File size: 29,224 Bytes
de60742 ea74ed3 de60742 5891c9a de60742 5891c9a de60742 5891c9a de60742 5891c9a de60742 5891c9a de60742 5891c9a de60742 5891c9a de60742 ea74ed3 5891c9a ea74ed3 de60742 ea74ed3 6bc6a63 c7f64e6 6bc6a63 c7f64e6 6bc6a63 c7f64e6 6bc6a63 c7f64e6 ea74ed3 1ab1a75 ea74ed3 5891c9a eb0a98a 1ab1a75 5891c9a 1ab1a75 5891c9a eb0a98a 1ab1a75 eb0a98a 1ab1a75 5891c9a eb0a98a 5891c9a eb0a98a 1ab1a75 5891c9a 1ab1a75 5891c9a 1ab1a75 5891c9a a2cb2dd 6bc6a63 ea74ed3 a2cb2dd ea74ed3 6bc6a63 5891c9a ea74ed3 5891c9a ea74ed3 a2cb2dd ea74ed3 a2cb2dd c7f64e6 a2cb2dd c7f64e6 6bc6a63 c7f64e6 ea74ed3 6bc6a63 c7f64e6 ea74ed3 6bc6a63 c7f64e6 6bc6a63 ea74ed3 5891c9a a2cb2dd 6bc6a63 5891c9a 6bc6a63 5891c9a ea74ed3 5891c9a a2cb2dd 45ee7d5 5891c9a ea74ed3 6bc6a63 5891c9a ea74ed3 6bc6a63 5891c9a a2cb2dd 5891c9a ea74ed3 6bc6a63 ea74ed3 6bc6a63 ea74ed3 6bc6a63 5891c9a 6bc6a63 ea74ed3 6bc6a63 ea74ed3 a2cb2dd 6bc6a63 a2cb2dd ea74ed3 de60742 5891c9a ea74ed3 5891c9a 6bc6a63 5891c9a 6bc6a63 5891c9a ea74ed3 6bc6a63 ea74ed3 6bc6a63 ea74ed3 de60742 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
import logging
import re
from typing import List, Optional, Union, Dict, Any
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def calculate_accuracy(predictions: List[Optional[List[str]]], ground_truths: List[List[str]]) -> float:
"""
Calculates the accuracy of LLM predictions against ground truths.
Accuracy is defined as the percentage of predictions where the predicted list
of answer strings exactly matches the ground truth list of answer strings
(order within the list does not matter, comparison is case-insensitive).
A prediction of None (due to parsing failure) is considered incorrect.
Args:
predictions (List[Optional[List[str]]]): A list where each element is either a list
of predicted answer strings or None if
parsing failed for that question.
ground_truths (List[List[str]]): A list where each element is a list of
ground truth answer strings.
Returns:
float: The calculated accuracy (between 0.0 and 1.0).
Raises:
ValueError: If the lengths of predictions and ground_truths lists do not match.
"""
if len(predictions) != len(ground_truths):
raise ValueError(f"Length mismatch: Predictions ({len(predictions)}) vs Ground Truths ({len(ground_truths)})")
if not ground_truths:
return 0.0 # Avoid division by zero if the list is empty
correct_count = 0
for i, pred_list_orig in enumerate(predictions):
truth_list_orig = ground_truths[i]
# Convert to uppercase and sort for case-insensitive, order-independent comparison
# Handle None case for prediction
# Ensure elements are strings before calling upper()
sorted_pred = sorted([str(p).upper() for p in pred_list_orig]) if pred_list_orig is not None else None
sorted_truth = sorted([str(t).upper() for t in truth_list_orig])
if sorted_pred is not None and sorted_pred == sorted_truth:
correct_count += 1
else:
# Log incorrect only if prediction was not None (parsing succeeded but answer wrong)
if sorted_pred is not None:
logging.debug(f"Incorrect prediction for index {i}: Pred={sorted_pred}, Truth={sorted_truth} (Original Pred: {pred_list_orig}, Original Truth: {truth_list_orig})")
# If sorted_pred is None, it means parsing failed or API failed, already counted as incorrect implicitly
accuracy = correct_count / len(ground_truths)
logging.info(f"Accuracy calculated: {correct_count}/{len(ground_truths)} = {accuracy:.4f}")
return accuracy
def get_subject_as_section(subject: str, question_num_for_log: int) -> Optional[str]:
"""
Returns the subject name directly as the section identifier.
question_num_for_log is only used for logging context if subject is invalid.
"""
if subject and isinstance(subject, str) and subject.strip():
return subject.strip()
else:
logging.warning(f"Invalid or missing subject ('{subject}') for question_num '{question_num_for_log}'. Cannot determine section.")
return None
def is_within_range(predicted_value_str: str, lower_bound_str: str, upper_bound_str: str) -> bool:
"""
Checks if a predicted numerical value (as a string) falls within a specified range.
The comparison is inclusive.
"""
try:
predicted_value = float(predicted_value_str)
lower_bound = float(lower_bound_str)
upper_bound = float(upper_bound_str)
except ValueError:
logging.debug(f"Could not convert predicted value '{predicted_value_str}' or bounds ('{lower_bound_str}', '{upper_bound_str}') to numbers.")
return False
return lower_bound <= predicted_value <= upper_bound
def calculate_single_question_score_details(result_item: Dict[str, Any]) -> Dict[str, Any]:
"""
Calculates marks_awarded and evaluation_status for a single question result.
Args:
result_item (Dict[str, Any]): A dictionary for a single question, must contain:
'question_id' (str)
'exam_name' (str)
'question_type' (str)
'ground_truth' (List[str] | str) # Changed to string
'predicted_answer' (List[str] | str | None) # Changed to string
'api_call_successful' (bool)
Returns:
Dict[str, Any]: A dictionary with 'marks_awarded' (int) and 'evaluation_status' (str).
"""
question_id = result_item.get("question_id", "UNKNOWN_QID") # Provide default for logging
exam_name = result_item.get("exam_name", "").upper()
question_type = result_item.get("question_type", "").upper()
pred = result_item.get("predicted_answer")
truth = result_item.get("ground_truth")
api_success = result_item.get("api_call_successful", False)
current_score_change = 0
evaluation_status = "unknown"
# Ensure truth is a set of uppercase strings for consistent processing.
# Ground truth from metadata.jsonl is expected to be a list of strings.
# e.g., ["1"], ["A"], ["12.75"], ["A", "C"]
# For integer ranges, it will be like [["0.7", "0.8"]]
truth_processed: List[Union[str, List[str]]] = []
if isinstance(truth, list):
for t_item in truth:
if isinstance(t_item, str):
truth_processed.append(t_item.upper())
elif isinstance(t_item, list) and len(t_item) == 2 and all(isinstance(x, str) for x in t_item):
truth_processed.append([x.upper() for x in t_item]) # Store range as list of uppercase strings
else:
logging.error(f"Invalid item in ground_truth list for {question_id}: {t_item}. Skipping.")
elif isinstance(truth, str):
truth_processed.append(truth.upper())
else:
logging.error(f"Invalid ground_truth format for {question_id}: {truth} (type: {type(truth)}). Assigning 0 marks.")
return {"marks_awarded": 0, "evaluation_status": "error_bad_ground_truth"}
if not api_success or pred is None: # pred is None means our internal parsing failed
evaluation_status = "failure_api_or_parse"
current_score_change = -1
if exam_name == "JEE_MAIN" and question_type == "INTEGER":
current_score_change = 0
if exam_name == "JEE_ADVANCED" and question_type == "INTEGER":
current_score_change = 0
elif isinstance(pred, str) and pred.upper() == "SKIP": # Standardize SKIP comparison
current_score_change = 0
evaluation_status = "skipped"
elif isinstance(pred, list) and all(isinstance(p, str) for p in pred):
pred_set = {p.upper() for p in pred} # Convert to uppercase strings
# Handle MCQ_SINGLE_CORRECT first, as it has special logic for multiple truths.
# The parser (`parse_llm_answer`) returns `pred` as `list[str]` with one element for valid single answers.
if question_type == "MCQ_SINGLE_CORRECT":
# A prediction is correct if its single element is present in the truth_set.
# This accommodates metadata entries where `correct_answer` for an MCQ_SINGLE_CORRECT
# might list multiple acceptable options (e.g., if a question had two official correct answers).
is_correct = False
if len(pred_set) == 1: # Ensure prediction is indeed a single option
single_pred_answer = list(pred_set)[0] # Get the single predicted option
# Check against all processed truths (which are single strings for MCQ)
if single_pred_answer in truth_processed:
is_correct = True
if is_correct:
evaluation_status = "correct"
if exam_name == "NEET": current_score_change = 4
elif exam_name == "JEE_MAIN": current_score_change = 4
elif exam_name == "JEE_ADVANCED": current_score_change = 3
else: current_score_change = 1 # Default positive score for unknown exam
else:
evaluation_status = "incorrect"
if exam_name == "NEET": current_score_change = -1
elif exam_name == "JEE_MAIN": current_score_change = -1
elif exam_name == "JEE_ADVANCED": current_score_change = -1
else: current_score_change = 0 # Default no penalty
elif exam_name == "JEE_MAIN" and question_type == "INTEGER": # Integer answers are now strings in a list e.g. ["14"]
# For JEE_MAIN INTEGER, we expect truth_processed to contain single strings
is_correct = False
if len(pred_set) == 1:
predicted_answer_str = list(pred_set)[0]
if predicted_answer_str in truth_processed: # Check against single string truths
is_correct = True
if is_correct:
current_score_change = 4; evaluation_status = "correct"
else:
current_score_change = 0; evaluation_status = "incorrect"
elif exam_name == "JEE_ADVANCED":
# Note: MCQ_SINGLE_CORRECT for JEE_ADVANCED is handled by the common block above
if question_type == "INTEGER":
is_correct = False
if len(pred_set) == 1:
predicted_answer_str = list(pred_set)[0] # Get the single predicted string
# Iterate through each ground truth entry in the 'truth_processed' list
for gt_entry in truth_processed:
if isinstance(gt_entry, list) and len(gt_entry) == 2: # This is a range [lower, upper]
lower_bound_str, upper_bound_str = gt_entry[0], gt_entry[1]
if is_within_range(predicted_answer_str, lower_bound_str, upper_bound_str):
is_correct = True
break # Found a matching range, no need to check others
elif isinstance(gt_entry, str): # This is an exact integer match
if predicted_answer_str == gt_entry: # gt_entry is already uppercase
is_correct = True
break # Found an exact match, no need to check others
if is_correct:
current_score_change = 4; evaluation_status = "correct"
else:
current_score_change = 0; evaluation_status = "incorrect"
elif question_type == "MCQ_MULTIPLE_CORRECT":
# For MCQ_MULTIPLE_CORRECT, truth_processed contains single strings
truth_set_mcq = set(truth_processed) # Convert to set for intersection operations
num_correct_options_in_truth = len(truth_set_mcq)
num_chosen_options = len(pred_set)
correct_chosen_options = pred_set.intersection(truth_set_mcq)
incorrect_chosen_options = pred_set.difference(truth_set_mcq)
num_correct_chosen = len(correct_chosen_options)
num_incorrect_chosen = len(incorrect_chosen_options)
if num_incorrect_chosen > 0:
current_score_change = -2; evaluation_status = "incorrect_negative"
elif num_correct_chosen == num_correct_options_in_truth and num_chosen_options == num_correct_options_in_truth:
current_score_change = 4; evaluation_status = "correct_full"
elif num_correct_options_in_truth == 4 and num_correct_chosen == 3 and num_chosen_options == 3:
current_score_change = 3; evaluation_status = "partial_3_of_4"
elif num_correct_options_in_truth >= 3 and num_correct_chosen == 2 and num_chosen_options == 2:
current_score_change = 2; evaluation_status = "partial_2_of_3_plus"
elif num_correct_options_in_truth >= 2 and num_correct_chosen == 1 and num_chosen_options == 1:
current_score_change = 1; evaluation_status = "partial_1_of_2_plus"
else:
current_score_change = 0; evaluation_status = "no_marks_no_penalty"
else:
logging.warning(f"Unknown exam_name/question_type combination for scoring: {exam_name}/{question_type} for QID {question_id}. Assigning 0 marks.")
current_score_change = 0
evaluation_status = "unknown_exam_type"
else:
logging.error(f"Unexpected prediction type for {question_id}: {pred}. Treating as API/Parse Failure.")
current_score_change = -1 # Default penalty
evaluation_status = "failure_unexpected_type"
return {"marks_awarded": current_score_change, "evaluation_status": evaluation_status}
def calculate_max_score_for_question(exam_name: str, question_type: str) -> int:
"""
Returns the maximum possible score for a given exam and question type.
"""
exam_name = exam_name.upper()
question_type = question_type.upper()
if exam_name == "NEET" and question_type == "MCQ_SINGLE_CORRECT":
return 4
elif exam_name == "JEE_MAIN":
if question_type == "MCQ_SINGLE_CORRECT":
return 4
elif question_type == "INTEGER":
return 4
elif exam_name == "JEE_ADVANCED":
if question_type == "MCQ_SINGLE_CORRECT":
return 3
elif question_type == "INTEGER":
return 4
elif question_type == "MCQ_MULTIPLE_CORRECT":
return 4 # Max score for multiple correct is 4
return 0 # Default for unknown types
def calculate_exam_scores(results: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Calculates exam scores based on exam_name and question_type, providing section-wise breakdown
and detailed question type statistics.
Args:
results (List[Dict[str, Any]]): A list of result dictionaries. Each dict must contain:
'question_id' (str)
'subject' (str)
'exam_name' (str) e.g., "NEET", "JEE_MAIN", "JEE_ADVANCED"
'question_type' (str) e.g., "MCQ_SINGLE_CORRECT", "MCQ_MULTIPLE_CORRECT", "INTEGER"
'ground_truth' (List[str] | str): Correct answer(s). For INTEGER, it's a single str.
'predicted_answer' (List[str] | str | None): Model's prediction.
'api_call_successful' (bool): Whether the API call succeeded.
This list will be modified in-place to add 'evaluation_status' and 'marks_awarded' by calling
calculate_single_question_score_details for each item.
Returns:
Dict[str, Any]: A dictionary containing overall and section-wise scores and counts,
plus question type breakdowns and total possible score.
"""
if not results:
return {"error": "No results provided."}
overall_stats = {
"score": 0,
"correct": 0,
"incorrect": 0,
"skipped": 0,
"api_parse_failures": 0,
"partial_correct": 0,
"total_possible_score": 0 # New field
}
# Initialize question type breakdown
question_type_breakdown: Dict[str, Dict[str, Any]] = {}
valid_subjects_from_data = [r.get("subject") for r in results if r.get("subject") and isinstance(r.get("subject"), str) and r.get("subject").strip()]
if not valid_subjects_from_data and results:
logging.warning("No valid subjects found in results data to initialize section_stats.")
unique_subjects = sorted(list(set(s.strip() for s in valid_subjects_from_data)))
section_stats = {
subj: {"score": 0, "correct": 0, "incorrect": 0, "skipped": 0, "api_parse_failures": 0, "partial_correct": 0}
for subj in unique_subjects
}
if not unique_subjects and results:
logging.warning("section_stats is empty because no unique, valid subjects were found.")
unmapped_section_questions = 0
for result in results:
question_id = result.get("question_id") # For logging within loop
subject = result.get("subject") # For section mapping
exam_name = result.get("exam_name", "").upper()
question_type = result.get("question_type", "").upper()
# Calculate score details for the single question
score_details = calculate_single_question_score_details(result)
current_score_change = score_details.get("marks_awarded", 0)
evaluation_status = score_details.get("evaluation_status", "unknown_error_in_scoring")
# Update the result dictionary in-place (as original function did)
result['evaluation_status'] = evaluation_status
result['marks_awarded'] = current_score_change
# Accumulate total possible score
overall_stats["total_possible_score"] += calculate_max_score_for_question(exam_name, question_type)
# Determine boolean flags based on evaluation_status for aggregation
is_correct_full = evaluation_status in ["correct", "correct_full"]
is_partial_correct = evaluation_status.startswith("partial_")
is_incorrect_choice = evaluation_status in ["incorrect", "incorrect_negative"]
is_skipped = evaluation_status == "skipped"
is_api_parse_failure = evaluation_status in ["failure_api_or_parse", "failure_unexpected_type", "error_bad_ground_truth"]
overall_stats["score"] += current_score_change
if is_correct_full: overall_stats["correct"] += 1
if is_incorrect_choice: overall_stats["incorrect"] += 1
if is_skipped: overall_stats["skipped"] += 1
if is_api_parse_failure: overall_stats["api_parse_failures"] += 1
if is_partial_correct: overall_stats["partial_correct"] +=1
# Aggregate by question type
if question_type not in question_type_breakdown:
question_type_breakdown[question_type] = {
"count": 0,
"score": 0,
"correct_full": 0,
"partial_correct": 0,
"incorrect_choice": 0,
"skipped": 0,
"api_parse_failures": 0,
"max_score_per_question": calculate_max_score_for_question(exam_name, question_type)
}
q_type_stats = question_type_breakdown[question_type]
q_type_stats["count"] += 1
q_type_stats["score"] += current_score_change
if is_correct_full: q_type_stats["correct_full"] += 1
if is_incorrect_choice: q_type_stats["incorrect_choice"] += 1
if is_skipped: q_type_stats["skipped"] += 1
if is_api_parse_failure: q_type_stats["api_parse_failures"] += 1
if is_partial_correct: q_type_stats["partial_correct"] += 1
section = None
if subject:
question_num_for_log = -1 # Placeholder, as QID might not have number
if question_id:
match_num = re.search(r'_(\d+)$', question_id)
if match_num:
try: question_num_for_log = int(match_num.group(1))
except ValueError: pass
section = get_subject_as_section(subject, question_num_for_log)
if section and section in section_stats:
section_stats[section]["score"] += current_score_change
if is_correct_full: section_stats[section]["correct"] += 1
if is_incorrect_choice: section_stats[section]["incorrect"] += 1
if is_skipped: section_stats[section]["skipped"] += 1
if is_api_parse_failure: section_stats[section]["api_parse_failures"] += 1
if is_partial_correct: section_stats[section]["partial_correct"] +=1
elif section is None and not is_api_parse_failure : # only count as unmapped if not already an API/parse failure (which might lack subject)
unmapped_section_questions += 1
# logging.warning(f"Could not map question to section: ID={question_id}, Subject={subject}") # Already logged by get_subject_as_section if subject is bad
logging.info(f"Exam Score Calculation Complete. Overall Score: {overall_stats['score']}")
if unmapped_section_questions > 0:
logging.warning(f"{unmapped_section_questions} questions could not be mapped to a section.")
return {
"overall_score": overall_stats["score"],
"overall_correct_full": overall_stats["correct"],
"overall_partial_correct": overall_stats["partial_correct"],
"overall_incorrect_choice": overall_stats["incorrect"],
"overall_skipped": overall_stats["skipped"],
"overall_api_parse_failures": overall_stats["api_parse_failures"],
"total_questions_processed": len(results),
"total_possible_score_for_processed_questions": overall_stats["total_possible_score"], # New field
"unmapped_section_questions": unmapped_section_questions,
"section_breakdown": section_stats,
"question_type_breakdown": question_type_breakdown # New field
}
# Example Usage (for testing)
if __name__ == '__main__':
print("Running evaluation tests...")
# --- Test calculate_accuracy (now with strings) ---
print("\n--- Testing calculate_accuracy ---")
preds1_str = [["1"], ["2"], ["1", "3"]]
truths1_str = [["1"], ["2"], ["3", "1"]]
acc1_str = calculate_accuracy(preds1_str, truths1_str)
print(f"Test Case 1 (Accuracy - String): Preds={preds1_str}, Truths={truths1_str} -> Accuracy: {acc1_str} (Expected: 1.0)")
assert acc1_str == 1.0
preds2_str = [["A"], ["B"], ["A", "C"]]
truths2_str = [["a"], ["b"], ["c", "a"]] # Test case-insensitivity
acc2_str = calculate_accuracy(preds2_str, truths2_str)
print(f"Test Case 2 (Accuracy - String Case-Insensitive): Preds={preds2_str}, Truths={truths2_str} -> Accuracy: {acc2_str} (Expected: 1.0)")
assert acc2_str == 1.0
preds3_str = [["10"], None, ["5"]]
truths3_str = [["10"], ["7"], ["5"]]
acc3_str = calculate_accuracy(preds3_str, truths3_str)
print(f"Test Case 3 (Accuracy - String with None): Preds={preds3_str}, Truths={truths3_str} -> Accuracy: {acc3_str} (Expected: {2/3})")
assert acc3_str == (2/3)
# --- Test calculate_exam_scores (now with strings) ---
print("\n--- Testing calculate_exam_scores ---")
test_results_exam = [
# NEET - Answers as strings "1", "2", "A", "B" etc.
{"question_id": "N001", "subject": "Physics", "exam_name": "NEET", "question_type": "MCQ_SINGLE_CORRECT", "ground_truth": ["1"], "predicted_answer": ["1"], "api_call_successful": True}, # Correct +4
{"question_id": "N002", "subject": "Physics", "exam_name": "NEET", "question_type": "MCQ_SINGLE_CORRECT", "ground_truth": ["D"], "predicted_answer": ["B"], "api_call_successful": True}, # Incorrect -1
{"question_id": "N003", "subject": "Chemistry", "exam_name": "NEET", "question_type": "MCQ_SINGLE_CORRECT", "ground_truth": ["4"], "predicted_answer": "SKIP", "api_call_successful": True}, # Skipped 0
{"question_id": "N004", "subject": "Chemistry", "exam_name": "NEET", "question_type": "MCQ_SINGLE_CORRECT", "ground_truth": ["C"], "predicted_answer": None, "api_call_successful": False}, # API Fail -1
{"question_id": "N005", "subject": "Botany", "exam_name": "NEET", "question_type": "MCQ_SINGLE_CORRECT", "ground_truth": ["A"], "predicted_answer": None, "api_call_successful": True}, # Parse Fail -1
# JEE Main - MCQ - Answers as strings "1", "2", "A", "B" etc.
{"question_id": "JM001", "subject": "Maths", "exam_name": "JEE_MAIN", "question_type": "MCQ_SINGLE_CORRECT", "ground_truth": ["2"], "predicted_answer": ["2"], "api_call_successful": True}, # Correct +4
{"question_id": "JM002", "subject": "Maths", "exam_name": "JEE_MAIN", "question_type": "MCQ_SINGLE_CORRECT", "ground_truth": ["C"], "predicted_answer": ["a"], "api_call_successful": True}, # Incorrect -1 (C vs a)
# JEE Main - Integer - Answers as strings e.g., "5", "10"
{"question_id": "JM003", "subject": "Physics", "exam_name": "JEE_MAIN", "question_type": "INTEGER", "ground_truth": ["5"], "predicted_answer": ["5"], "api_call_successful": True}, # Correct +4
{"question_id": "JM004", "subject": "Physics", "exam_name": "JEE_MAIN", "question_type": "INTEGER", "ground_truth": ["10"], "predicted_answer": ["8"], "api_call_successful": True}, # Incorrect 0
{"question_id": "JM005", "subject": "Chemistry", "exam_name": "JEE_MAIN", "question_type": "INTEGER", "ground_truth": ["7"], "predicted_answer": None, "api_call_successful": True}, # Parse Fail 0
# JEE Advanced - MCQ Single Correct - Answers as strings "A", "B" etc.
{"question_id": "JA001", "subject": "Maths", "exam_name": "JEE_ADVANCED", "question_type": "MCQ_SINGLE_CORRECT", "ground_truth": ["A"], "predicted_answer": ["a"], "api_call_successful": True}, # Correct +3 (case-insensitive)
{"question_id": "JA002", "subject": "Maths", "exam_name": "JEE_ADVANCED", "question_type": "MCQ_SINGLE_CORRECT", "ground_truth": ["B"], "predicted_answer": ["C"], "api_call_successful": True}, # Incorrect -1
# JEE Advanced - Integer - Answers as strings e.g., "12", "0"
{"question_id": "JA003", "subject": "Physics", "exam_name": "JEE_ADVANCED", "question_type": "INTEGER", "ground_truth": ["12"], "predicted_answer": ["12"], "api_call_successful": True}, # Correct +4
{"question_id": "JA004", "subject": "Physics", "exam_name": "JEE_ADVANCED", "question_type": "INTEGER", "ground_truth": ["0"], "predicted_answer": ["1"], "api_call_successful": True}, # Incorrect 0
# JEE Advanced - MCQ Multiple Correct - Answers as strings "A", "C" etc.
{"question_id": "JA005", "subject": "Chemistry", "exam_name": "JEE_ADVANCED", "question_type": "MCQ_MULTIPLE_CORRECT", "ground_truth": ["A", "C"], "predicted_answer": ["a", "c"], "api_call_successful": True}, # All Correct +4
{"question_id": "JA006", "subject": "Chemistry", "exam_name": "JEE_ADVANCED", "question_type": "MCQ_MULTIPLE_CORRECT", "ground_truth": ["A", "B", "C"], "predicted_answer": ["a", "b"], "api_call_successful": True}, # Partial +2 (3 correct, 2 chosen)
{"question_id": "JA007", "subject": "Chemistry", "exam_name": "JEE_ADVANCED", "question_type": "MCQ_MULTIPLE_CORRECT", "ground_truth": ["A", "B", "C", "D"], "predicted_answer": ["a", "b", "c"], "api_call_successful": True}, # Partial +3 (4 correct, 3 chosen)
{"question_id": "JA008", "subject": "Chemistry", "exam_name": "JEE_ADVANCED", "question_type": "MCQ_MULTIPLE_CORRECT", "ground_truth": ["A", "B"], "predicted_answer": ["a"], "api_call_successful": True}, # Partial +1 (2 correct, 1 chosen)
{"question_id": "JA009", "subject": "Chemistry", "exam_name": "JEE_ADVANCED", "question_type": "MCQ_MULTIPLE_CORRECT", "ground_truth": ["A", "C"], "predicted_answer": ["a", "b"], "api_call_successful": True}, # Incorrect option chosen -2
{"question_id": "JA010", "subject": "Chemistry", "exam_name": "JEE_ADVANCED", "question_type": "MCQ_MULTIPLE_CORRECT", "ground_truth": ["A", "C"], "predicted_answer": ["b", "d"], "api_call_successful": True}, # All incorrect options chosen -2
{"question_id": "JA011", "subject": "Chemistry", "exam_name": "JEE_ADVANCED", "question_type": "MCQ_MULTIPLE_CORRECT", "ground_truth": ["A", "C"], "predicted_answer": "SKIP", "api_call_successful": True}, # Skipped 0
{"question_id": "JA012", "subject": "Maths", "exam_name": "JEE_ADVANCED", "question_type": "MCQ_MULTIPLE_CORRECT", "ground_truth": ["A"], "predicted_answer": ["a"], "api_call_successful": True}, # Single correct in multi-choice, full marks +4
{"question_id": "JA013", "subject": "Physics", "exam_name": "JEE_ADVANCED", "question_type": "MCQ_MULTIPLE_CORRECT", "ground_truth": ["A","B","C"], "predicted_answer": ["a","d"], "api_call_successful": True}, # One correct, one incorrect -> -2
]
exam_summary = calculate_exam_scores(test_results_exam)
print("\nExam Score Summary:")
import json
print(json.dumps(exam_summary, indent=2, sort_keys=True))
# Basic assertions - can be expanded
assert exam_summary["overall_score"] == (4-1+0-1-1) + (4-1) + (4+0+0) + (3-1) + (4+0) + (4+2+3+1-2-2+0+4-2)
assert exam_summary["overall_correct_full"] == 8
assert exam_summary["overall_partial_correct"] == 3
assert exam_summary["overall_incorrect_choice"] == 7
assert exam_summary["overall_skipped"] == 2
assert exam_summary["overall_api_parse_failures"] == 3 # N004, N005, JM005
assert exam_summary["section_breakdown"]["Physics"]["score"] == (4-1) + (4+0) + (4+0) - 2 # N001,N002 + JM003,JM004 + JA003,JA004 + JA013
assert exam_summary["section_breakdown"]["Chemistry"]["score"] == (0-1) + (0) + (4+2+3+1-2-2+0) # N003,N004 + JM005 + JA005-JA011
assert exam_summary["section_breakdown"]["Botany"]["score"] == -1 # N005
assert exam_summary["section_breakdown"]["Maths"]["score"] == (4-1) + (3-1) + 4 # JM001,JM002 + JA001,JA002 + JA012
print("\nEvaluation tests completed.")
|