Datasets:
File size: 3,036 Bytes
c2b0bff 0885246 99c01a2 0885246 6d9105a 0885246 68029e1 0885246 a6efb83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: mit
task_categories:
- graph-ml
language:
- en
tags:
- graph
- knowledge
- citation
- network
- scholar
pretty_name: AceMap Academic Graph Dataset
size_categories:
- 1B<n<10B
---
# AceMap Academic Graph Dataset
## Dataset Description
The AceMap Academic Graph Dataset is a large-scale academic citation network, containing **2,624,498,906 edges** and **264,675,127 nodes**. Each node represents an academic paper, and each edge indicates that one paper cites another. Each node can be linked to the [AceMap](https://acemap.info/) website for more detailed information.
## Dataset Source
This dataset is provided by:
- Wang, Xinbing, et al. "AceMap: Knowledge discovery through academic graph." arXiv preprint arXiv:2403.02576 (2024).
## Data Format
The dataset is provided in CSV file format, containing two columns:
- `id`: The unique identifier of the paper, in the form of `ZEJBRUdDQUdBRUI`.
- `referenced_works`: The unique identifier of the cited paper, in the form of `ZDlHREE5QjhCRkQ`.
## Data Examples
Here are some examples from the dataset:
| id | referenced_works |
|------------------------|--------------------------------|
| ZEJBRkNDRTg3RDk | ZDlHREE5QjhCRkQ |
| ZEJBRkNDRTg3RDk | ZDlHRTk4REVHN0E |
...
## Usage Instructions
### 0. Download from Huggingface
[https://huggingface.co/datasets/Reacubeth/acemap_citation_network](https://huggingface.co/datasets/Reacubeth/acemap_citation_network)
```
git lfs install
git clone https://huggingface.co/datasets/Reacubeth/acemap_citation_network
```
### 1. Unzip the `.tar.gz` Files
Use the `tar` command to extract the contents of each `.tar.gz` file. For example, to extract all files to a directory named `data`, you can run the following commands:
```bash
tar -xzvf filelist_part_aa.tar.gz -C data/
tar -xzvf filelist_part_ab.tar.gz -C data/
tar -xzvf filelist_part_ac.tar.gz -C data/
tar -xzvf filelist_part_ad.tar.gz -C data/
tar -xzvf filelist_part_ae.tar.gz -C data/
```
This will extract the CSV files to the `data/` directory.
### 2. Load the CSV Files
Use Pandas or other data processing tools to load the CSV files. Here is an example of how to load and concatenate all CSV files into a single DataFrame:
### 3. Access AceMap Website
For more detailed information about each paper, visit the [AceMap](https://acemap.info/) website by concatenating the following example strings:
```python
url = 'https://acemap.info/papers/' + 'ZEJBRkNDRTg3RDk'
```
## Citation
If you use this dataset, please cite the following publication:
```
@article{wang2024acemap,
title={AceMap: Knowledge discovery through academic graph},
author={Wang, Xinbing and Fu, Luoyi and Gan, Xiaoying and Wen, Ying and Zheng, Guanjie and Ding, Jiaxin and Xiang, Liyao and Ye, Nanyang and Jin, Meng and Liang, Shiyu and others},
journal={arXiv preprint arXiv:2403.02576},
year={2024}
}
```
## Contact
For any questions or further assistance, please contact email [email protected]. |