Datasets:

Modalities:
Text
Formats:
text
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
File size: 15,735 Bytes
16195f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#!/usr/bin/env python3
from iso639 import languages
import json
from os import listdir
from os.path import isfile, join
import argparse
import re
import numpy as np

# get the range of task you want to test, if specified in the command line
parser = argparse.ArgumentParser()
parser.add_argument("--task",
                    nargs=2,
                    type=int,
                    required=False,
                    help="The range of task you want to parse")

args = parser.parse_args()
if args.task:
    begin_task_number, end_task_number = args.task[0], args.task[1]
    assert begin_task_number > 0, "begin task must be greater than 0"
    assert end_task_number > begin_task_number, "please specify a range of task you would like to test; i.e. the end task number must be greater than beginning task number"

# make sure that there is no json file in the root directory
root_files = [f for f in listdir('.') if isfile(join('.', f))]
for f in root_files:
    assert '.json' not in f, 'looks like there is a JSON file in the main directory???'

# read all the tasks and make sure that they're following the right pattern
tasks_path = 'tasks/'
# tasks_path = 'tasks_special_token/'

expected_keys = [
    "Definition",
    "Input_language",
    "Output_language",
    "Positive Examples",
    "Negative Examples",
    "Instances",
    "Contributors",
    "Categories",
    "Domains",
    "Source",
    "URL",
    "Reasoning"
]

language_names = [
    x.name.replace('(individual language)', '').replace(" languages", "").strip()
    for x in list(languages)
]


def assert_language_name(name):
    assert name in language_names, f"Did not find `{name}` among iso639 language names: {language_names}"


def extract_categories(string):
    """
    Get all the characters between ` and `
    """
    return set(re.findall(r'`(.*?)`', string))


def dict_raise_on_duplicates(ordered_pairs):
    """Reject duplicate keys."""
    d = {}
    for k, v in ordered_pairs:
        if k in d:
            raise ValueError("duplicate key: %r" % (k,))
        else:
            d[k] = v
    return d

def atoi(text):
    return int(text) if text.isdigit() else text

def natural_keys(text):
    '''
    alist.sort(key=natural_keys) sorts in human order
    '''
    return [ atoi(c) for c in re.split(r'(\d+)', text) ]


with open("tasks/README.md", 'r') as readmef:
    task_readme_content = " ".join(readmef.readlines())
with open("doc/task-hierarchy.md", 'r') as readmef:
    hierarchy_content_lines = readmef.readlines()
    hierarchy_content = " ".join(hierarchy_content_lines)
    all_categories = extract_categories(hierarchy_content)

# make sure there are no repeated lines in the task file
task_readme_lines = [x for x in task_readme_content.split("\n") if len(x) > 5]
if len(set(task_readme_lines)) != len(task_readme_lines):
    diff = "\n --> ".join([x for x in task_readme_lines if task_readme_lines.count(x) > 1])
    assert False, f'looks like there are repeated lines in the task readme file?? \n {diff}'

# make sure that the lines are sorted
task_numbers = [int(line.replace("`task", "").split("_")[0]) for line in task_readme_lines if "`task" in line]
for i in range(0, len(task_numbers) - 1):
    num1 = task_numbers[i]
    num2 = task_numbers[i + 1]
    assert num1 <= num2, f"ERROR: looks like `{num1}` appears before `{num2}`."

files = [f for f in listdir(tasks_path) if isfile(join(tasks_path, f))]
files.sort(key=natural_keys)

# make sure anything that gets mentioned in the readme, correspond to an actual file
task_names = [line.split("`")[1] for line in task_readme_lines if '`' in line]
for name in task_names:
    file_name = name + ".json"
    # pqz
    # assert file_name in files, f" Did not find `{file_name}` among {files}"

# test every file (README is skipped)
if not args.task:
    begin_task_number, end_task_number = 1, len(files)

# TODO: over time, we need to fix the skew of the following tasks
skew_exclusion = [
    "150"
]

contributor_stats = {}
categories_stats = {}
reasoning_stats = {}
domain_stats = {}
tasks_count = 0
number_of_instances = 0
for file in files[begin_task_number:end_task_number + 1]:
    if ".json" in file:
        print(f" --> testing file: {file}")
        assert '.json' in file, 'the file does not seem to have a .json in it: ' + file
        file_path = tasks_path + file
        with open(file_path, 'r') as f:
            try:
                data = json.load(f)
            except:
                with open(file_path, 'r', encoding='utf-8') as f:
                    data = json.load(f, object_pairs_hook=dict_raise_on_duplicates)
            for key in expected_keys:
                assert key in data, f'did not find the key: {key}'


            assert len(data['Instances']) > 25, f"there must be at least 25 instances; " \
                                                f"currently you have {len(data['Instances'])} instances"
            # pqz
            # assert len(data['Instances']) <= 6500, f"there must be at most 6.5k instances; " \
                                                #    f"currently you have {len(data['Instances'])} instances"

            assert type(data['Definition']) == list, f'Definition must be a list of strings.'
            assert type(data['Source']) == list, f'Sources must be a list.'
            assert type(data['URL']) == list, f'URL must be a list.'
            assert type(data['Contributors']) == list, f'Contributors must be a list.'
            assert type(data['Categories']) == list, f'Categories must be a list.'
            assert type(data['Reasoning']) == list, f'Reasoning must be a list.'
            assert type(data['Domains']) == list, f'Domains must be a list.'
            
            number_of_instances = number_of_instances + len(data['Instances'])
            for c in data['Categories']:
                assert c in all_categories, f'Did not find category `{c}`'
                if c not in categories_stats:
                    categories_stats[c] = 0
                categories_stats[c] += 1

            for d in data['Domains']:
                assert d in hierarchy_content, f'Did not find domain `{d}`'
                if d not in domain_stats:
                    domain_stats[d] = 0
                domain_stats[d] += 1

            for r in data['Reasoning']:
                assert r in hierarchy_content, f'Did not find reasoning `{r}`'
                if r not in reasoning_stats:
                    reasoning_stats[r] = 0
                reasoning_stats[r] += 1

            for d in data['Definition']:
                assert type(d) == str, f'Each definition must be a string.'
                assert all((lan in d) for lan in data['Input_language'] if
                       lan != 'English'), f'Definition must contain non-English tasks language.'
            assert type(data['Input_language']) == list, f'Input_language must be a list of strings.'
            assert type(data['Output_language']) == list, f'Output_language must be a list of strings.'
            assert type(data['Instruction_language']) == list, f'Output_language must be a list of strings.'

            assert 'instruction_language' not in data, f'Found `instruction_language`, but expected `Instruction_language`.'
            assert 'input_language' not in data, f'Found `input_language`, but expected `Input_language`.'
            assert 'output_language' not in data, f'Found `output_language`, but expected `Output_language`.'

            # make sure we use the standard language names
            # pqz
            # for lang in data['Input_language'] + data['Output_language'] + data['Instruction_language']:
            #     assert_language_name(lang)

            instance_ids = set()
            for x in data['Instances']:
                for key in ['id', 'input', 'output']:
                    assert key in x, f'expected the key {key} in {x}'
                assert x['id'] not in instance_ids, f'found duplicate instance id: {x["id"]}'
                instance_ids.add(x['id'])
                assert type(x['input']) == str, f'the input of instance {x} is not a string'
                assert type(x['output']) == list, f'the output of instance {x} is not a list'
                assert len(x['input']) > 0, f"looks like an input `{x['input']}` is empty?"
                assert len(x['output']) > 0, f"looks like an output `{x['output']}` is empty?"
                for i in x['output']:
                    assert type(i) == str, f'the output is not a string'
            # pqz
            # assert len(data['Positive Examples']) > 1, "there must be at least 3 positive example"
            # assert len(data['Negative Examples']) > 0, "there must be at least 2 negative example"

            for x in data['Positive Examples'] + data['Negative Examples']:
                for key in ['input', 'output', 'explanation']:
                    assert key in x, f'expected the key {key} in {x}'
                assert type(x['input']) == str, f'the input of example {x} is not a string'
                assert type(x['output']) == str, f'the output of example {x} is not a string'
                assert type(x['explanation']) == str, f'the explanation of example {x} is not a string'

            # Make sure there are no repeated input examples
            instances = data['Instances']
            set_of_instances = {instance['input'] for instance in instances}
            # Because the set length and total length are different, there must be a duplicate input
            # pqz
            # if len(instances) != len(set_of_instances):
            #     for instance in instances:
            #         # If the instance is a duplicate then it has already been removed from the set and a KeyError will be thrown
            #         try:
            #             set_of_instances.remove(instance['input'])
            #         except KeyError:
            #             raise Exception(f" * Looks like we have a repeated example here! "
            #                             f"Merge outputs before removing duplicates. :-/ \n {instance}")
                                        
            # Make sure there are no link in instances
            url_reg  = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
            instances = data['Instances']    
            for instance in instances:
                ck_url = re.findall(url_reg, instance['input'])
                if ck_url:
                    print(f'⚠️ WARNING: Looks like there is a link in the input: {ck_url}')
                    break
                    
            # make sure classes are balanced
            output = [ins['output'] for ins in instances]
            # flattens the nested arrays
            outputs = sum(output, [])
            value, counts = np.unique(outputs, return_counts=True)
            
            task_number = file.replace("task", "").split("_")[0]
            # TODO: drop this condition 
            if int(task_number) not in [902, 903]:
                assert len(value) > 1, f" Looks like all the instances are mapped to a single output: {value}"

            if task_number not in skew_exclusion and len(value) < 15:
                norm_counts = counts / counts.sum()
                entropy = -(norm_counts * np.log(norm_counts) / np.log(len(value))).sum()
                # pqz
                # assert entropy > 0.8, f"Looks like this task is heavily skewed!\n   πŸ“‹ classes: {value} \n   πŸ“‹ Norm_counts: {norm_counts} \n   πŸ“‹ Distribution of classes: {counts} \n   πŸ“Š entropy= {entropy}"
            # Make sure there are no examples repeated across instances and positive examples
            examples = [ex['input'] for ex in data['Positive Examples']]
            for instance in instances:
                if instance['input'] in examples:
                    raise Exception(f" * Looks like we have a same example across positive examples and instances! "
                                    f"Drop the example from the instances. :-/ \n {instance}")

                assert len(instance['output']) > 0, "all the instances must have at least one output"

            true_file = file.replace(".json", "")
            for char in true_file:
                if char.isupper():
                    raise Exception(f" * Looks like there is an uppercase letter in `{true_file}`. "
                                    f"All letters should be lowercased.")

            if file in task_readme_content:
                raise Exception(f" * Looks like the .json file extension ending is "
                                f"present with the task name in `tasks/README.md` when it should just be `{true_file}`")

            # pqz
            # if true_file not in task_readme_content:
            #     raise Exception(f' * Looks like the task name `{true_file}` is not included '
            #                     f'in the task file `tasks/README.md`')

            if task_readme_content.count(true_file) > 1:
                raise Exception(f' * Looks like the task name `{true_file}` is repeated in '
                                f'the task file `tasks/README.md`')

            for c in data['Contributors']:
                if c not in contributor_stats:
                    contributor_stats[c] = 0
                contributor_stats[c] += 1
            tasks_count = tasks_count + 1

# test the the official splits
# pqz
# for split_name in ["mol_text"]:
    # train_tasks = [l.strip() for l in open(f"splits/{split_name}/train_tasks.txt")]
    # test_tasks = [l.strip() for l in open(f"splits/{split_name}/test_tasks.txt")]
    # excluded_tasks = [l.strip() for l in open(f"splits/{split_name}/excluded_tasks.txt")]

    # make east task in the split actually exists
    # pqz
    # for task in train_tasks + test_tasks + excluded_tasks:
    #     assert task in task_names, f" Task {task} doesn't exist, but it's included in the {split_name} split."
    # make sure each task appears in the split 
    # pqz
    # for task in task_names:
    #     assert task in train_tasks + test_tasks + excluded_tasks, f" Task {task} is missing in the {split_name} split."
    # make sure there is no overlap between test and train task names in the splits files.
    # assert len(set(train_tasks) & set(test_tasks)) == 0, f" {split_name} split has overlap tasks in the train & test sets."
    # assert len(set(train_tasks) & set(excluded_tasks)) == 0, f" {split_name} split has overlap tasks in the train & excluded sets."
    # assert len(set(test_tasks) & set(excluded_tasks)) == 0, f" {split_name} split has overlap tasks in the test & excluded sets."

print("Did not find any errors! βœ…")

print("\n  - - - - - Contributors >= 25 tasks - - - - - ")
keyvalues = sorted(list(contributor_stats.items()), key=lambda x: x[1])
for author, count in keyvalues:
    if count >= 25:
        print(f" ✍️ {author} -> {count}")

print("\n  - - - - - Category Stats - - - - - ")
keyvalues = sorted(list(categories_stats.items()), key=lambda x: x[1])
for cat, count in categories_stats.items():
    print(f" ✍️ {cat} -> {count}")

print("\n  - - - - - Domain Stats - - - - - ")
keyvalues = sorted(list(domain_stats.items()), key=lambda x: x[1])
for dom, count in domain_stats.items():
    print(f" ✍️ {dom} -> {count}")

print("\n  - - - - - Reasoning Stats - - - - - ")
keyvalues = sorted(list(reasoning_stats.items()), key=lambda x: x[1])
for res, count in reasoning_stats.items():
    print(f" ✍️ {res} -> {count}")

print("\n  - - - - - Instances Stats - - - - - ")
average_number_of_instances = number_of_instances / tasks_count
print(f" ✍️ Average number of Instances -> {average_number_of_instances}")