Upload folder using huggingface_hub
Browse files- data/images/goteborgs_poliskammare_fore_1900_images_1.tar.gz +3 -0
- data/images/goteborgs_poliskammare_fore_1900_images_2.tar.gz +3 -0
- data/page_xmls/goteborgs_poliskammare_fore_1900_page_xmls_1.tar.gz +3 -0
- data/page_xmls/goteborgs_poliskammare_fore_1900_page_xmls_2.tar.gz +3 -0
- goteborgs_poliskammare_fore_1900.py +211 -0
data/images/goteborgs_poliskammare_fore_1900_images_1.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f9ee6581b33a7aa39faceacbdd7b1a05271ca9f80d36e606692b5283c37505f
|
3 |
+
size 4145365222
|
data/images/goteborgs_poliskammare_fore_1900_images_2.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99469e915e3774342d505a0bba78887823f08aa3f9715ecc5b4208a46524a39e
|
3 |
+
size 3498286828
|
data/page_xmls/goteborgs_poliskammare_fore_1900_page_xmls_1.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5aca19ee93f2a0b53bf3db9907e7f6094206cff9bbb20ffec99ba1a5311e3b0
|
3 |
+
size 36434847
|
data/page_xmls/goteborgs_poliskammare_fore_1900_page_xmls_2.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:336cf89a506492efd171bf7cb155462d8a4cd5bba3feff677f9af163c65adda2
|
3 |
+
size 35385978
|
goteborgs_poliskammare_fore_1900.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ladda upp datasetet i en zip av imgs och en zip av xml, skapa flera archive iterators och använd dom (men hur blir det med ordningen?)
|
2 |
+
|
3 |
+
import os
|
4 |
+
import xml.etree.ElementTree as ET
|
5 |
+
from glob import glob
|
6 |
+
from pathlib import Path, PurePath
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
from datasets import (
|
11 |
+
BuilderConfig,
|
12 |
+
DatasetInfo,
|
13 |
+
Features,
|
14 |
+
GeneratorBasedBuilder,
|
15 |
+
Image,
|
16 |
+
Split,
|
17 |
+
SplitGenerator,
|
18 |
+
Value,
|
19 |
+
)
|
20 |
+
from PIL import Image as PILImage
|
21 |
+
|
22 |
+
|
23 |
+
class HTRDatasetConfig(BuilderConfig):
|
24 |
+
"""BuilderConfig for HTRDataset"""
|
25 |
+
|
26 |
+
def __init__(self, **kwargs):
|
27 |
+
super(HTRDatasetConfig, self).__init__(**kwargs)
|
28 |
+
|
29 |
+
|
30 |
+
class HTRDataset(GeneratorBasedBuilder):
|
31 |
+
BUILDER_CONFIGS = [
|
32 |
+
HTRDatasetConfig(
|
33 |
+
name="htr_dataset",
|
34 |
+
version="1.0.0",
|
35 |
+
description="Line dataset for text recognition of historical swedish",
|
36 |
+
)
|
37 |
+
]
|
38 |
+
|
39 |
+
def _info(self):
|
40 |
+
features = Features({"image": Image(), "transcription": Value("string")})
|
41 |
+
return DatasetInfo(features=features)
|
42 |
+
|
43 |
+
def _split_generators(self, dl_manager):
|
44 |
+
"""
|
45 |
+
images = dl_manager.download_and_extract(
|
46 |
+
[
|
47 |
+
f"https://huggingface.co/datasets/Riksarkivet/alvsborgs_losen/resolve/main/data/images/alvsborgs_losen_imgs_{i}.tar.gz"
|
48 |
+
for i in range(1, 3)
|
49 |
+
]
|
50 |
+
)
|
51 |
+
xmls = dl_manager.download_and_extract(
|
52 |
+
[
|
53 |
+
f"https://huggingface.co/datasets/Riksarkivet/alvsborgs_losen/resolve/main/data/page_xmls/alvsborgs_losen_page_xmls_{i}.tar.gz"
|
54 |
+
for i in range(1, 3)
|
55 |
+
]
|
56 |
+
)
|
57 |
+
"""
|
58 |
+
|
59 |
+
images = dl_manager.download_and_extract(
|
60 |
+
[
|
61 |
+
f"https://huggingface.co/datasets/Riksarkivet/goteborgs_poliskammare_fore_1900/resolve/main/data/images/goteborgs_poliskammare_fore_1900_images_{i}.tar.gz"
|
62 |
+
for i in range(1, 3)
|
63 |
+
]
|
64 |
+
)
|
65 |
+
xmls = dl_manager.download_and_extract(
|
66 |
+
[
|
67 |
+
f"https://huggingface.co/datasets/Riksarkivet/goteborgs_poliskammare_fore_1900/resolve/main/data/page_xmls/goteborgs_poliskammare_fore_1900_page_xmls_{i}.tar.gz"
|
68 |
+
for i in range(1, 3)
|
69 |
+
]
|
70 |
+
)
|
71 |
+
image_extensions = [
|
72 |
+
"*.jpg",
|
73 |
+
"*.jpeg",
|
74 |
+
"*.png",
|
75 |
+
"*.gif",
|
76 |
+
"*.bmp",
|
77 |
+
"*.tif",
|
78 |
+
"*.tiff",
|
79 |
+
"*.JPG",
|
80 |
+
"*.JPEG",
|
81 |
+
"*.PNG",
|
82 |
+
"*.GIF",
|
83 |
+
"*.BMP",
|
84 |
+
"*.TIF",
|
85 |
+
"*.TIFF",
|
86 |
+
]
|
87 |
+
imgs_nested = [glob(os.path.join(x, "**", ext), recursive=True) for ext in image_extensions for x in images]
|
88 |
+
imgs_flat = [item for sublist in imgs_nested for item in sublist]
|
89 |
+
sorted_imgs = sorted(imgs_flat, key=lambda x: Path(x).stem)
|
90 |
+
xmls_nested = [glob(os.path.join(x, "**", "*.xml"), recursive=True) for x in xmls]
|
91 |
+
xmls_flat = [item for sublist in xmls_nested for item in sublist]
|
92 |
+
sorted_xmls = sorted(xmls_flat, key=lambda x: Path(x).stem)
|
93 |
+
assert len(sorted_imgs) == len(sorted_xmls)
|
94 |
+
imgs_xmls = []
|
95 |
+
for img, xml in zip(sorted_imgs, sorted_xmls):
|
96 |
+
imgs_xmls.append((img, xml))
|
97 |
+
|
98 |
+
return [
|
99 |
+
SplitGenerator(
|
100 |
+
name=Split.TRAIN,
|
101 |
+
gen_kwargs={"imgs_xmls": imgs_xmls},
|
102 |
+
)
|
103 |
+
]
|
104 |
+
|
105 |
+
def _generate_examples(self, imgs_xmls):
|
106 |
+
for img, xml in imgs_xmls:
|
107 |
+
assert Path(img).stem == Path(xml).stem
|
108 |
+
img_filename = Path(img).stem
|
109 |
+
volume = PurePath(img).parts[-2]
|
110 |
+
|
111 |
+
lines_data = self.parse_pagexml(xml)
|
112 |
+
|
113 |
+
# Convert the bytes to a NumPy array
|
114 |
+
image_array = cv2.imread(img)
|
115 |
+
|
116 |
+
for i, line in enumerate(lines_data):
|
117 |
+
line_id = str(i).zfill(4)
|
118 |
+
try:
|
119 |
+
cropped_image = self.crop_line_image(image_array, line["coords"])
|
120 |
+
except Exception as e:
|
121 |
+
print(e)
|
122 |
+
continue
|
123 |
+
|
124 |
+
# Logging to ensure data types and shapes
|
125 |
+
cropped_image_np = np.array(cropped_image, dtype=np.uint8)
|
126 |
+
|
127 |
+
# Ensure transcription is a string and not None
|
128 |
+
transcription = str(line["transcription"])
|
129 |
+
if transcription is None or not isinstance(transcription, str) or transcription == "":
|
130 |
+
print(f"Invalid transcription: {transcription}")
|
131 |
+
continue
|
132 |
+
|
133 |
+
# Generate and log the unique key
|
134 |
+
unique_key = f"{volume}_{img_filename}_{line_id}"
|
135 |
+
|
136 |
+
try:
|
137 |
+
yield (
|
138 |
+
unique_key,
|
139 |
+
{"image": cropped_image, "transcription": transcription},
|
140 |
+
)
|
141 |
+
except Exception as e:
|
142 |
+
print(f"Error yielding example {unique_key}: {e}")
|
143 |
+
|
144 |
+
def parse_pagexml(self, xml):
|
145 |
+
try:
|
146 |
+
tree = ET.parse(xml)
|
147 |
+
root = tree.getroot()
|
148 |
+
except ET.ParseError as e:
|
149 |
+
print(e)
|
150 |
+
return []
|
151 |
+
|
152 |
+
namespaces = {"ns": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15"}
|
153 |
+
page = root.find("ns:Page", namespaces)
|
154 |
+
if page is None:
|
155 |
+
print("no page")
|
156 |
+
return []
|
157 |
+
|
158 |
+
text_regions = page.findall("ns:TextRegion", namespaces)
|
159 |
+
lines_data = []
|
160 |
+
for region in text_regions:
|
161 |
+
lines = region.findall("ns:TextLine", namespaces)
|
162 |
+
|
163 |
+
for line in lines:
|
164 |
+
try:
|
165 |
+
line_id = line.get("id")
|
166 |
+
coords = line.find("ns:Coords", namespaces).get("points")
|
167 |
+
coords = [tuple(map(int, p.split(","))) for p in coords.split()]
|
168 |
+
transcription = line.find("ns:TextEquiv/ns:Unicode", namespaces).text
|
169 |
+
|
170 |
+
lines_data.append({"line_id": line_id, "coords": coords, "transcription": transcription})
|
171 |
+
except Exception as e:
|
172 |
+
print(e)
|
173 |
+
continue
|
174 |
+
|
175 |
+
return lines_data
|
176 |
+
|
177 |
+
def crop_line_image(self, img, coords):
|
178 |
+
coords = np.array(coords)
|
179 |
+
# img = HTRDataset.np_to_cv2(image)
|
180 |
+
mask = np.zeros(img.shape[0:2], dtype=np.uint8)
|
181 |
+
|
182 |
+
try:
|
183 |
+
cv2.drawContours(mask, [coords], -1, (255, 255, 255), -1, cv2.LINE_AA)
|
184 |
+
except Exception as e:
|
185 |
+
print(e)
|
186 |
+
res = cv2.bitwise_and(img, img, mask=mask)
|
187 |
+
rect = cv2.boundingRect(coords)
|
188 |
+
|
189 |
+
wbg = np.ones_like(img, np.uint8) * 255
|
190 |
+
cv2.bitwise_not(wbg, wbg, mask=mask)
|
191 |
+
|
192 |
+
# overlap the resulted cropped image on the white background
|
193 |
+
dst = wbg + res
|
194 |
+
|
195 |
+
cropped = dst[rect[1] : rect[1] + rect[3], rect[0] : rect[0] + rect[2]]
|
196 |
+
|
197 |
+
cropped = HTRDataset.cv2_to_pil(cropped)
|
198 |
+
return cropped
|
199 |
+
|
200 |
+
def np_to_cv2(image_array):
|
201 |
+
image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
|
202 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
203 |
+
return image_rgb
|
204 |
+
|
205 |
+
# Convert OpenCV image to PIL Image
|
206 |
+
def cv2_to_pil(cv2_image):
|
207 |
+
# Convert BGR to RGB
|
208 |
+
cv2_image_rgb = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB)
|
209 |
+
# Convert NumPy array to PIL image
|
210 |
+
pil_image = PILImage.fromarray(cv2_image_rgb)
|
211 |
+
return pil_image
|