Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,65 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
## Counting translation instances
|
5 |
+
In order to count translation instances containing English paired with German, French, Spanish, Portuguese, Italian or Dutch, you can use:
|
6 |
+
```python
|
7 |
+
from datasets import load_dataset
|
8 |
+
import json
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
# Specify the dataset name
|
12 |
+
dataset_name = "RaiBP/openwebtext2-first-30-chunks-lang-detect-raw-output"
|
13 |
+
|
14 |
+
# Load the dataset
|
15 |
+
translation_dataset = load_dataset(dataset_name, data_dir="translation")
|
16 |
+
|
17 |
+
dataset = translation_dataset["train"]
|
18 |
+
n_examples = len(dataset)
|
19 |
+
total_instances = 0
|
20 |
+
counts_dict = {"de": 0, "fr": 0, "es": 0, "pt": 0, "it": 0, "nl": 0}
|
21 |
+
others_count = 0
|
22 |
+
instances = {}
|
23 |
+
for document in tqdm(dataset, total=n_examples):
|
24 |
+
embedded_label = document["embedded_label"]
|
25 |
+
primary_label = document["primary_label"]
|
26 |
+
document_id = document["document_index"]
|
27 |
+
instance_id = document["instance_index"]
|
28 |
+
id = f"{document_id}-{instance_id}"
|
29 |
+
if id not in instances.keys():
|
30 |
+
instances[id] = [f"{embedded_label}-{primary_label}"]
|
31 |
+
else:
|
32 |
+
instances[id].append(f"{embedded_label}-{primary_label}")
|
33 |
+
|
34 |
+
for id, labels in instances.items():
|
35 |
+
state = 0
|
36 |
+
found_langs = []
|
37 |
+
for langs in labels:
|
38 |
+
lang_pair = langs.split("-")
|
39 |
+
if "en" in lang_pair:
|
40 |
+
non_english = lang_pair[0] if lang_pair[1] == "en" else lang_pair[1]
|
41 |
+
if non_english in counts_dict.keys():
|
42 |
+
state = 1 # found a translation with English and a language in the counts_dict
|
43 |
+
found_langs.append(non_english)
|
44 |
+
elif state != 1:
|
45 |
+
state = 2 # found a translation with English and a language not in the counts_dict
|
46 |
+
elif state != 1:
|
47 |
+
state = 2 # found a translation without English
|
48 |
+
if state == 1:
|
49 |
+
majority_lang = max(set(found_langs), key=found_langs.count)
|
50 |
+
counts_dict[majority_lang] += 1
|
51 |
+
elif state == 2:
|
52 |
+
others_count += 1
|
53 |
+
else:
|
54 |
+
print("Error: state is 0")
|
55 |
+
|
56 |
+
# Specify the file path where you want to save the JSON file
|
57 |
+
file_path = "translation_counts.json"
|
58 |
+
counts_dict["others"] = others_count
|
59 |
+
|
60 |
+
# Save the dictionary as a JSON file
|
61 |
+
with open(file_path, "w") as json_file:
|
62 |
+
json.dump(
|
63 |
+
counts_dict, json_file, indent=2
|
64 |
+
) # indent argument is optional, but it makes the file more human-readable
|
65 |
+
```
|