|
package exam;
|
|
import java.util.Deque;
|
|
import java.util.LinkedList;
|
|
|
|
import java.util.Stack;
|
|
import java.util.Queue;
|
|
|
|
public class Graphs{
|
|
public static class Unigraph{
|
|
private final int V;
|
|
private int E;
|
|
private LinkedList<Integer>[] adj;
|
|
|
|
@SuppressWarnings("unchecked")
|
|
Unigraph(int v){
|
|
V = v;
|
|
adj = (LinkedList<Integer>[]) new LinkedList[v];
|
|
for(int i = 0; i< V; i++) adj[i] = new LinkedList<Integer>();
|
|
}
|
|
|
|
public int V(){return V;}
|
|
|
|
public int E(){return E;}
|
|
|
|
public void addEdge(int v, int w){
|
|
adj[v].add(w);
|
|
adj[w].add(v);
|
|
E++;
|
|
}
|
|
|
|
Iterable<Integer> adj(int v){
|
|
return adj[v];
|
|
}
|
|
}
|
|
|
|
public static class Digraph{
|
|
private final int V;
|
|
private int E;
|
|
private LinkedList<Integer>[] adj;
|
|
|
|
@SuppressWarnings("unchecked")
|
|
Digraph(int v){
|
|
V = v;
|
|
adj = (LinkedList<Integer>[]) new LinkedList[v];
|
|
for(int i = 0; i< V; i++) adj[i] = new LinkedList<Integer>();
|
|
}
|
|
|
|
public int V(){return V;}
|
|
|
|
public int E(){return E;}
|
|
|
|
public void addEdge(int v, int w){
|
|
adj[v].add(w);
|
|
E++;
|
|
}
|
|
|
|
Iterable<Integer> adj(int v){
|
|
return adj[v];
|
|
}
|
|
|
|
public Digraph reverse(){
|
|
Digraph r = new Digraph(V);
|
|
for (int v = 0; v <V; v++){
|
|
for(int w: adj(v)){
|
|
r.addEdge(w, v);
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
}
|
|
|
|
public static class Edge implements Comparable<Edge>{
|
|
private final int v;
|
|
private final int w;
|
|
private final double weight;
|
|
|
|
Edge(int v, int w, double weight){
|
|
this.v = v;
|
|
this.w = w;
|
|
this.weight = weight;
|
|
}
|
|
|
|
double weight(){return weight;}
|
|
|
|
int either(){return v;}
|
|
|
|
int other(int v){
|
|
if (this.v == v){
|
|
return w;
|
|
}
|
|
else if (this.w == v) {
|
|
return this.v;
|
|
}
|
|
else{
|
|
throw new IllegalArgumentException();
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public int compareTo(Edge that) {
|
|
if (this.weight < that.weight) return -1;
|
|
else if (this.weight > that.weight) return 1;
|
|
else return 0;
|
|
}
|
|
}
|
|
|
|
public static class WeightedUnigraph{
|
|
private final int V;
|
|
private int E;
|
|
private LinkedList<Edge>[] adj;
|
|
|
|
@SuppressWarnings("unchecked")
|
|
WeightedUnigraph(int v){
|
|
V = v;
|
|
adj = (LinkedList<Edge>[]) new LinkedList[v];
|
|
for(int i = 0; i< V; i++) adj[i] = new LinkedList<Edge>();
|
|
}
|
|
|
|
public int V(){return V;}
|
|
|
|
public int E(){return E;}
|
|
|
|
public void addEdge(Edge e){
|
|
int v = e.either();
|
|
int w = e.other(v);
|
|
adj[v].add(e);
|
|
adj[w].add(e);
|
|
E++;
|
|
}
|
|
|
|
public Iterable<Edge> adj(int v){
|
|
return adj[v];
|
|
}
|
|
|
|
public Iterable<Edge> edges(){
|
|
LinkedList<Edge> ll = new LinkedList<Edge>();
|
|
for(int v=0; v<V; v++){
|
|
for(Edge e: adj[v]){
|
|
if(e.other(v)>v){
|
|
ll.add(e);
|
|
}
|
|
}
|
|
}
|
|
return ll;
|
|
}
|
|
}
|
|
|
|
public static class Diedge{
|
|
private final int v;
|
|
private final int w;
|
|
private final long weight;
|
|
|
|
Diedge(int v, int w, long weight){
|
|
this.v = v;
|
|
this.w = w;
|
|
this.weight = weight;
|
|
}
|
|
|
|
long weight(){return weight;}
|
|
|
|
int from(){return v;}
|
|
|
|
int to(){return w;}
|
|
}
|
|
|
|
public static class WeightedDigraph{
|
|
private final int V;
|
|
private int E;
|
|
private LinkedList<Diedge>[] adj;
|
|
|
|
@SuppressWarnings("unchecked")
|
|
WeightedDigraph(int v){
|
|
V = v;
|
|
adj = (LinkedList<Diedge>[]) new LinkedList[v];
|
|
for(int i = 0; i< V; i++) adj[i] = new LinkedList<Diedge>();
|
|
}
|
|
|
|
public int V(){return V;}
|
|
|
|
public int E(){return E;}
|
|
|
|
public void addEdge(Diedge e){
|
|
adj[e.from()].add(e);
|
|
E++;
|
|
}
|
|
|
|
public Iterable<Diedge> adj(int v){
|
|
return adj[v];
|
|
}
|
|
|
|
public Iterable<Diedge> edges(){
|
|
LinkedList<Diedge> ll = new LinkedList<Diedge>();
|
|
for(int v=0; v<V; v++){
|
|
for(Diedge e: adj[v]){
|
|
ll.add(e);
|
|
}
|
|
}
|
|
return ll;
|
|
}
|
|
}
|
|
|
|
public static class DepthFirstPaths{
|
|
private boolean[] marked;
|
|
private int[] edgeTo;
|
|
private final int s;
|
|
|
|
public DepthFirstPaths(Unigraph g, int s){
|
|
marked = new boolean[g.V()];
|
|
edgeTo = new int[g.V()];
|
|
this.s = s;
|
|
dfs(g, s);
|
|
}
|
|
|
|
private void dfs(Unigraph g, int v){
|
|
marked[v] = true;
|
|
for (int w: g.adj(v)){
|
|
if(!marked[w]){
|
|
edgeTo[w]=v;
|
|
dfs(g, w);
|
|
}
|
|
}
|
|
}
|
|
|
|
public DepthFirstPaths(Digraph g, int s){
|
|
marked = new boolean[g.V()];
|
|
edgeTo = new int[g.V()];
|
|
this.s = s;
|
|
dfs(g, s);
|
|
}
|
|
|
|
private void dfs(Digraph g, int v){
|
|
marked[v] = true;
|
|
for (int w: g.adj(v)){
|
|
if(!marked[w]){
|
|
edgeTo[w]=v;
|
|
dfs(g, w);
|
|
}
|
|
}
|
|
}
|
|
|
|
public DepthFirstPaths(Digraph g, int s, int t){
|
|
marked = new boolean[g.V()];
|
|
edgeTo = new int[g.V()];
|
|
this.s = s;
|
|
dfs(g, s, t);
|
|
}
|
|
|
|
private void dfs(Digraph g, int v, int t){
|
|
marked[v] = true;
|
|
for (int w: g.adj(v)){
|
|
if(!marked[w]){
|
|
edgeTo[w]=v;
|
|
if ( w!=t ) dfs(g, w);
|
|
}
|
|
}
|
|
}
|
|
|
|
public boolean hasPathTo(int v){return marked[v];}
|
|
|
|
public Iterable<Integer> reachable(){
|
|
LinkedList<Integer> r = new LinkedList<>();
|
|
|
|
for(int i=0; i<marked.length; i++) if (marked[i]) r.add(i);
|
|
|
|
return r;
|
|
}
|
|
|
|
public boolean[] marked(){
|
|
return marked;
|
|
}
|
|
|
|
public Iterable<Integer> pathTo(int v){
|
|
if(!hasPathTo(v)) return null;
|
|
LinkedList<Integer> path = new LinkedList<>();
|
|
for(int x = v; x != s; x = edgeTo[x]) path.push(x);
|
|
path.push(s);
|
|
return path;
|
|
}
|
|
}
|
|
|
|
public static class ShortestPathDijkstra{
|
|
private Diedge[] edgeTo;
|
|
private long[] distTo;
|
|
private IndexMinPQ<Long> pq;
|
|
|
|
public ShortestPathDijkstra(WeightedDigraph g, int s){
|
|
edgeTo = new Diedge[g.V()];
|
|
distTo = new long[g.V()];
|
|
pq = new IndexMinPQ<Long>(g.V());
|
|
for(int v = 0; v < g.V(); v++) distTo[v] = Long.MAX_VALUE;
|
|
distTo[s] = 0;
|
|
|
|
pq.add(s, 0L);
|
|
while(!pq.isEmpty()) relax(g, pq.poll());
|
|
}
|
|
|
|
private void relax( WeightedDigraph g, int v){
|
|
for (Diedge e : g.adj(v)){
|
|
int w = e.to();
|
|
if(distTo[w] > distTo[v] + e.weight()){
|
|
distTo[w] = distTo[v] + e.weight();
|
|
edgeTo[w] = e;
|
|
if (pq.contains(w)) pq.changeKey(w, distTo[w]);
|
|
else pq.add(w, distTo[w]);
|
|
}
|
|
}
|
|
}
|
|
|
|
public ShortestPathDijkstra(WeightedDigraph g, int s, int t){
|
|
edgeTo = new Diedge[g.V()];
|
|
distTo = new long[g.V()];
|
|
pq = new IndexMinPQ<Long>(g.V());
|
|
for(int v = 0; v < g.V(); v++) distTo[v] = Long.MAX_VALUE;
|
|
distTo[s] = 0;
|
|
|
|
pq.add(s, 0L);
|
|
while(!pq.isEmpty()) relax(g, pq.poll(), t);
|
|
}
|
|
|
|
private void relax( WeightedDigraph g, int v, int t){
|
|
for (Diedge e : g.adj(v)){
|
|
int w = e.to();
|
|
|
|
if(distTo[v] + e.weight() > distTo[t]) continue;
|
|
|
|
if(distTo[w] > distTo[v] + e.weight()){
|
|
distTo[w] = distTo[v] + e.weight();
|
|
edgeTo[w] = e;
|
|
if (pq.contains(w)) pq.changeKey(w, distTo[w]);
|
|
else if(w != t) pq.add(w, distTo[w]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
public long distTo(int v){ return distTo[v]; }
|
|
|
|
public boolean hasPathTo(int v){ return distTo(v) < Long.MAX_VALUE; }
|
|
}
|
|
|
|
public static class DepthFirstOrder{
|
|
private boolean[] marked;
|
|
|
|
Deque<Integer> pre;
|
|
Deque<Integer> post;
|
|
Deque<Integer> reversePost;
|
|
|
|
private void initialize(int v){
|
|
pre = new LinkedList<Integer>();
|
|
post = new LinkedList<Integer>();
|
|
reversePost = new LinkedList<Integer>();
|
|
marked = new boolean[v];
|
|
}
|
|
|
|
public DepthFirstOrder(Digraph g){
|
|
initialize(g.V());
|
|
for (int v = 0; v < g.V(); v++) if (!marked[v]) dfs(g, v);
|
|
}
|
|
|
|
public DepthFirstOrder(Digraph g, Iterable<Integer> s){
|
|
initialize(g.V());
|
|
for (int v: s) if (!marked[v]) dfs(g, v);
|
|
}
|
|
|
|
public DepthFirstOrder(Digraph g, int s){
|
|
initialize(g.V());
|
|
dfs(g, s);
|
|
}
|
|
|
|
public DepthFirstOrder(Digraph g, boolean[] reachable){
|
|
initialize(g.V());
|
|
for (int v = 0; v < g.V(); v++) if (!marked[v] && reachable[v]) dfs(g, v);
|
|
}
|
|
|
|
private void dfs(Digraph g, int v){
|
|
pre.addFirst(v);
|
|
marked[v] = true;
|
|
for(int w: g.adj(v)) if (!marked[w]) dfs(g, w);
|
|
post.addFirst(v);
|
|
reversePost.addLast(v);
|
|
}
|
|
|
|
public Iterable<Integer> preorder(){ return pre; }
|
|
|
|
public Iterable<Integer> postorder(){ return post; }
|
|
|
|
public Iterable<Integer> reversePostorder(){ return reversePost; }
|
|
}
|
|
|
|
public class DirectedCycle{
|
|
private boolean[] marked;
|
|
private int[] edgeTo;
|
|
private Stack<Integer> cycle;
|
|
private boolean[] onStack;
|
|
|
|
private void initialize(int v){
|
|
onStack = new boolean[v];
|
|
edgeTo = new int[v];
|
|
marked = new boolean[v];
|
|
}
|
|
|
|
public DirectedCycle(Digraph g){
|
|
initialize(g.V());
|
|
for(int v = 0; v < g.V(); v++) if (!marked[v]) dfs(g, v);
|
|
}
|
|
|
|
|
|
private void dfs(Digraph g, int v){
|
|
onStack[v] = true;
|
|
marked[v] = true;
|
|
for (int w: g.adj(v)){
|
|
if (this.hasCycle()) return;
|
|
else if(!marked[w]){
|
|
edgeTo[w] = v;
|
|
dfs(g, w);
|
|
}
|
|
else if(onStack[w]){
|
|
cycle = new Stack<Integer>();
|
|
for(int x = v; x != w; x = edgeTo[x]) cycle.push(x);
|
|
cycle.push(w);
|
|
cycle.push(v);
|
|
}
|
|
}
|
|
onStack[v] = false;
|
|
}
|
|
|
|
public boolean hasCycle(){
|
|
return cycle != null;
|
|
}
|
|
|
|
}
|
|
|
|
public class TopologicalSort{
|
|
private Iterable<Integer> order;
|
|
|
|
public TopologicalSort(Digraph g){
|
|
DirectedCycle cyclefinder = new DirectedCycle(g);
|
|
if(!cyclefinder.hasCycle()){
|
|
DepthFirstOrder dfs = new DepthFirstOrder(g);
|
|
order = dfs.reversePostorder();
|
|
}
|
|
}
|
|
|
|
public Iterable<Integer> order(){return order;}
|
|
|
|
public boolean hasOrder(){return order != null;}
|
|
}
|
|
} |