_95CI_high = readr::col_double(),
|
| 39 |
-
deltaG_95CI_low = readr::col_double(),
|
| 40 |
-
deltaG_95CI = readr::col_double(),
|
| 41 |
-
log10_K50_trypsin_ML = readr::col_double(),
|
| 42 |
-
log10_K50_chymotrypsin_ML = readr::col_double()))
|
| 43 |
|
| 44 |
# note that some of the log10_K50_trypsin_ML and log10_K50_chmotrypsin_ML values are "-" and ">2.5".
|
| 45 |
-
#
|
| 46 |
|
| 47 |
dataset1 |>
|
| 48 |
arrow::write_parquet(
|
|
@@ -59,15 +31,21 @@ dataset1 |>
|
|
| 59 |
|
| 60 |
dataset2 <- readr::read_csv(
|
| 61 |
file = "data/Processed_K50_dG_datasets/Tsuboyama2023_Dataset2_Dataset3_20230416.csv",
|
| 62 |
-
show_col_types = FALSE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
# 776,298 rows
|
| 64 |
|
| 65 |
dataset2 |>
|
| 66 |
arrow::write_parquet(
|
| 67 |
"intermediate/dataset2.parquet")
|
|
|
|
| 68 |
|
| 69 |
dataset3 <- dataset2 |>
|
| 70 |
-
dplyr::filter(ddG_ML
|
| 71 |
|
| 72 |
dataset3 |>
|
| 73 |
arrow::write_parquet(
|
|
|
|
| 11 |
# Dataset1 consists of all cDNA proteolysis measurements of stability
|
| 12 |
dataset1 <- readr::read_csv(
|
| 13 |
file = "data/Processed_K50_dG_datasets/Tsuboyama2023_Dataset1_20230416.csv",
|
| 14 |
+
show_col_types = FALSE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# note that some of the log10_K50_trypsin_ML and log10_K50_chmotrypsin_ML values are "-" and ">2.5".
|
| 17 |
+
# to maintain these non-standard values, we keep them as strings for the full dataset
|
| 18 |
|
| 19 |
dataset1 |>
|
| 20 |
arrow::write_parquet(
|
|
|
|
| 31 |
|
| 32 |
dataset2 <- readr::read_csv(
|
| 33 |
file = "data/Processed_K50_dG_datasets/Tsuboyama2023_Dataset2_Dataset3_20230416.csv",
|
| 34 |
+
show_col_types = FALSE) |>
|
| 35 |
+
dplyr::mutate(
|
| 36 |
+
log10_K50_trypsin_ML = as.numeric(log10_K50_trypsin_ML),
|
| 37 |
+
log10_K50_chymotrypsin_ML = as.numeric(log10_K50_chymotrypsin_ML),
|
| 38 |
+
dG_ML = as.numeric(dG_ML),
|
| 39 |
+
ddG_ML = as.numeric(ddG_ML))
|
| 40 |
# 776,298 rows
|
| 41 |
|
| 42 |
dataset2 |>
|
| 43 |
arrow::write_parquet(
|
| 44 |
"intermediate/dataset2.parquet")
|
| 45 |
+
|
| 46 |
|
| 47 |
dataset3 <- dataset2 |>
|
| 48 |
+
dplyr::filter(!is.na(ddG_ML))
|
| 49 |
|
| 50 |
dataset3 |>
|
| 51 |
arrow::write_parquet(
|
src/02.2_check_assembled_datasets.R
CHANGED
|
@@ -1,7 +1,38 @@
|
|
| 1 |
|
| 2 |
|
| 3 |
# consistency between models and function predictions
|
| 4 |
-
source("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
|
|
@@ -13,7 +44,7 @@ check_id_consistency <- function(
|
|
| 13 |
if (verbose) {
|
| 14 |
cat("Loading model ids...\n")
|
| 15 |
}
|
| 16 |
-
|
| 17 |
paste0("intermediate/", dataset_tag, "_", split, ".parquet"),
|
| 18 |
col_select = "id")
|
| 19 |
|
|
|
|
| 1 |
|
| 2 |
|
| 3 |
# consistency between models and function predictions
|
| 4 |
+
source("src/summarize_map.R")
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
dataset1_name <- arrow::read_parquet(
|
| 8 |
+
"intermediate/dataset1.parquet",
|
| 9 |
+
col_select = "name") |>
|
| 10 |
+
dplyr::mutate(
|
| 11 |
+
WT_name = name |> stringr::str_replace("pdb_[A-Z][0-9]+[A-Z]", "pdb")) |>
|
| 12 |
+
dplyr::filter(
|
| 13 |
+
!(WT_name |> stringr::str_detect("[0-9][A-Z0-9a-z]{3}([.]pdb)?")),
|
| 14 |
+
!(WT_name |> stringr::str_detect("ruler")))
|
| 15 |
+
|
| 16 |
+
names_joined |> dplyr::filter(is.na(name_models)) |> dplyr::select(-name_models) |> dplyr::filter(!(WT_name |> stringr::str_detect("ruler")), !(WT_name |> stringr::str_detect("set")), !(WT_name |> stringr::str_detect("_del")), !(WT_name |> stringr::str_detect("_ins")), !(WT_name |> stringr::str_detect("_wt[a-z]")), !(WT_name |> stringr::str_detect("scramble")), !(WT_name |> stringr::str_detect("(PP5|ZF5)[.]3")), !(WT_name |> stringr::str_detect("(UAH|SAH)-p53-8R"))) |> dplyr::filter(WT_name |> stringr::str_detect("pdb"))
|
| 17 |
+
|
| 18 |
+
models_name <- arrow::read_parquet(
|
| 19 |
+
"intermediate/AlphaFold_model_PDBs.parquet",
|
| 20 |
+
col_select = "name") |>
|
| 21 |
+
dplyr::mutate(
|
| 22 |
+
name = name |> stringr::str_replace(":", "[|]"))
|
| 23 |
+
|
| 24 |
+
names_joined <- dplyr::full_join(
|
| 25 |
+
dataset1_name |> dplyr::mutate(name_dataset1 = WT_name),
|
| 26 |
+
models_name |> dplyr::mutate(name_models = name),
|
| 27 |
+
by = c("WT_name" = "name"))
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
names_joined_summary <- names_joined |>
|
| 31 |
+
summarize_map(
|
| 32 |
+
x_cols = name_dataset1,
|
| 33 |
+
y_cols = name_models,
|
| 34 |
+
verbose = TRUE)
|
| 35 |
+
|
| 36 |
|
| 37 |
|
| 38 |
|
|
|
|
| 44 |
if (verbose) {
|
| 45 |
cat("Loading model ids...\n")
|
| 46 |
}
|
| 47 |
+
dataset1 <- arrow::read_parquet(
|
| 48 |
paste0("intermediate/", dataset_tag, "_", split, ".parquet"),
|
| 49 |
col_select = "id")
|
| 50 |
|
src/02.3_assemble_structure_datasets.R
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#' Assemble PDBs
|
| 2 |
+
#'
|
| 3 |
+
#' @param data_path character directory .pdb.gz files are located
|
| 4 |
+
#' @param output_path character output .parquet path
|
| 5 |
+
#'
|
| 6 |
+
#' Write output_path .parquet file with columns
|
| 7 |
+
#' <id> <pdb>
|
| 8 |
+
assemble_models <- function(
|
| 9 |
+
data_path,
|
| 10 |
+
output_path) {
|
| 11 |
+
|
| 12 |
+
cat(
|
| 13 |
+
"data path: ", data_path, "\n",
|
| 14 |
+
"output path: ", output_path, "\n",
|
| 15 |
+
sep = "")
|
| 16 |
+
|
| 17 |
+
file_index <- 1
|
| 18 |
+
models <- list.files(
|
| 19 |
+
path = data_path,
|
| 20 |
+
full.names = TRUE,
|
| 21 |
+
pattern = "*.pdb",
|
| 22 |
+
recursive = TRUE) |>
|
| 23 |
+
purrr::map_dfr(.f = function(path) {
|
| 24 |
+
file_handle <- path |>
|
| 25 |
+
file(open = "rb") |>
|
| 26 |
+
gzcon()
|
| 27 |
+
|
| 28 |
+
if( file_index %% 20 == 0) {
|
| 29 |
+
cat("Reading '", path, "' ", file_index, "\n", sep = "")
|
| 30 |
+
}
|
| 31 |
+
file_index <<- file_index + 1
|
| 32 |
+
|
| 33 |
+
lines <- file_handle |> readLines()
|
| 34 |
+
file_handle |> close()
|
| 35 |
+
|
| 36 |
+
data.frame(
|
| 37 |
+
name = path |>
|
| 38 |
+
basename() |>
|
| 39 |
+
stringr::str_replace("[:]", "|"),
|
| 40 |
+
pdb = lines |> paste0(collapse = "\n"))
|
| 41 |
+
})
|
| 42 |
+
models |> arrow::write_parquet(output_path)
|
| 43 |
+
models
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
assemble_models(
|
| 48 |
+
data_path = "data/AlphaFold_model_PDBs",
|
| 49 |
+
output_path = "intermediate/AlphaFold_model_PDBs.parquet")
|
src/03.1_upload_data.py
CHANGED
|
@@ -20,7 +20,7 @@ import datasets
|
|
| 20 |
# dataset2
|
| 21 |
# dataset3
|
| 22 |
# dataset3_single
|
| 23 |
-
#
|
| 24 |
|
| 25 |
|
| 26 |
|
|
@@ -94,32 +94,32 @@ dataset.push_to_hub(
|
|
| 94 |
commit_message = "Upload dataset3_single")
|
| 95 |
|
| 96 |
|
| 97 |
-
#####
|
| 98 |
dataset = datasets.load_dataset(
|
| 99 |
"parquet",
|
| 100 |
-
name = "
|
| 101 |
data_dir = "./intermediate",
|
| 102 |
data_files = {
|
| 103 |
-
"train_0" : "
|
| 104 |
-
"train_1" : "
|
| 105 |
-
"train_2" : "
|
| 106 |
-
"train_3" : "
|
| 107 |
-
"train_4" : "
|
| 108 |
-
"val_0" : "
|
| 109 |
-
"val_1" : "
|
| 110 |
-
"val_2" : "
|
| 111 |
-
"val_3" : "
|
| 112 |
-
"val_4" : "
|
| 113 |
-
"test_0" : "
|
| 114 |
-
"test_1" : "
|
| 115 |
-
"test_2" : "
|
| 116 |
-
"test_3" : "
|
| 117 |
-
"test_4" : "
|
| 118 |
cache_dir = "/scratch/maom_root/maom0/maom",
|
| 119 |
keep_in_memory = True)
|
| 120 |
|
| 121 |
dataset.push_to_hub(
|
| 122 |
-
repo_id = "
|
| 123 |
-
config_name = "
|
| 124 |
-
data_dir = "
|
| 125 |
-
commit_message = "Upload
|
|
|
|
| 20 |
# dataset2
|
| 21 |
# dataset3
|
| 22 |
# dataset3_single
|
| 23 |
+
# dataset3_single_cv
|
| 24 |
|
| 25 |
|
| 26 |
|
|
|
|
| 94 |
commit_message = "Upload dataset3_single")
|
| 95 |
|
| 96 |
|
| 97 |
+
##### dataset3_single_cv #######
|
| 98 |
dataset = datasets.load_dataset(
|
| 99 |
"parquet",
|
| 100 |
+
name = "dataset3_single_cv",
|
| 101 |
data_dir = "./intermediate",
|
| 102 |
data_files = {
|
| 103 |
+
"train_0" : "dataset3_single_cv_train_0.parquet",
|
| 104 |
+
"train_1" : "dataset3_single_cv_train_1.parquet",
|
| 105 |
+
"train_2" : "dataset3_single_cv_train_2.parquet",
|
| 106 |
+
"train_3" : "dataset3_single_cv_train_3.parquet",
|
| 107 |
+
"train_4" : "dataset3_single_cv_train_4.parquet",
|
| 108 |
+
"val_0" : "dataset3_single_cv_val_0.parquet",
|
| 109 |
+
"val_1" : "dataset3_single_cv_val_1.parquet",
|
| 110 |
+
"val_2" : "dataset3_single_cv_val_2.parquet",
|
| 111 |
+
"val_3" : "dataset3_single_cv_val_3.parquet",
|
| 112 |
+
"val_4" : "dataset3_single_cv_val_4.parquet",
|
| 113 |
+
"test_0" : "dataset3_single_cv_test_0.parquet",
|
| 114 |
+
"test_1" : "dataset3_single_cv_test_1.parquet",
|
| 115 |
+
"test_2" : "dataset3_single_cv_test_2.parquet",
|
| 116 |
+
"test_3" : "dataset3_single_cv_test_3.parquet",
|
| 117 |
+
"test_4" : "dataset3_single_cv_test_4.parquet"},
|
| 118 |
cache_dir = "/scratch/maom_root/maom0/maom",
|
| 119 |
keep_in_memory = True)
|
| 120 |
|
| 121 |
dataset.push_to_hub(
|
| 122 |
+
repo_id = "maom/MegaScale",
|
| 123 |
+
config_name = "dataset3_single_cv",
|
| 124 |
+
data_dir = "datase3_single_cv/data",
|
| 125 |
+
commit_message = "Upload dataset3_single_cv")
|
src/03.2_check_uploaded_data.py
CHANGED
|
@@ -27,20 +27,20 @@ test_local_hf_match("dataset3_single", "train")
|
|
| 27 |
test_local_hf_match("dataset3_single", "val")
|
| 28 |
test_local_hf_match("dataset3_single", "test")
|
| 29 |
|
| 30 |
-
test_local_hf_match("
|
| 31 |
-
test_local_hf_match("
|
| 32 |
-
test_local_hf_match("
|
| 33 |
-
test_local_hf_match("
|
| 34 |
-
test_local_hf_match("
|
| 35 |
-
|
| 36 |
-
test_local_hf_match("
|
| 37 |
-
test_local_hf_match("
|
| 38 |
-
test_local_hf_match("
|
| 39 |
-
test_local_hf_match("
|
| 40 |
-
test_local_hf_match("
|
| 41 |
-
|
| 42 |
-
test_local_hf_match("
|
| 43 |
-
test_local_hf_match("
|
| 44 |
-
test_local_hf_match("
|
| 45 |
-
test_local_hf_match("
|
| 46 |
-
test_local_hf_match("
|
|
|
|
| 27 |
test_local_hf_match("dataset3_single", "val")
|
| 28 |
test_local_hf_match("dataset3_single", "test")
|
| 29 |
|
| 30 |
+
test_local_hf_match("dataset3_single_cv", "train_0")
|
| 31 |
+
test_local_hf_match("dataset3_single_cv", "train_1")
|
| 32 |
+
test_local_hf_match("dataset3_single_cv", "train_2")
|
| 33 |
+
test_local_hf_match("dataset3_single_cv", "train_3")
|
| 34 |
+
test_local_hf_match("dataset3_single_cv", "train_4")
|
| 35 |
+
|
| 36 |
+
test_local_hf_match("dataset3_single_cv", "val_0")
|
| 37 |
+
test_local_hf_match("dataset3_single_cv", "val_1")
|
| 38 |
+
test_local_hf_match("dataset3_single_cv", "val_2")
|
| 39 |
+
test_local_hf_match("dataset3_single_cv", "val_3")
|
| 40 |
+
test_local_hf_match("dataset3_single_cv", "val_4")
|
| 41 |
+
|
| 42 |
+
test_local_hf_match("dataset3_single_cv", "test_0")
|
| 43 |
+
test_local_hf_match("dataset3_single_cv", "test_1")
|
| 44 |
+
test_local_hf_match("dataset3_single_cv", "test_2")
|
| 45 |
+
test_local_hf_match("dataset3_single_cv", "test_3")
|
| 46 |
+
test_local_hf_match("dataset3_single_cv", "test_4")
|