File size: 10,019 Bytes
b7efb7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
"""Script to create Nemo compatible data manifests for jeli-asr"""

## Imports
import glob
import os
import csv
import random
import json
import shutil
import sys
from pydub import AudioSegment

# Key callable to sort wav files paths
def key_sort_paths(path: str) -> int:
    """Serve as key function to sort the wav files paths

    Args:
        path (str): An individual path

    Returns:
        int: The number of the split (between 1 and 6)
    """
    return int(path[-5])

# Function to read and combine the audios
def read_audios(glob_paths: list[str]) -> AudioSegment:
    """Read the six 10 mns audio as AudioSegments and returns the combined 1 hr audio

    Args:
        glob_paths (list[str]): list of the paths of the 6 .wav files

    Returns:
        AudioSegment: The combined audio
    """
    audios = []
    for wav_file in sorted(glob_paths, key=key_sort_paths):
        audios.append(AudioSegment.from_file(file=wav_file, format="wav"))
    final_audio = sum(audios[1:], start=audios[0])
    return final_audio

# A function that reads and return the utterances from .tsv files
def read_tsv(tsv_file_path: str) -> list[list[int | str]]:
    """Read a .tsv file and return the utterances in it

    Args:
        tsv_file_path (str): The path to the tsv file

    Returns:
        list[list[int | str]]: The returned utterances with the timestamps coverted to int
    """
    with open(tsv_file_path,"r", encoding='utf-8') as recording_transcript:
        tsv_file_rows = csv.reader(recording_transcript, delimiter="\t")
        utterances = [[int(start), int(end), bam, french] for start, end, bam, french in tsv_file_rows]
    return utterances
            
# Function to subdivide the audio (transcript) into multiple variable length slices
def create_var_length_samples(utterances: list[list[int | str]], min_duration: int = 1000,
                max_duration: int = 120000) -> list[list[list[int | str]]]:
    """Create variable length combination of utterances to make samples which duration vary between 1s and 2mns

    Args:
        utterances (list[list[int  |  str]]): The read tsv file containing the transcriptions of the audio
        min_duration (int, optional): min duration of a sample in milliseconds. Defaults to 1000.
        max_duration (int, optional): max duration of a sample in milliseconds. Defaults to 120000.

    Returns:
        list[list[list[int | str]]]: The list of created samples
    """
    samples = []
    current_slice = []
    current_duration = 0

    i = 0
    while i < len(utterances):
        utterance_start, utterance_end = utterances[i][:2]
        utterance_duration = utterance_end - utterance_start
        
        # If current slice duration is less than max duration, add the utterance to this sample
        if current_duration + utterance_duration <= max_duration:
            current_slice.append(utterances[i])
            current_duration += utterance_duration
            i += 1
        else:
            # Save the current sample and reset for a new one
            samples.append(current_slice)
            current_slice = []
            current_duration = 0
        
        # Randomly decide whether to end the current sample based on time or number of utterances
        if current_duration >= min_duration:
            if random.choice([True, False, False]) or len(current_slice) >= random.randint(1, 20):
                samples.append(current_slice)
                current_slice = []
                current_duration = 0

    # Add the final slice if it exists
    if current_slice: # equivalent to if current_slice is empty
        samples.append(current_slice)

    return samples

# Function to create and save the audio samples for a specific list of samples
def slice_and_save_audios(samples: list[list[list[int | str]]], griot_id: str,
                          data_dir: str, audio_dir_path: str) -> list[list[float | str]]:
    """Slice and save the audio samples created for a specific 1hr recording

    Args:
        samples (list[list[list[int  |  str]]]): The samples created with function "create_var_length_samples"
        griot_id (str): The ID of the griot in the recording (eg: griots_r17)
        data_dir (str): The directory containing all the data.
        audio_dir_path (str): The diretory the save the sliced audios in.

    Returns:
        list[list[int | str]]: A list version of manifests (eg: [[audiofile_path, duration, bambara, translation], ...])
    """
    wav_files_paths = glob.glob(f'{data_dir}/{griot_id}/*.wav')
    griot_recording = read_audios(glob_paths=wav_files_paths)
    # A list to store only the data needed to create 
    list_manifests = []

    for sample in samples:
        start = sample[0][0]
        end = sample[-1][1]
        duration = (end - start) / 1000 # in seconds
        # Flag audios with more than 100 seconds 
        more_than_100s = " ###" if duration >= 100 else ""

        # get trancriptions and translations of utterances composing the samples
        transcriptions, translations = [utt[2] for utt in sample], [utt[3] for utt in sample]
        transcription = " ".join(transcriptions)
        translation = " ".join(translations)

        # create the sample wav file and save it
        audio_file_path = f"{audio_dir_path}/{griot_id}-{start}-{end}.wav"
        griot_recording[start:end].export(out_f=audio_file_path, format="wav")
        print(f"Sample {griot_id}-{start}-{end} saved in {audio_file_path}{more_than_100s}")

        # Create the manifest list and save it
        list_manifests.append([audio_file_path, duration, transcription, translation])
    return list_manifests

# A function to shuffle and split samples
def shuffle_and_split(dataset: list[list[float | str]],
                      test: int | float = 0.15) -> tuple[list[list[float | str]]]:
    """Shuffle and split the whole dataset

    Args:
        dataset (list[list[int  |  str]]): The combined list of all list manifest returned by "slice_and_save_audios"
        test (int | float, optional): The number of sample to include that make the test set or and percentage of the whole dataset to use as the test set. Defaults to 0.15.

    Returns:
        tuple[list[list[list[int | str]]]]: The train and test sets samples returned separately
    """
    random.shuffle(dataset)
    if isinstance(test, float):
        test = int(test * len(dataset))
    test_set_samples = dataset[0:test]
    train_set_samples = dataset[test:]
    return train_set_samples, test_set_samples

# A function to create audio sample files and manifests
def create_manifest(dataset_split: list[list[float | str]], split_name: str,
                    dir_path: str) -> None:
    """Create manifest files 

    Args:
        dataset_split (list[list[float  |  str]]): Split of the dataset to create manifest for
        split_name (str): Name of the split
        dir_path (str): The directory to save the new data manifest in
    """
    # Ensure directories for manifests and audios
    os.makedirs(f'{dir_path}/manifests', exist_ok=True)
    os.makedirs(f'{dir_path}/french-manifests', exist_ok=True)
    os.makedirs(f'{dir_path}/audios/{split_name}', exist_ok=True)

    # Define manifest file paths
    manifest_path = f'{dir_path}/manifests/{split_name}_manifest.json'
    french_manifest_path = f'{dir_path}/french-manifests/{split_name}_french_manifest.json'
    audio_dir_path = f'{dir_path}/audios/{split_name}'

    with open(manifest_path, 'w', encoding="utf-8") as manifest_file, open(french_manifest_path, 'w', encoding="utf-8") as french_file:
        for sample in dataset_split:
            # move the audio sample file in the corresponding split directory
            new_audio_path = f'{audio_dir_path}/{sample[0].split("/")[-1]}'
            shutil.move(src=sample[0], dst=new_audio_path)

            # Prepare the manifest line
            manifest_line = {
                "audio_filepath": os.path.relpath(new_audio_path),
                "duration": sample[1],
                "text": sample[2]  # Bambara transcription goes to the text field
            }

            french_manifest_line = {
                "audio_filepath": os.path.relpath(new_audio_path),
                "duration": sample[1],
                "text": sample[3]
            }

            # Write manifest files
            manifest_file.write(json.dumps(manifest_line) + '\n')
            french_file.write(json.dumps(french_manifest_line) + '\n')
    print(f"{split_name} manifests files have been created successfully!\nCorresponding audios files have been moved to {audio_dir_path}")

if __name__ == "__main__":
    data_path = sys.argv[1]
    manifest_dir = sys.argv[2]
    tsv_dir = f'{data_path}/aligned-transcriptions'

    # Get all the revised transcription files in .tsv format
    tsv_paths = glob.glob(f'{tsv_dir}/*.tsv')
    # list to store the list manifests per griots
    final_list_manifest = []
    for tsv_file in tsv_paths:
        id_griot = tsv_file.split("/")[-1][:-4]
        griot_utterances = read_tsv(tsv_file_path=tsv_file)
        # Get samples (can be made of one or more utterances)
        griot_samples = create_var_length_samples(utterances=griot_utterances)
        list_manifest = slice_and_save_audios(samples=griot_samples, griot_id=id_griot,
                                    data_dir=data_path, audio_dir_path=f'{manifest_dir}/audios')
        final_list_manifest.append(list_manifest)
    # Get a single list manifest for all the samples
    final_list_manifest = sum(final_list_manifest, start=[])
    # Shuffle and split the final list of all sample,manifests
    train_set, test_set = shuffle_and_split(dataset=final_list_manifest, test=0.15) # Use 15% of the dataset for test
    print(f'len(train_set) == {len(train_set)} and len(test_set) == {len(test_set)}')

    create_manifest(dataset_split=train_set, split_name="train", dir_path=manifest_dir)
    create_manifest(dataset_split=test_set, split_name="test", dir_path=manifest_dir)