Datasets:
QCRI
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
AliShahroor commited on
Commit
d423848
·
verified ·
1 Parent(s): 215a62b

update table

Browse files
Files changed (1) hide show
  1. README.md +27 -23
README.md CHANGED
@@ -294,7 +294,7 @@ configs:
294
  # LlamaLens: Specialized Multilingual LLM Dataset
295
 
296
  ## Overview
297
- LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 19 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.
298
 
299
 
300
  <p align="center"> <img src="./capablities_tasks_datasets.png" style="width: 40%;" id="title-icon"> </p>
@@ -304,7 +304,7 @@ This repo includes scripts needed to run our full pipeline, including data prepr
304
 
305
  ### Features
306
  - Multilingual support (Arabic, English, Hindi)
307
- - 19 NLP tasks with 52 datasets
308
  - Optimized for news and social media content analysis
309
 
310
  ## 📂 Dataset Overview
@@ -334,28 +334,32 @@ This repo includes scripts needed to run our full pipeline, including data prepr
334
 
335
  ## Results
336
 
337
- Below, we present the performance of **LlamaLens** in **English** compared to existing SOTA (if available) and the Llama-Instruct baseline, The “Δ” (Delta) column here is
338
- calculated as **(LLamalens – SOTA)**.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339
 
340
- | **Task** | **Dataset** | **Metric** | **SOTA** | **Llama-instruct** | **LLamalens** | **Δ** (LLamalens - SOTA) |
341
- |----------------------|---------------------------|-----------:|--------:|--------------------:|--------------:|------------------------------:|
342
- | News Summarization | xlsum | R-2 | 0.152 | 0.074 | 0.141 | -0.011 |
343
- | News Genre | CNN_News_Articles | Acc | 0.940 | 0.644 | 0.915 | -0.025 |
344
- | News Genre | News_Category | Ma-F1 | 0.769 | 0.970 | 0.505 | -0.264 |
345
- | News Genre | SemEval23T3-ST1 | Mi-F1 | 0.815 | 0.687 | 0.241 | -0.574 |
346
- | Subjectivity | CT24_T2 | Ma-F1 | 0.744 | 0.535 | 0.508 | -0.236 |
347
- | Emotion | emotion | Ma-F1 | 0.790 | 0.353 | 0.878 | 0.088 |
348
- | Sarcasm | News-Headlines | Acc | 0.897 | 0.668 | 0.956 | 0.059 |
349
- | Sentiment | NewsMTSC | Ma-F1 | 0.817 | 0.628 | 0.627 | -0.190 |
350
- | Checkworthiness | CT24_T1 | F1_Pos | 0.753 | 0.404 | 0.877 | 0.124 |
351
- | Claim | claim-detection | Mi-F1 | – | 0.545 | 0.915 | – |
352
- | Factuality | News_dataset | Acc | 0.920 | 0.654 | 0.946 | 0.026 |
353
- | Factuality | Politifact | W-F1 | 0.490 | 0.121 | 0.290 | -0.200 |
354
- | Propaganda | QProp | Ma-F1 | 0.667 | 0.759 | 0.851 | 0.184 |
355
- | Cyberbullying | Cyberbullying | Acc | 0.907 | 0.175 | 0.847 | -0.060 |
356
- | Offensive | Offensive_Hateful | Mi-F1 | – | 0.692 | 0.805 | – |
357
- | Offensive | offensive_language | Mi-F1 | 0.994 | 0.646 | 0.884 | -0.110 |
358
- | Offensive & Hate | hate-offensive-speech | Acc | 0.945 | 0.602 | 0.924 | -0.021 |
359
 
360
 
361
  ## File Format
 
294
  # LlamaLens: Specialized Multilingual LLM Dataset
295
 
296
  ## Overview
297
+ LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 18 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.
298
 
299
 
300
  <p align="center"> <img src="./capablities_tasks_datasets.png" style="width: 40%;" id="title-icon"> </p>
 
304
 
305
  ### Features
306
  - Multilingual support (Arabic, English, Hindi)
307
+ - 18 NLP tasks with 52 datasets
308
  - Optimized for news and social media content analysis
309
 
310
  ## 📂 Dataset Overview
 
334
 
335
  ## Results
336
 
337
+ Below, we present the performance of **L-Lens: LlamaLens** , where *"Eng"* refers to the English-instructed model and *"Native"* refers to the model trained with native language instructions. The results are compared against the SOTA (where available) and the Base: **Llama-Instruct 3.1 baseline**. The **Δ** (Delta) column indicates the difference between LlamaLens and the SOTA performance, calculated as (LlamaLens – SOTA).
338
+
339
+
340
+ | **Task** | **Dataset** | **Metric** | **SOTA** | **Base** | **L-Lens-Eng** | **L-Lens-Native** | **Δ (L-Lens (Eng) - SOTA)** |
341
+ |:----------------------------------:|:--------------------------------------------:|:----------:|:--------:|:---------------------:|:---------------------:|:--------------------:|:------------------------:|
342
+ | Checkworthiness Detection | CT24_checkworthy | f1_pos | 0.753 | 0.404 | 0.942 | 0.942 | 0.189 |
343
+ | Claim Detection | claim-detection | Mi-F1 | -- | 0.545 | 0.864 | 0.889 | -- |
344
+ | Cyberbullying Detection | Cyberbullying | Acc | 0.907 | 0.175 | 0.836 | 0.855 | -0.071 |
345
+ | Emotion Detection | emotion | Ma-F1 | 0.790 | 0.353 | 0.803 | 0.808 | 0.013 |
346
+ | Factuality | News_dataset | Acc | 0.920 | 0.654 | 1.000 | 1.000 | 0.080 |
347
+ | Factuality | Politifact | W-F1 | 0.490 | 0.121 | 0.287 | 0.311 | -0.203 |
348
+ | News Categorization | CNN_News_Articles_2011-2022 | Acc | 0.940 | 0.644 | 0.970 | 0.970 | 0.030 |
349
+ | News Categorization | News_Category_Dataset | Ma-F1 | 0.769 | 0.970 | 0.824 | 0.520 | 0.055 |
350
+ | News Genre Categorisation | SemEval23T3-subtask1 | Mi-F1 | 0.815 | 0.687 | 0.241 | 0.253 | -0.574 |
351
+ | News Summarization | xlsum | R-2 | 0.152 | 0.074 | 0.182 | 0.181 | 0.030 |
352
+ | Offensive Language Detection | Offensive_Hateful_Dataset_New | Mi-F1 | -- | 0.692 | 0.814 | 0.813 | -- |
353
+ | Offensive Language Detection | offensive_language_dataset | Mi-F1 | 0.994 | 0.646 | 0.899 | 0.893 | -0.095 |
354
+ | Offensive Language and Hate Speech | hate-offensive-speech | Acc | 0.945 | 0.602 | 0.931 | 0.935 | -0.014 |
355
+ | Propaganda Detection | QProp | Ma-F1 | 0.667 | 0.759 | 0.963 | 0.973 | 0.296 |
356
+ | Sarcasm Detection | News-Headlines-Dataset-For-Sarcasm-Detection | Acc | 0.897 | 0.668 | 0.936 | 0.947 | 0.039 |
357
+ | Sentiment Classification | NewsMTSC-dataset | Ma-F1 | 0.817 | 0.628 | 0.751 | 0.748 | -0.066 |
358
+ | Subjectivity Detection | clef2024-checkthat-lab | Ma-F1 | 0.744 | 0.535 | 0.642 | 0.628 | -0.102 |
359
+ |
360
+
361
+ ---
362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363
 
364
 
365
  ## File Format