Datasets:
File size: 6,993 Bytes
973fe3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
"""
Copyright 2025 RobotsMali AI4D Lab.
Licensed under the Creative Commons Attribution 4.0 International License (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://creativecommons.org/licenses/by/4.0/
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import csv
import datasets
from datasets import Split, SplitGenerator
# -----------------------
# 1. Basic meta-infos
# -----------------------
_CITATION = """\
@inproceedings{bam_asr_all_2025,
title={Bam-ASR-All Audio Dataset},
author={RobotsMali AI4D Lab},
year={2025},
publisher={Hugging Face}
}
"""
_DESCRIPTION = """
The **Bam-ASR-All** dataset is a combined Bambara speech dataset featuring multiple subsets:
- Oza-Mali-Pense
- Jeli-ASR
- RT-Data-Collection
All subsets contain audio samples in Bambara along with transcriptions and (potentially)
French translations.
"""
_HOMEPAGE = "https://huggingface.co/datasets/RobotsMali/bam-asr-all"
_LICENSE = "CC-BY-4.0"
_VERSION = datasets.Version("1.0.0")
# NOTE: No trailing slash here
_BASE_URL = "https://huggingface.co/datasets/RobotsMali/bam-asr-all/resolve/main"
# -----------------------
# 2. Config + Builder
# -----------------------
class BamASRAllConfig(datasets.BuilderConfig):
"""BuilderConfig for different subsets of Bam-ASR-All dataset."""
class BamASRAll(datasets.GeneratorBasedBuilder):
"""
This class defines how to load and parse the Bam-ASR-All dataset
from metadata.csv + audio files on the Hub.
"""
# 2a. Define your subsets (configs)
BUILDER_CONFIGS = [
BamASRAllConfig(
name="oza-mali-pense",
version=_VERSION,
description="Load only the Oza-Mali-Pense subset (files under oza-mali-pense/).",
),
BamASRAllConfig(
name="jeli-asr",
version=_VERSION,
description="Load only the Jeli-ASR subset (files under jeli-asr/).",
),
BamASRAllConfig(
name="rt-data-collection",
version=_VERSION,
description="Load only the RT-Data-Collection subset (files under rt-data-collection/).",
),
# The "combined" option for everything can also be done
BamASRAllConfig(
name="bam-asr-all", # The dataset's default name
version=_VERSION,
description="Combine oza-mali-pense, jeli-asr, and rt-data-collection (all rows).",
),
]
# 2b. Default subset name if none specified
DEFAULT_CONFIG_NAME = "bam-asr-all"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"audio": datasets.Audio(sampling_rate=16_000),
"duration": datasets.Value("float32"),
"bam": datasets.Value("string"),
"french": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
# -----------------------
# 3. Splits
# -----------------------
def _split_generators(self, dl_manager):
"""
1) Download 'metadata.csv' from the Hub by specifying its raw URL.
2) We'll then yield two splits (TRAIN, TEST) by reading that CSV
and filtering rows by '/train/' or '/test/' in file paths.
"""
metadata_url = f"{_BASE_URL}/metadata.csv"
local_metadata_path = dl_manager.download(metadata_url)
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"metadata_path": local_metadata_path,
"split": "train",
"dl_manager": dl_manager,
},
),
SplitGenerator(
name=Split.TEST,
gen_kwargs={
"metadata_path": local_metadata_path,
"split": "test",
"dl_manager": dl_manager,
},
),
]
# -----------------------
# 4. Generate examples
# -----------------------
def _generate_examples(self, metadata_path, split, dl_manager):
"""
Read metadata.csv row-by-row, filter by:
- the config name (oza-mali-pense, jeli-asr, rt-data-collection, or all)
- 'train' vs 'test' in file path
Then download each audio file from the Hub, yield local path + metadata.
"""
audios_to_download = []
metadata_dict = {}
with open(metadata_path, "r", encoding="utf-8") as f:
reader = csv.DictReader(f)
for idx, row in enumerate(reader):
file_path = row["file_name"] # e.g. "jeli-asr/train/.../some.wav"
# Filter by config name
if self.config.name == "oza-mali-pense":
if "oza-mali-pense/" not in file_path:
continue
elif self.config.name == "jeli-asr":
if "jeli-asr/" not in file_path:
continue
elif self.config.name == "rt-data-collection":
if "rt-data-collection/" not in file_path:
continue
elif self.config.name == "bam-asr-all":
# Keep all rows
pass
# Filter by split (train/test)
if split == "train" and "/train/" not in file_path:
continue
if split == "test" and "/test/" not in file_path:
continue
# Build the raw URL for this audio file
audio_url = f"{_BASE_URL}/{file_path}"
audios_to_download.append(audio_url)
# Store minimal metadata in a dictionary
metadata_dict[audio_url] = {
"duration": float(row["duration"]),
"bam": row["bam"],
"french": row["french"],
}
# Download the audios. dl_manager returns the local paths in the cache.
local_audio_paths = dl_manager.download(audios_to_download)
for idx, audio_url in enumerate(audios_to_download):
local_audio_path = local_audio_paths[idx]
yield idx, {
"audio": local_audio_path, # local path for datasets.Audio
"duration": metadata_dict[audio_url]["duration"],
"bam": metadata_dict[audio_url]["bam"],
"french": metadata_dict[audio_url]["french"],
}
|