update upload assemble and upload scripts
Browse files- src/02.2_assemble_K50_dG_dataset.R +10 -32
- src/02.2_check_assembled_datasets.R +33 -2
- src/02.3_assemble_structure_datasets.R +49 -0
- src/03.1_upload_data.py +22 -22
- src/03.2_check_uploaded_data.py +17 -17
src/02.2_assemble_K50_dG_dataset.R
CHANGED
@@ -11,38 +11,10 @@ ThermoMPNN_splits <- arrow::read_parquet("intermediate/ThermoMPNN_splits.parquet
|
|
11 |
# Dataset1 consists of all cDNA proteolysis measurements of stability
|
12 |
dataset1 <- readr::read_csv(
|
13 |
file = "data/Processed_K50_dG_datasets/Tsuboyama2023_Dataset1_20230416.csv",
|
14 |
-
|
15 |
-
name = readr::col_character(),
|
16 |
-
dna_seq = readr::col_character(),
|
17 |
-
log10_K50_t = readr::col_double(),
|
18 |
-
log10_K50_t_95CI_high = readr::col_double(),
|
19 |
-
log10_K50_t_95CI_low = readr::col_double(),
|
20 |
-
log10_K50_t_95CI = readr::col_double(),
|
21 |
-
fitting_error_t = readr::col_double(),
|
22 |
-
log10_K50unfolded_t = readr::col_double(),
|
23 |
-
deltaG_t = readr::col_double(),
|
24 |
-
deltaG_t_95CI_high = readr::col_double(),
|
25 |
-
deltaG_t_95CI_low = readr::col_double(),
|
26 |
-
deltaG_t_95CI = readr::col_double(),
|
27 |
-
log10_K50_c = readr::col_double(),
|
28 |
-
log10_K50_c_95CI_high = readr::col_double(),
|
29 |
-
log10_K50_c_95CI_low = readr::col_double(),
|
30 |
-
log10_K50_c_95CI = readr::col_double(),
|
31 |
-
fitting_error_c = readr::col_double(),
|
32 |
-
log10_K50unfolded_c = readr::col_double(),
|
33 |
-
deltaG_c = readr::col_double(),
|
34 |
-
deltaG_c_95CI_high = readr::col_double(),
|
35 |
-
deltaG_c_95CI_low = readr::col_double(),
|
36 |
-
deltaG_c_95CI = readr::col_double(),
|
37 |
-
deltaG = readr::col_double(),
|
38 |
-
deltaG_95CI_high = readr::col_double(),
|
39 |
-
deltaG_95CI_low = readr::col_double(),
|
40 |
-
deltaG_95CI = readr::col_double(),
|
41 |
-
log10_K50_trypsin_ML = readr::col_double(),
|
42 |
-
log10_K50_chymotrypsin_ML = readr::col_double()))
|
43 |
|
44 |
# note that some of the log10_K50_trypsin_ML and log10_K50_chmotrypsin_ML values are "-" and ">2.5".
|
45 |
-
#
|
46 |
|
47 |
dataset1 |>
|
48 |
arrow::write_parquet(
|
@@ -59,15 +31,21 @@ dataset1 |>
|
|
59 |
|
60 |
dataset2 <- readr::read_csv(
|
61 |
file = "data/Processed_K50_dG_datasets/Tsuboyama2023_Dataset2_Dataset3_20230416.csv",
|
62 |
-
show_col_types = FALSE)
|
|
|
|
|
|
|
|
|
|
|
63 |
# 776,298 rows
|
64 |
|
65 |
dataset2 |>
|
66 |
arrow::write_parquet(
|
67 |
"intermediate/dataset2.parquet")
|
|
|
68 |
|
69 |
dataset3 <- dataset2 |>
|
70 |
-
dplyr::filter(ddG_ML
|
71 |
|
72 |
dataset3 |>
|
73 |
arrow::write_parquet(
|
|
|
11 |
# Dataset1 consists of all cDNA proteolysis measurements of stability
|
12 |
dataset1 <- readr::read_csv(
|
13 |
file = "data/Processed_K50_dG_datasets/Tsuboyama2023_Dataset1_20230416.csv",
|
14 |
+
show_col_types = FALSE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# note that some of the log10_K50_trypsin_ML and log10_K50_chmotrypsin_ML values are "-" and ">2.5".
|
17 |
+
# to maintain these non-standard values, we keep them as strings for the full dataset
|
18 |
|
19 |
dataset1 |>
|
20 |
arrow::write_parquet(
|
|
|
31 |
|
32 |
dataset2 <- readr::read_csv(
|
33 |
file = "data/Processed_K50_dG_datasets/Tsuboyama2023_Dataset2_Dataset3_20230416.csv",
|
34 |
+
show_col_types = FALSE) |>
|
35 |
+
dplyr::mutate(
|
36 |
+
log10_K50_trypsin_ML = as.numeric(log10_K50_trypsin_ML),
|
37 |
+
log10_K50_chymotrypsin_ML = as.numeric(log10_K50_chymotrypsin_ML),
|
38 |
+
dG_ML = as.numeric(dG_ML),
|
39 |
+
ddG_ML = as.numeric(ddG_ML))
|
40 |
# 776,298 rows
|
41 |
|
42 |
dataset2 |>
|
43 |
arrow::write_parquet(
|
44 |
"intermediate/dataset2.parquet")
|
45 |
+
|
46 |
|
47 |
dataset3 <- dataset2 |>
|
48 |
+
dplyr::filter(!is.na(ddG_ML))
|
49 |
|
50 |
dataset3 |>
|
51 |
arrow::write_parquet(
|
src/02.2_check_assembled_datasets.R
CHANGED
@@ -1,7 +1,38 @@
|
|
1 |
|
2 |
|
3 |
# consistency between models and function predictions
|
4 |
-
source("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
|
@@ -13,7 +44,7 @@ check_id_consistency <- function(
|
|
13 |
if (verbose) {
|
14 |
cat("Loading model ids...\n")
|
15 |
}
|
16 |
-
|
17 |
paste0("intermediate/", dataset_tag, "_", split, ".parquet"),
|
18 |
col_select = "id")
|
19 |
|
|
|
1 |
|
2 |
|
3 |
# consistency between models and function predictions
|
4 |
+
source("src/summarize_map.R")
|
5 |
+
|
6 |
+
|
7 |
+
dataset1_name <- arrow::read_parquet(
|
8 |
+
"intermediate/dataset1.parquet",
|
9 |
+
col_select = "name") |>
|
10 |
+
dplyr::mutate(
|
11 |
+
WT_name = name |> stringr::str_replace("pdb_[A-Z][0-9]+[A-Z]", "pdb")) |>
|
12 |
+
dplyr::filter(
|
13 |
+
!(WT_name |> stringr::str_detect("[0-9][A-Z0-9a-z]{3}([.]pdb)?")),
|
14 |
+
!(WT_name |> stringr::str_detect("ruler")))
|
15 |
+
|
16 |
+
names_joined |> dplyr::filter(is.na(name_models)) |> dplyr::select(-name_models) |> dplyr::filter(!(WT_name |> stringr::str_detect("ruler")), !(WT_name |> stringr::str_detect("set")), !(WT_name |> stringr::str_detect("_del")), !(WT_name |> stringr::str_detect("_ins")), !(WT_name |> stringr::str_detect("_wt[a-z]")), !(WT_name |> stringr::str_detect("scramble")), !(WT_name |> stringr::str_detect("(PP5|ZF5)[.]3")), !(WT_name |> stringr::str_detect("(UAH|SAH)-p53-8R"))) |> dplyr::filter(WT_name |> stringr::str_detect("pdb"))
|
17 |
+
|
18 |
+
models_name <- arrow::read_parquet(
|
19 |
+
"intermediate/AlphaFold_model_PDBs.parquet",
|
20 |
+
col_select = "name") |>
|
21 |
+
dplyr::mutate(
|
22 |
+
name = name |> stringr::str_replace(":", "[|]"))
|
23 |
+
|
24 |
+
names_joined <- dplyr::full_join(
|
25 |
+
dataset1_name |> dplyr::mutate(name_dataset1 = WT_name),
|
26 |
+
models_name |> dplyr::mutate(name_models = name),
|
27 |
+
by = c("WT_name" = "name"))
|
28 |
+
|
29 |
+
|
30 |
+
names_joined_summary <- names_joined |>
|
31 |
+
summarize_map(
|
32 |
+
x_cols = name_dataset1,
|
33 |
+
y_cols = name_models,
|
34 |
+
verbose = TRUE)
|
35 |
+
|
36 |
|
37 |
|
38 |
|
|
|
44 |
if (verbose) {
|
45 |
cat("Loading model ids...\n")
|
46 |
}
|
47 |
+
dataset1 <- arrow::read_parquet(
|
48 |
paste0("intermediate/", dataset_tag, "_", split, ".parquet"),
|
49 |
col_select = "id")
|
50 |
|
src/02.3_assemble_structure_datasets.R
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#' Assemble PDBs
|
2 |
+
#'
|
3 |
+
#' @param data_path character directory .pdb.gz files are located
|
4 |
+
#' @param output_path character output .parquet path
|
5 |
+
#'
|
6 |
+
#' Write output_path .parquet file with columns
|
7 |
+
#' <id> <pdb>
|
8 |
+
assemble_models <- function(
|
9 |
+
data_path,
|
10 |
+
output_path) {
|
11 |
+
|
12 |
+
cat(
|
13 |
+
"data path: ", data_path, "\n",
|
14 |
+
"output path: ", output_path, "\n",
|
15 |
+
sep = "")
|
16 |
+
|
17 |
+
file_index <- 1
|
18 |
+
models <- list.files(
|
19 |
+
path = data_path,
|
20 |
+
full.names = TRUE,
|
21 |
+
pattern = "*.pdb",
|
22 |
+
recursive = TRUE) |>
|
23 |
+
purrr::map_dfr(.f = function(path) {
|
24 |
+
file_handle <- path |>
|
25 |
+
file(open = "rb") |>
|
26 |
+
gzcon()
|
27 |
+
|
28 |
+
if( file_index %% 20 == 0) {
|
29 |
+
cat("Reading '", path, "' ", file_index, "\n", sep = "")
|
30 |
+
}
|
31 |
+
file_index <<- file_index + 1
|
32 |
+
|
33 |
+
lines <- file_handle |> readLines()
|
34 |
+
file_handle |> close()
|
35 |
+
|
36 |
+
data.frame(
|
37 |
+
name = path |>
|
38 |
+
basename() |>
|
39 |
+
stringr::str_replace("[:]", "|"),
|
40 |
+
pdb = lines |> paste0(collapse = "\n"))
|
41 |
+
})
|
42 |
+
models |> arrow::write_parquet(output_path)
|
43 |
+
models
|
44 |
+
}
|
45 |
+
|
46 |
+
|
47 |
+
assemble_models(
|
48 |
+
data_path = "data/AlphaFold_model_PDBs",
|
49 |
+
output_path = "intermediate/AlphaFold_model_PDBs.parquet")
|
src/03.1_upload_data.py
CHANGED
@@ -20,7 +20,7 @@ import datasets
|
|
20 |
# dataset2
|
21 |
# dataset3
|
22 |
# dataset3_single
|
23 |
-
#
|
24 |
|
25 |
|
26 |
|
@@ -94,32 +94,32 @@ dataset.push_to_hub(
|
|
94 |
commit_message = "Upload dataset3_single")
|
95 |
|
96 |
|
97 |
-
#####
|
98 |
dataset = datasets.load_dataset(
|
99 |
"parquet",
|
100 |
-
name = "
|
101 |
data_dir = "./intermediate",
|
102 |
data_files = {
|
103 |
-
"train_0" : "
|
104 |
-
"train_1" : "
|
105 |
-
"train_2" : "
|
106 |
-
"train_3" : "
|
107 |
-
"train_4" : "
|
108 |
-
"val_0" : "
|
109 |
-
"val_1" : "
|
110 |
-
"val_2" : "
|
111 |
-
"val_3" : "
|
112 |
-
"val_4" : "
|
113 |
-
"test_0" : "
|
114 |
-
"test_1" : "
|
115 |
-
"test_2" : "
|
116 |
-
"test_3" : "
|
117 |
-
"test_4" : "
|
118 |
cache_dir = "/scratch/maom_root/maom0/maom",
|
119 |
keep_in_memory = True)
|
120 |
|
121 |
dataset.push_to_hub(
|
122 |
-
repo_id = "
|
123 |
-
config_name = "
|
124 |
-
data_dir = "
|
125 |
-
commit_message = "Upload
|
|
|
20 |
# dataset2
|
21 |
# dataset3
|
22 |
# dataset3_single
|
23 |
+
# dataset3_single_cv
|
24 |
|
25 |
|
26 |
|
|
|
94 |
commit_message = "Upload dataset3_single")
|
95 |
|
96 |
|
97 |
+
##### dataset3_single_cv #######
|
98 |
dataset = datasets.load_dataset(
|
99 |
"parquet",
|
100 |
+
name = "dataset3_single_cv",
|
101 |
data_dir = "./intermediate",
|
102 |
data_files = {
|
103 |
+
"train_0" : "dataset3_single_cv_train_0.parquet",
|
104 |
+
"train_1" : "dataset3_single_cv_train_1.parquet",
|
105 |
+
"train_2" : "dataset3_single_cv_train_2.parquet",
|
106 |
+
"train_3" : "dataset3_single_cv_train_3.parquet",
|
107 |
+
"train_4" : "dataset3_single_cv_train_4.parquet",
|
108 |
+
"val_0" : "dataset3_single_cv_val_0.parquet",
|
109 |
+
"val_1" : "dataset3_single_cv_val_1.parquet",
|
110 |
+
"val_2" : "dataset3_single_cv_val_2.parquet",
|
111 |
+
"val_3" : "dataset3_single_cv_val_3.parquet",
|
112 |
+
"val_4" : "dataset3_single_cv_val_4.parquet",
|
113 |
+
"test_0" : "dataset3_single_cv_test_0.parquet",
|
114 |
+
"test_1" : "dataset3_single_cv_test_1.parquet",
|
115 |
+
"test_2" : "dataset3_single_cv_test_2.parquet",
|
116 |
+
"test_3" : "dataset3_single_cv_test_3.parquet",
|
117 |
+
"test_4" : "dataset3_single_cv_test_4.parquet"},
|
118 |
cache_dir = "/scratch/maom_root/maom0/maom",
|
119 |
keep_in_memory = True)
|
120 |
|
121 |
dataset.push_to_hub(
|
122 |
+
repo_id = "maom/MegaScale",
|
123 |
+
config_name = "dataset3_single_cv",
|
124 |
+
data_dir = "datase3_single_cv/data",
|
125 |
+
commit_message = "Upload dataset3_single_cv")
|
src/03.2_check_uploaded_data.py
CHANGED
@@ -27,20 +27,20 @@ test_local_hf_match("dataset3_single", "train")
|
|
27 |
test_local_hf_match("dataset3_single", "val")
|
28 |
test_local_hf_match("dataset3_single", "test")
|
29 |
|
30 |
-
test_local_hf_match("
|
31 |
-
test_local_hf_match("
|
32 |
-
test_local_hf_match("
|
33 |
-
test_local_hf_match("
|
34 |
-
test_local_hf_match("
|
35 |
-
|
36 |
-
test_local_hf_match("
|
37 |
-
test_local_hf_match("
|
38 |
-
test_local_hf_match("
|
39 |
-
test_local_hf_match("
|
40 |
-
test_local_hf_match("
|
41 |
-
|
42 |
-
test_local_hf_match("
|
43 |
-
test_local_hf_match("
|
44 |
-
test_local_hf_match("
|
45 |
-
test_local_hf_match("
|
46 |
-
test_local_hf_match("
|
|
|
27 |
test_local_hf_match("dataset3_single", "val")
|
28 |
test_local_hf_match("dataset3_single", "test")
|
29 |
|
30 |
+
test_local_hf_match("dataset3_single_cv", "train_0")
|
31 |
+
test_local_hf_match("dataset3_single_cv", "train_1")
|
32 |
+
test_local_hf_match("dataset3_single_cv", "train_2")
|
33 |
+
test_local_hf_match("dataset3_single_cv", "train_3")
|
34 |
+
test_local_hf_match("dataset3_single_cv", "train_4")
|
35 |
+
|
36 |
+
test_local_hf_match("dataset3_single_cv", "val_0")
|
37 |
+
test_local_hf_match("dataset3_single_cv", "val_1")
|
38 |
+
test_local_hf_match("dataset3_single_cv", "val_2")
|
39 |
+
test_local_hf_match("dataset3_single_cv", "val_3")
|
40 |
+
test_local_hf_match("dataset3_single_cv", "val_4")
|
41 |
+
|
42 |
+
test_local_hf_match("dataset3_single_cv", "test_0")
|
43 |
+
test_local_hf_match("dataset3_single_cv", "test_1")
|
44 |
+
test_local_hf_match("dataset3_single_cv", "test_2")
|
45 |
+
test_local_hf_match("dataset3_single_cv", "test_3")
|
46 |
+
test_local_hf_match("dataset3_single_cv", "test_4")
|