
Preprint. Under review.

A PREFRONTAL CORTEX-INSPIRED ARCHITECTURE
FOR PLANNING IN LARGE LANGUAGE MODELS

Taylor Webb*
Department of Psychology
University of California, Los Angeles
Los Angeles, CA
taylor.w.webb@gmail.com

Shanka Subhra Mondal* †

Department of Electrical and Computer Engineering
Princeton University
Princeton, NJ
smondal@princeton.edu

* Equal contribution

Chi Wang
Microsoft Research
Redmond, WA
wang.chi@microsoft.com

Brian Krabach
Microsoft, Office of the CTO
Redmond, WA
Brian.Krabach@microsoft.com

Ida Momennejad
Microsoft Research
New York, NY
idamo@microsoft.com

ABSTRACT

Large language models (LLMs) demonstrate impressive performance on a wide
variety of tasks, but they often struggle with tasks that require multi-step reason-
ing or goal-directed planning. To address this, we take inspiration from the human
brain, in which planning is accomplished via the recurrent interaction of special-
ized modules in the prefrontal cortex (PFC). These modules perform functions
such as conflict monitoring, state prediction, state evaluation, task decomposition,
and task coordination. We find that LLMs are sometimes capable of carrying out
these functions in isolation, but struggle to autonomously coordinate them in the
service of a goal. Therefore, we propose a black box architecture with multiple
LLM-based (GPT-4) modules. The architecture improves planning through the
interaction of specialized PFC-inspired modules that break down a larger problem
into multiple brief automated calls to the LLM. We evaluate the combined archi-
tecture on two challenging planning tasks – graph traversal and Tower of Hanoi –
finding that it yields significant improvements over standard LLM methods (e.g.,
zero-shot prompting or in-context learning). These results demonstrate the benefit
of utilizing knowledge from cognitive neuroscience to improve planning in LLMs.

1 INTRODUCTION

Large Language Models (LLMs) (Devlin et al., 2090; Brown et al., 2020) have recently emerged as
highly capable generalist systems with a surprising range of emergent capacities (Srivastava et al.,
2022; Wei et al., 2022a; Webb et al., 2023). They have also sparked broad controversy, with some
suggesting that they are approaching general intelligence (Bubeck et al., 2023), and others noting
a number of significant deficiencies (Mahowald et al., 2023). A particularly notable shortcoming
is their poor ability to plan or perform faithful multi-step reasoning (Valmeekam et al., 2023; Dziri
et al., 2023). Recent work (Momennejad et al., 2023) has evaluated the extent to which LLMs might
possess an emergent capacity for planning and exploiting cognitive maps, the relational structures
that humans and other animals utilize to perform planning (Tolman, 1948; Tavares et al., 2015;

†Work performed during internship at Microsoft Research, New York, NY.

1

ar
X

iv
:2

31
0.

00
19

4v
1

 [
cs

.A
I]

 3
0

Se
p

20
23

Preprint. Under review.

Actor

Monitor

Predictor

Environment

Evaluator

Task
Decomposer

States

Subgoals

Gate

Goals

Actions

Proposed
actions

Feedback
Action
proposal

Plan

SelectionSearch
buffer

Predicted
states

Predicted
states

Predicted
value

Search

Proposed
actions

Task
Coordinator

Gate

Subgoals

Anterior PFC:
● Task decomposition
● Hierarchical control

Dorsolateral PFC:
● Decision making
● Top-down control

Anterior Cingulate Cortex:
● Conflict monitoring
● Value of control

Orbitofrontal Cortex:
● State prediction
● State evaluation

LLM-PFC

Figure 1: LLM-PFC architecture. The agent receives states from the environment and high-level
goals. These are processed by a set of specialized LLM modules. The TaskDecomposer receives
high-level goals and generates a series of subgoals. The Actor generates proposed actions given a
state and a subgoal. The Monitor gates these proposed actions based on whether they violate certain
constraints (e.g., task rules) and provides feedback to the Actor. The Predictor predicts the next
state given the current state and a proposed action. The Evaluator is used to estimate the value
of a predicted state. The Predictor and Evaluator are used together to perform tree search. The
TaskCoordinator determines when each subgoal has been achieved, and when the final goal has
been achieved, at which point the plan is emitted to the environment as a series of actions. These
modules are inspired by the specific PFC subregions depicted on the left.

Behrens et al., 2018). This work found that a variety of LLMs, ranging from small, open-source
models (e.g., LLaMA-13B and Alpaca-7B) to large, state-of-the-art models (e.g., GPT-4), displayed
systematic shortcomings in planning tasks that suggested an inability to reason about cognitive maps.
Common failure modes included a tendency to ‘hallucinate’ (e.g., to imagine non-existent paths),
and to fall into loops. This work raises the question of how LLMs might be improved so as to enable
a capacity for planning.

In the present work, we take a step toward improving planning in LLMs, by taking inspiration from
the planning mechanisms employed by the human brain. Planning is generally thought to depend
on the prefrontal cortex (PFC) (Owen, 1997; Russin et al., 2020; Brunec & Momennejad, 2022;
Momennejad et al., 2018; Momennejad, 2020; Mattar & Lengyel, 2022), a region in the frontal
lobe that is broadly involved in executive function, decision-making, and reasoning (Miller & Co-
hen, 2001). Research in cognitive neuroscience has revealed the presence of several subregions or
modules within the PFC that appear to be specialized to perform certain functions. These include
functions such as conflict monitoring (Botvinick et al., 1999); state prediction and state evalua-
tion (Wallis, 2007; Schuck et al., 2016); and task decomposition and task coordination (Ramnani
& Owen, 2004; Momennejad & Haynes, 2012; 2013). Human planning then emerges through the
coordinated and recurrent interactions among these specialized PFC modules, rather than through
the activity of a single, monolithic system.

An interesting observation is that LLMs often seem to display some of these capacities when probed
in isolation, even though they are unable to reliably integrate and deploy these capacities in the ser-
vice of a goal. For instance, Momennejad et al. (2023) noted that LLMs often attempt to traverse
invalid or hallucinated paths in planning problems (e.g., to move between rooms that are not con-
nected), even though they can correctly identify these paths as invalid when probed separately. This
suggests the possibility of a PFC-inspired approach, in which planning is carried out through the
coordinated activity of multiple LLM modules, each of which is specialized to perform a distinct
process.

2

Preprint. Under review.

With this goal in mind, we propose LLM-PFC (Figure 1), an architecture composed of modules
that are specialized to perform specific PFC-inspired functions. Each module consists of an LLM
instance (GPT-4), constructed through a combination of prompting and few-shot in-context learning.
We specifically propose modules that perform error monitoring, action proposal, state prediction,
state evaluation, task decomposition, and task coordination. It is suggested that the coordinated
activity of multiple PFC subregions performs tree search during planning (Owen, 1997; Daw et al.,
2005; Wunderlich et al., 2012; Doll et al., 2015). Thus, our approach combines action proposal,
state prediction, and state evaluation to perform tree search.

We evaluate LLM-PFC on two challenging planning tasks. First, we performed controlled experi-
ments on a set of graph traversal tasks using the CogEval protocol (Momennejad et al., 2023). These
tasks require navigation in novel environments based on natural language descriptions, and have
been shown to be extremely challenging for LLMs, including GPT-4. Second, we investigate Tower
of Hanoi (ToH), a classic problem solving task that requires multi-step planning (Simon, 1975),
and for which performance is known to be heavily dependent on PFC function (Goel & Grafman,
1995; Fincham et al., 2002). We find that our approach significantly improves LLM performance on
these planning tasks, yielding nearly perfect performance on the graph traversal tasks, and a nearly
seven-fold improvement over zero-shot performance on Tower of Hanoi (74% vs. 11% accuracy).
Ablation experiments further indicate that each of the individual modules plays an important role
in the overall architecture’s performance. Taken together, these results indicate the potential of a
PFC-inspired approach to improve the reasoning and planning capabilities of LLMs.

2 APPROACH

The LLM-PFC architecture is constructed from a set of a specialized LLM modules, each of which
performs a specific PFC-inspired function. In the following sections, we first describe the functions
performed by each module, and then describe how they interact to generate a plan.

2.1 MODULES

LLM-PFC contains the following specialized modules, each constructed from a separate LLM in-
stance through a combination of prompting and few-shot (≤ 3 examples) in-context learning (de-
scribed in greater detail in section A.2):

• TaskDecomposer. The TaskDecomposer receives the current state x and a goal y and gen-
erates a set of subgoals Z that will allow the agent to gradually work toward its final goal. This
module is inspired by the anterior PFC (aPFC), which is known to play a key role in task decompo-
sition through the generation and maintenance of subgoals (Ramnani & Owen, 2004). In the present
work, the TaskDecomposer is only utilized to generate a single intermediate goal, though in future
work we envision that it will be useful to generate a series of multiple subgoals.

• Actor. The Actor receives the current state x and a subgoal z and proposes B potential actions
A = ab=1 . . . ab=B . The Actor can also receive feedback ϵ from the Monitor about its proposed
actions. This module can be viewed as being analogous to the dorsolateral PFC (dlPFC) which
plays a role in decision making through top-down control and guidance of lower-order premotor and
motor regions (Miller & Cohen, 2001).

• Monitor. The Monitor assesses the actions proposed by the Actor to determine whether they
are valid (e.g., whether they violate the rules of a task). It emits an assessment of validity σ, and
also feedback ϵ in the event the action is deemed invalid. This module is inspired by the Anterior
Cingulate Cortex (ACC), which is known to play a role in conflict monitoring (Botvinick et al.,
1999), i.e., detecting errors or instances of ambiguity.

• Predictor. The Predictor receives the current state x and a proposed action a and predicts the
resulting next state x̃. The Predictor is inspired by the Orbitofrontal cortex (OFC), which plays a
role in estimating and predicting task states. In particular, it has been proposed that the OFC plays
a key role in encoding cognitive maps: representations of task-relevant states and their relationships
to one another (Schuck et al., 2016).

• Evaluator. The Evaluator receives a next-state prediction x̃ and produces an estimate of its
value v in the context of goal y. This is accomplished by prompting the Evaluator (and demon-

3

Preprint. Under review.

strating via a few in-context examples) to estimate the minimum number of steps required to reach
the goal (or subgoal) from the current state. The Evaluator is also inspired by the OFC which,
in addition to predicting task states, plays a key role in estimating the motivational value of those
states Wallis (2007).

• TaskCoordinator. The TaskCoordinator receives the current state x and a subgoal z and
emits an assessment Ω of whether the subgoal has been achieved. When the TaskCoordinator
determines that all subgoals (including the final goal) have been achieved, the plan is emitted to the
environment as a series of actions. This module is also inspired by the aPFC, which is thought to
both identify subgoals and coordinate their sequential execution (Ramnani & Owen, 2004).

2.2 ACTION PROPOSAL LOOP

The Actor and Monitor interact via the ProposeAction function (Algorithm 1). The Actor pro-
poses actions which are then gated by the Monitor. If the Monitor determines that the actions are
invalid (e.g., they violate the rules of a task), feedback is provided to the Actor, which then proposes
an alternative action. In the brain, a similar process is carried out by interactions between the ACC
and dorsolateral PFC (dlPFC). The ACC is thought to recruit the dlPFC under conditions of conflict
(e.g., errors or ambiguity), which then acts to resolve the conflict through top-down projections to
lower-order control structures (e.g., premotor and motor cortices) (Miller & Cohen, 2001; Shenhav
et al., 2013).

Algorithm 1: Action proposal loop. ProposeAction takes a state x and a goal y and generates B
potential actions A = ab=1 . . . ab=B . This is implemented via a loop, in which the Actor first proposes
potential actions, and the Monitor then assesses those actions according to certain constraints (e.g., task
rules), providing feedback if any of the actions are deemed to be invalid. This continues until the proposed
actions are considered valid. See Sections A.2.2 and A.2.3 for more details.
Function ProposeAction(x, y,B):

σ ← false // Initialize validity
E ← {} // Initialize feedback
while σ is false do

A← Actor(x, y, E,B) // Sample B actions
σ, ϵ← Monitor(x,A) // Determine validity and provide feedback
E ← E ∪ {ϵ} // Accumulate feedback

end
return A

2.3 SEARCH LOOP

ProposeAction is further embedded in a Search loop (Algorithm 2). The actions emitted by
ProposeAction are passed to the Predictor, which predicts the states that will result from these
actions. A limited tree search is then performed, starting from the current state, and then exploring
B branches recursively to a depth of L layers. Values are assigned to the terminal states of this
search by the Evaluator, and the action leading to the most valuable predicted state is selected. This
approach mirrors that of the human brain, in which search is thought to be carried out through the
coordinated activity of multiple regions within the PFC, including dlPFC, ACC, and OFC (Owen,
1997; Mattar & Lengyel, 2022).

2.4 PLAN GENERATION

Algorithm 3 describes the complete LLM-PFC algorithm. To generate a plan, a set of subgoals is
first generated by the TaskDecomposer based on the final goal and current state. These subgoals are
then pursued one at a time, utilizing the Search loop to generate actions until the TaskCoordinator
determines that the subgoal has been achieved. The actions are accumulated in a plan buffer P until
either the TaskCoordinator determines that the final goal has been reached, or the maximum allow-
able number of actions T are accumulated. This approach is inspired by the role that aPFC plays in
task decomposition. This involves the decomposition of tasks into smaller, more manageable tasks,
and the coordinated sequential execution of these component tasks (Ramnani & Owen, 2004).

4

Preprint. Under review.

Algorithm 2: Search loop. Tree search with a depth of L layers, with B branches at each layer l. For each
branch, a proposed action is sampled, and the Predictor predicts the next state x̃. This process continues
resursively until the terminal layer L, at which point the value vl=L of the terminal states is estimated by
the Evaluator. The values are backpropogated to their parent states in the first layer, and the action that
leads to the most valuable state is selected. In our implementation, we accelerate this process by caching
the actions and predicted states from deeper search layers and then reusing them in subsequent searches.
We also employ the TaskCoordinator to prematurely terminate search if the goal state is achieved.

Function Search(l, L,B, x, y):
Vl ← {} // Initialize value record

X̃l ← {} // Initialize next-state record
Al ← ProposeAction(x, y,B) // Propose B actions
for b in 1 . . . B do

x̃lb ← Predictor(x,Alb) // Predict next state

X̃l ← X̃l ∪ {x̃lb} // Update next-state record
Ω← TaskCoordinator(x̃lb, y) // Terminate search if goal achieved
if l < L and Ω is false then

al+1, x̃l+1, vl+1 ← Search(l + 1, L,B, x̃lb, y) // Advance search depth
Vl ← Vl ∪ {vl+1} // Update value record

else
vlb ← Evaluator(x̃lb, y) // Evaluate predicted state
Vl ← Vl ∪ {vlb} // Update value record

end
end
vl ← max(Vl) // Maximum value (randomly sample if equal value)
al ← Al argmax(Vl) // Select action

x̃l ← X̃largmax(Vl) // Predicted next-state
return al, x̃l, vl

Algorithm 3: LLM-PFC. LLM-PFC takes a state x and a goal y and generates a plan P , a series of
actions with a maximum length of T . The TaskDecomposer first generates a set of subgoals Z. The
agent then pursues each individual subgoal z in sequence, followed by the final goal y. At each time step,
Search is called to generate an action and a predicted next-state. Actions are added to the plan until the
TaskCoordinator determines that the goal has been achieved, or the plan reaches the maximum length T .

Function LLM-PFC(x, y, T, L,B):
P ← [] // Initialize plan
Z ← TaskDecomposer(x, y) // Generate subgoals
for g in 1 . . . length(Z) + 1 do

if g ≤ length(Z) then
z ← Zg // Update current subgoal

else
z ← y // Final goal

end
Ω← TaskCoordinator(x, z) // Initialize subgoal assessment
while Ω is false and length(P) < T do

a, x, v ← Search(l = 1, L,B, x, z) // Perform search
P ← [P, a] // Update plan
Ω← TaskCoordinator(x, z) // Determine if subgoal is achieved

end
end

return P

3 EXPERIMENTS

3.1 TASKS

Graph Traversal. We performed controlled experiments on two multi-step planning tasks based on
graph traversal using the CogEval protocol (Momennejad et al., 2023). Natural language descrip-

5

Preprint. Under review.

9

12

3

6

15

8
2

11

14 5

4

10

1

7

13

Reward = 50

Reward = 10
9

12

3

6

15

8
2

11

14 5

4

10

1

7

13

Steppath Valuepath

Start

Goal

Start

Figure 2: Graph Traversal. We investigated two graph traversal tasks utilizing a challenging graph
with community structure. Steppath: Find shortest path between two nodes, e.g. node 3 and node
7. Valuepath: Find shortest path from starting location (e.g., node 10) to location with maximum
reward (node 8 in depicted example).

tions of a graph are provided with each node assigned to a room (e.g., ‘room 4 is connected to room
7’). We focused on a particular type of graph (Figure 2) with community structure (Schapiro et al.,
2013) previously found to be challenging for a wide variety of LLMs. The first task, Valuepath,
involves finding the shortest path from a given room that results in the largest reward possible. A
smaller reward and a larger reward are located at two different positions in the graph. We fixed the
two reward locations, and created 13 problems based on different starting locations. The second task,
Steppath, involves finding the shortest path between a pair of nodes. We evaluated problems with an
optimal shortest path of 2, 3, or 4 steps. We generated 20 problems for each of these conditions by
sampling different starting and target locations.

Initial state

Goal

Invalid moves

Initial state

Goal

A = [0, 1, 2]
B = []
C = []

A = []
B = []
C = [0, 1, 2]

Invalid moves

A = [0, 1, 2]
B = []
C = []

A = [1, 2]
B = []
C = [0]

A = [0, 1]
B = [2]
C = []

A = [0]
B = [2, 1]
C = []

Figure 3: Tower of Hanoi. Top: Depiction of the Tower of Hanoi (ToH) puzzle. Disks are stacked
in order of decreasing size on the leftmost peg. The goal is to move these disks so that they are
stacked in order of decreasing size on the rightmost peg. Only the disk on the top of the stack may
be moved, and a disk can only be placed on top of larger disks (or on an empty peg). The version
shown involves three disks, but more disks can be used (making the task significantly more difficult).
Bottom: Modified text-based version of ToH. Three lists are presented, labelled A, B and C. A set of
integers is distributed amongst these lists. The goal is to move the numbers so that they are arranged
in ascending order in list C. Only the number at the end of the list may be moved, and a number can
only be placed in front of a smaller number. Multiple problem instances were created by varying the
initial state.

Tower of Hanoi. We also investigated a classic multi-step planning task called the Tower of Hanoi
(ToH) (Figure 3). In the original formulation, there are three pegs and a set of disks of different
sizes. The disks are stacked in order of decreasing size on the leftmost peg. The goal is to move all

6

Preprint. Under review.

disks to the rightmost peg, such that the disks are stacked in order of decreasing size. There are a
couple of rules that determine which moves are considered valid. First, a disk can only be moved
if it is at the top of its stack. Second, a disk can only be moved to the top of another stack if it is
smaller than the disks in that stack (or if the peg is empty). More complex versions of the task can
be created by using a larger number of disks.

We designed an alternative formulation of this task in which the inputs are text-based rather than
visual. In this alternative formulation, three lists (A, B, and C) are used instead of the three pegs,
and a set of numbers (0, 1, 2, and so on) is used instead of disks of different sizes. The goal is to
move all numbers so that they are arranged in ascending order in list C. The rules are isomorphic
to ToH. First, a number can only be moved if it is at the end of a list. Second, a number can only
be moved to the end of a new list if it is larger than all the numbers in that list. Note that although
this novel formulation is isomorphic to ToH (and equally complex), it does not share any surface
features with the original ToH puzzle (disks, pegs, etc.), and thus GPT-4 cannot rely on exposure to
descriptions of ToH in its training data to solve the problem. We created multiple problem instances
by varying the initial state (the initial positions of the numbers). This resulted in 26 three-disk
problems and 80 four-disk problems.

3.2 BASELINES

We compared our model to two baseline methods. The first method involved asking GPT-4 (zero-
shot) to provide the solution step by step. For the second method, in-context learning (ICL), we
provided GPT-4 with a few in-context examples of a complete solution. We provided two examples
for ToH and Valuepath, and 3 examples (one each for 2, 3, and 4 steps) for Steppath.

3.3 EXPERIMENT DETAILS

We implemented each of the modules using a separate GPT-4 (32K context, ‘2023-03-15-preview’
model index, Microsoft Azure openAI service) instance through a combination of prompting and
few-shot in-context examples. We set Top-p to 0 and temperature to 0, except for the Actor (as
detailed in section A.2.2). The Search loop explored B = 2 branches recursively for a depth L = 2.

For ToH, we used two randomly selected in-context examples of three-disk problems, and a descrip-
tion of the problem in the prompts for all the modules. For the graph traversal tasks, we used two
in-context examples for all modules, except for the Actor and Evaluator in the Steppath task, where
we used three in-context examples, one each for 2-, 3-, and 4-step paths. The prompt also described
the specific task that was to be performed by each module (e.g., monitoring, task decomposition).
For more details about the prompts and specific procedures used for each module, see Section A.2.

For three-disk problems, we allowed a maximum of T = 10 actions per problem, and evaluated on
24 out of 26 possible problems (leaving out the two problems that were used as in-context examples
for the Actor). We also evaluated on four-disk problems, for which we allowed a maximum of
T = 20 actions per problem. The same three-disk problems were used as in-context examples,
meaning that the four-disk problems tested for out-of-distribution (OOD) generalization. For the
graph traversal tasks, we allowed a maximum of T = 6 actions per problem.

We didn’t use a separate Predictor for the graph traversal tasks, since the action proposed by the
Actor gives the next state. We also did not include the TaskDecomposer for these tasks, and did
not use the Search loop for the Steppath task, as the model’s performance was already at ceiling
without the use of these components.

4 RESULTS

Figure 4 shows the results on the Valuepath and Steppath graph traversal tasks (see Section A.1
for all results in Table form). On the Valuepath task, LLM-PFC solved 100% of problems and pro-
posed no invalid actions (e.g., it did not hallucinate the presence of non-existent edges), significantly
outperforming both baselines. On the Steppath task, LLM-PFC displayed perfect performance for
2-step and 3-step paths, and near-perfect performance for 4-step paths, again significantly outper-
forming both baselines. The model also did not propose any invalid actions on this task. Notably,
LLM-PFC’s proposed plans were close to the optimal number of steps for both tasks.

7

Preprint. Under review.

Valuepath

Steppath

Figure 4: Graph traversal results. Top: Valuepath results. Bottom: Steppath results. Left: Frac-
tion of solved problems (without proposing any invalid actions; ↑ better). Middle: fraction of invalid
action proposals (↓ better). Right: Plan length (↓ better; note that these results only reflect problems
that were successfully solved, and therefore exclude many problems for the baseline models). GPT-
4 Zero-shot and ICL baselines are deterministic, and therefore a single run was performed on all
problems. Note that LLM-PFC did not employ tree search on the Steppath task, and did not employ
task decomposition on either task, as the performance of the model was already at ceiling without
these components. Without tree search, LLM-PFC’s performance is deterministic, and therefore
only a single run was performed on the Steppath task. Gray error bars reflect 95% binomial con-
fidence intervals (for models evaluated on a single run). For Valuepath, we performed 5 runs with
LLM-PFC, and present average performance ± the standard error of the mean (black error bars).

Figure 5: Tower of Hanoi (ToH) results. Left: Fraction of solved problems (without proposing any
invalid actions; ↑ better). Middle: Fraction of invalid action proposals (↓ better). Right: Ablation
results for 3-disk problems (↑ better). Note that 4-disk problems are out-of-distribution (OOD).
GPT-4 Zero-shot and ICL baselines are deterministic and reflect a single run. Gray error bars reflect
95% binomial confidence intervals. Dots reflect values of 0%. LLM-PFC results for 3-disk problems
reflect the average over 5 runs ± the standard error of the mean (black error bars). LLM-PFC results
for 4-disk problems reflect a single run, due to the high computational cost of multiple runs.

Figure 5 shows the results on Tower of Hanoi (ToH). LLM-PFC demonstrated a significant im-
provement both in terms of the number of problems solved (left) and the number of invalid actions
proposed (middle). On 3-disk problems, LLM-PFC yielded a nearly seven-fold improvement in the
number of problems solved over zero-shot performance, and also significantly outperformed stan-
dard in-context learning (ICL). For the problems that LLM-PFC solved, the average plan length
(5.4) was close to the optimal number of moves (4.4). The model also demonstrated some ability
to generalize out-of-distribution (OOD) to more complex 4-disk problems (not observed in any in-
context examples), whereas GPT-4 Zero-shot and GPT-4 ICL solved close to 0% of these problems.

8

Preprint. Under review.

Notably, LLM-PFC did not propose any invalid actions, even on OOD 4-disk problems, whereas
GPT-4 Zero-shot and ICL baselines both proposed a significant number of invalid actions.

4.1 ABLATION STUDY

We also carried out an ablation study to determine the relative importance of each of LLM-PFC’s ma-
jor components, focusing on the 3-disk ToH problems. Figure 5 (right) shows the results. We found
that the Monitor was the most important component, as ablating this module resulted in significantly
fewer solved problems, due primarily to an increased tendency to propose invalid moves (31% in-
valid moves vs. 0% for other ablation models). Ablating the tree search and TaskDecomposer
module also resulted in significantly fewer solved problems. Overall, these results suggest that all
major components played an important role in the model’s performance.

5 RELATED WORK

Early work in AI formalized planning as a problem of search through a combinatorial state space,
typically utilizing various heuristic methods to make this search tractable (Newell & Simon, 1956;
Newell et al., 1959). Problems such as ToH figured prominently in this early research (Simon, 1975),
as it affords the opportunity to explore ideas based on hierarchical or recursive planning (in which
a larger problem is decomposed into a set of smaller problems). Our proposed architecture adopts
some of the key ideas from this early work, including tree search and hierarchical planning.

A few recent studies have investigated planning in LLMs. These studies suggest that, although
LLMs can perform relatively simple planning tasks (Huang et al., 2022), and can learn to make
more complex plans given extensive domain-specific fine-tuning (Pallagani et al., 2022; Wu et al.,
2023), they struggle on tasks that require zero-shot or few-shot generation of complex multi-step
plans (Valmeekam et al., 2023; Momennejad et al., 2023). These results also align with studies that
have found poor performance in tasks that involve other forms of extended multi-step reasoning,
such as arithmetic (Dziri et al., 2023). Our approach is in large part motivated by the poor planning
and reasoning performance exhibited by LLMs in these settings.

Some recent approaches have employed various forms of heuristic search to improve performance
in LLMs (Lu et al., 2021; Zhang et al., 2023), but these approaches have generally involved search
at the level of individual tokens. This is in contrast to our approach, in which search is performed at
the more abstract level of task states (described in natural language). This is similar to other recently
proposed black-box approaches in which ‘thoughts’ – meaningful chunks of natural language – are
utilized as intermediate computations to solve more complex problems. These approaches include
scratchpads (Nye et al., 2021), chain-of-thought (Wei et al., 2022b), tree-of-thoughts (Yao et al.,
2023), reflexion (Shinn et al., 2023), Society of Mind (Du et al., 2023), and Describe-Explain-Plan-
Select (Wang et al., 2023). All of these approaches can be viewed as implementing a form of con-
trolled, or ‘system 2’, processing (as contrasted with automatic, or ‘system 1’, processing) (Schnei-
der & Shiffrin, 1977; Sloman, 1996; Kahneman, 2011). In the brain, these controlled processes are
strongly associated with the prefrontal cortex (Miller & Cohen, 2001). Therefore, in the present
work, we leveraged knowledge from cognitive neuroscience about the modular properties of the
PFC. The resulting architecture shares some components with other black box approaches (e.g.,
tree search (Yao et al., 2023)), but also introduces a number of new components (error monitoring,
task decomposition, task coordination, state/action distinction), and combines these components in
a novel manner inspired by the functional organization of the human brain.

There have also been a number of proposals for incorporating modularity into deep learning sys-
tems, including neural module networks (Andreas et al., 2016), and recurrent independent mecha-
nisms (Goyal et al., 2019). Our approach is distinguished from these approaches by the proposal of
modules that perform specific high-level component processes, based on knowledge of specific sub-
regions within the PFC. Finally, our approach is closely related to a recent proposal to augment deep
learning systems with PFC-inspired mechanisms (Russin et al., 2020). LLM-PFC can be viewed as
a concrete framework for accomplishing this goal.

9

Preprint. Under review.

6 CONCLUSION AND FUTURE DIRECTIONS

In this work, we have proposed the LLM-PFC architecture, an approach aimed at improving the
planning ability of LLMs by taking inspiration from the modular architecture of the human PFC. In
experiments on two challenging planning domains, graph traversal and Tower of Hanoi, we found
that LLM-PFC significantly improved planning performance over standard LLM methods. While
these results represent a significant step forward, there is still room for improvement: first, there
are more challenging planning tasks (including shortcuts and detour) in Momennejad et al. (2023),
which remain to be the topic of future applications of LLM-PFC; and second, the model has less
than optimal performance on Tower of Hanoi. This may be due in part to the inherent limitations
of prompting and in-context learning as methods for the specialization of LLM-PFC’s modules. A
promising avenue for further improvement may be to jointly fine-tune the modules across a range of
diverse tasks (which requires open-source models), rather than relying only on black box methods
(our only option with GPT-4). A white-box approach would also eliminate the need for task-specific
prompts, and potentially enable zero-shot planning on novel tasks. We look forward to investigating
these possibilities in future work.

REFERENCES

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 39–48, 2016.

Timothy EJ Behrens, Timothy H Muller, James CR Whittington, Shirley Mark, Alon B Baram,
Kimberly L Stachenfeld, and Zeb Kurth-Nelson. What is a cognitive map? organizing knowledge
for flexible behavior. Neuron, 100(2):490–509, 2018.

Matthew Botvinick, Leigh E Nystrom, Kate Fissell, Cameron S Carter, and Jonathan D Cohen.
Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402(6758):
179–181, 1999.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Iva K Brunec and Ida Momennejad. Predictive representations in hippocampal and prefrontal hier-
archies. Journal of Neuroscience, 42(2):299–312, 2022.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Patricia A Carpenter, Marcel A Just, and Peter Shell. What one intelligence test measures: a theo-
retical account of the processing in the raven progressive matrices test. Psychological review, 97
(3):404, 1990.

Nathaniel D Daw, Yael Niv, and Peter Dayan. Uncertainty-based competition between prefrontal
and dorsolateral striatal systems for behavioral control. Nature neuroscience, 8(12):1704–1711,
2005.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. Proceedings of NAACL-HLT, 17:4171–
4186, 2090.

Bradley B Doll, Katherine D Duncan, Dylan A Simon, Daphna Shohamy, and Nathaniel D Daw.
Model-based choices involve prospective neural activity. Nature neuroscience, 18(5):767–772,
2015.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

10

Preprint. Under review.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jian, Bill Yuchen Lin, Peter West,
Chandra Bhagavatula, Ronan Le Bras, Jena D Hwang, et al. Faith and fate: Limits of transformers
on compositionality. arXiv preprint arXiv:2305.18654, 2023.

Jon M Fincham, Cameron S Carter, Vincent van Veen, V Andrew Stenger, and John R Anderson.
Neural mechanisms of planning: a computational analysis using event-related fmri. Proceedings
of the National Academy of Sciences, 99(5):3346–3351, 2002.

Vinod Goel and Jordan Grafman. Are the frontal lobes implicated in “planning” functions? inter-
preting data from the tower of hanoi. Neuropsychologia, 33(5):623–642, 1995.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio,
and Bernhard Schölkopf. Recurrent independent mechanisms. arXiv preprint arXiv:1909.10893,
2019.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118–9147. PMLR, 2022.

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan Le Bras,
Lianhui Qin, Youngjae Yu, Rowan Zellers, et al. Neurologic a* esque decoding: Constrained text
generation with lookahead heuristics. arXiv preprint arXiv:2112.08726, 2021.

Kyle Mahowald, Anna A Ivanova, Idan A Blank, Nancy Kanwisher, Joshua B Tenenbaum, and
Evelina Fedorenko. Dissociating language and thought in large language models: a cognitive
perspective. arXiv preprint arXiv:2301.06627, 2023.

Marcelo G Mattar and Máté Lengyel. Planning in the brain. Neuron, 110(6):914–934, 2022.

Earl K Miller and Jonathan D Cohen. An integrative theory of prefrontal cortex function. Annual
review of neuroscience, 24(1):167–202, 2001.

I Momennejad and J D Haynes. Human anterior prefrontal cortex encodes the ‘what’and ‘when’of
future intentions. Neuroimage, 2012.

I Momennejad, A R Otto, N D Daw, and K A Norman. Offline replay supports planning in human
reinforcement learning. Elife, 2018.

Ida Momennejad. Learning structures: Predictive representations, replay, and generalization. Cur-
rent Opinion in Behavioral Sciences, 32:155–166, April 2020.

Ida Momennejad and John-Dylan Haynes. Encoding of prospective tasks in the human prefrontal
cortex under varying task loads. J. Neurosci., 33(44):17342–17349, October 2013.

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Robert Osazuwa Ness,
Nebojsa Jojic, Hamid Palangi, and Jonathan Larson. Evaluating cognitive maps in large language
models with cogeval: No emergent planning. In Advances in neural information processing
systems, volume 37, 2023. URL https://arxiv.org/abs/2309.15129.

Allen Newell and Herbert Simon. The logic theory machine–a complex information processing
system. IRE Transactions on information theory, 2(3):61–79, 1956.

Allen Newell, John C Shaw, and Herbert A Simon. Report on a general problem solving program.
In IFIP congress, volume 256, pp. 64. Pittsburgh, PA, 1959.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

Adrian M Owen. Cognitive planning in humans: neuropsychological, neuroanatomical and neu-
ropharmacological perspectives. Progress in neurobiology, 53(4):431–450, 1997.

11

https://arxiv.org/abs/2309.15129

Preprint. Under review.

Vishal Pallagani, Bharath Muppasani, Keerthiram Murugesan, Francesca Rossi, Lior Horesh, Biplav
Srivastava, Francesco Fabiano, and Andrea Loreggia. Plansformer: Generating symbolic plans
using transformers. arXiv preprint arXiv:2212.08681, 2022.

Narender Ramnani and Adrian M Owen. Anterior prefrontal cortex: insights into function from
anatomy and neuroimaging. Nature reviews neuroscience, 5(3):184–194, 2004.

Jacob Russin, Randall C O’Reilly, and Yoshua Bengio. Deep learning needs a prefrontal cortex.
Work Bridging AI Cogn Sci, 107(603-616):1, 2020.

Anna C Schapiro, Timothy T Rogers, Natalia I Cordova, Nicholas B Turk-Browne, and Matthew M
Botvinick. Neural representations of events arise from temporal community structure. Nature
neuroscience, 16(4):486–492, 2013.

Walter Schneider and Richard M Shiffrin. Controlled and automatic human information processing:
I. detection, search, and attention. Psychological review, 84(1):1, 1977.

Nicolas W Schuck, Ming Bo Cai, Robert C Wilson, and Yael Niv. Human orbitofrontal cortex
represents a cognitive map of state space. Neuron, 91(6):1402–1412, 2016.

Amitai Shenhav, Matthew M Botvinick, and Jonathan D Cohen. The expected value of control: an
integrative theory of anterior cingulate cortex function. Neuron, 79(2):217–240, 2013.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

Herbert A Simon. The functional equivalence of problem solving skills. Cognitive psychology, 7
(2):268–288, 1975.

Steven A Sloman. The empirical case for two systems of reasoning. Psychological bulletin, 119(1):
3, 1996.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 34:1877—-1901, 2022.

Rita Morais Tavares, Avi Mendelsohn, Yael Grossman, Christian Hamilton Williams, Matthew
Shapiro, Yaacov Trope, and Daniela Schiller. A map for social navigation in the human brain.
Neuron, 87(1):231–243, 2015.

Edward C Tolman. Cognitive maps in rats and men. Psychological review, 55(4):189, 1948.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On
the planning abilities of large language models–a critical investigation. arXiv preprint
arXiv:2305.15771, 2023.

Jonathan D Wallis. Orbitofrontal cortex and its contribution to decision-making. Annu. Rev. Neu-
rosci., 30:31–56, 2007.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and
select: Interactive planning with large language models enables open-world multi-task agents.
arXiv preprint arXiv:2302.01560, 2023.

Taylor Webb, Keith J Holyoak, and Hongjing Lu. Emergent analogical reasoning in large language
models. Nature Human Behaviour, 7:1526—-1541, 2023. URL https://doi.org/10.
1038/s41562-023-01659-w.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large lan-
guage models. Transactions on Machine Learning Research, 2022a. ISSN 2835-8856. URL
https://openreview.net/forum?id=yzkSU5zdwD. Survey Certification.

12

https://doi.org/10.1038/s41562-023-01659-w
https://doi.org/10.1038/s41562-023-01659-w
https://openreview.net/forum?id=yzkSU5zdwD

Preprint. Under review.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022b.

Zhenyu Wu, Ziwei Wang, Xiuwei Xu, Jiwen Lu, and Haibin Yan. Embodied task planning with
large language models. arXiv preprint arXiv:2307.01848, 2023.

Klaus Wunderlich, Peter Dayan, and Raymond J Dolan. Mapping value based planning and exten-
sively trained choice in the human brain. Nature neuroscience, 15(5):786–791, 2012.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B Tenenbaum, and Chuang Gan.
Planning with large language models for code generation. arXiv preprint arXiv:2303.05510,
2023.

13

Preprint. Under review.

A APPENDIX

A.1 RESULTS TABLES

Table 1: Results on Valuepath task.

Model Fraction solved problems Fraction invalid actions Avg plan steps
1-step 2-step 4-step

GPT-4 Zero-shot 0.54 0.08 2.5 2.5 5
GPT-4 ICL 0.91 0.0 1.75 2.33 4.67
LLM-PFC 1.0 0.0 1.5 2 4.75

Table 2: Results on Steppath task.

Model Fraction solved problems Fraction invalid actions Avg plan steps
2-step 3 step 4-step 2-step 3-step 4-step 2-step 3-step 4-step

GPT-4 Zero-shot 0.75 0.4 0.2 0.09 0.13 0.18 2.07 4 5.25
GPT-4 ICL 0.74 0.74 0.42 0.10 0.06 0.14 2.14 3.78 4.38
LLM-PFC 1.0 1.0 0.95 0.0 0.0 0.0 2.1 3.42 4.5

Table 3: Results on ToH.
Model Fraction solved problems Fraction invalid actions

3-disk 4-disk (OOD) 3-disk 4-disk (OOD)
GPT-4 Zero-shot 0.11 0.02 0.30 0.50

GPT-4 ICL 0.46 0.01 0.12 0.41
LLM-PFC 0.74 0.24 0.0 0.0

Table 4: Ablation study on ToH with 3 disks.

Model Fraction solved problems Fraction invalid actions
LLM-PFC 0.74 0.0

w/o Task Decomposer 0.50 0.0
w/o Tree Search 0.32 0.0

w/o Monitor 0.27 0.31

A.2 PROMPTS AND IN-CONTEXT EXAMPLES

A.2.1 TASK DECOMPOSER

For ToH, the TaskDecomposer generated a single subgoal per problem. The in-context examples
included chain-of-thought reasoning (Wei et al., 2022b) based on the goal recursion strategy (Simon,
1975) (Section A.2.1), which is sometimes provided to human participants in psychological studies
of problem solving (Carpenter et al., 1990). The specific prompt and in-context examples are shown
below:

Consider the following puzzle problem:

Problem description:
- There are three lists labeled A, B, and C.
- There is a set of numbers distributed among those three lists.
- You can only move numbers from the rightmost end of one list to
the rightmost end of another list.

14

Preprint. Under review.

Rule #1: You can only move a number if it is at the rightmost end
of its current list.
Rule #2: You can only move a number to the rightmost end of a
list if it is larger than the other numbers in that list.
A move is valid if it satisfies both Rule #1 and Rule #2.
A move is invalid if it violates either Rule #1 or Rule #2.

Goal: The goal is to generate a single subgoal from the current
configuration, that helps in reaching the goal configuration using
minimum number of moves.

To generate subgoal use the goal recursion strategy. First if the
smallest number isn’t at the correct position in list C, then set
the subgoal of moving the smallest number to its correct position
in list C.But before that, the numbers larger than the smallest
number and present in the same list as the smallest number must
be moved to a list other than list C. This subgoal is recursive
because in order to move the next smallest number to the list
other than list C, the numbers larger than the next smallest
number and present in the same list as the next smallest number
must be moved to a list different from the previous other list and
so on.

Note in the subgoal configuration all numbers should always be in
ascending order in all the three lists.

Here are two examples:

Example 1:

This is the current configuration:
A = [0,1]
B = [2]
C = []

This is the goal configuration:
A = []
B = []
C = [0, 1, 2]

Answer:
I need to move 0 from list A to list C.
Step 1. Find the numbers to the right of 0 in list A. There is 1
to the right of 0.
Step 2. Find the numbers larger than 0 in list C. There are none.
I will move the numbers found in Step 1 and Step 2 to list B.
Hence I will move 1 from list A to list B. Also numbers should
be in ascending order in list B.
Subgoal:
A = [0]
B = [1, 2]
C = []

Example 2:

This is the current configuration:
A = [1]
B = [0]
C = [2]

15

Preprint. Under review.

This is the goal configuration:
A = []
B = []
C = [0, 1, 2]

Answer:
I need to move 0 from list B to list C.
Step 1. Find the numbers to the right of 0 in list B. There are
none.
Step 2. Find the numbers larger than 0 in list C. There is 2
which is larger than 0.
I will move the numbers found in Step 1 and Step 2 to list A.
Hence, I will move 2 from list C to list A. Also numbers should
be in ascending order in list A.
Subgoal:
A = [1, 2]
B = [0]
C = []

Here is the task:

This is the current configuration:
A = [0, 1, 2]
B = []
C = []

This is the goal configuration:
A = []
B = []
C = [0, 1, 2]

Answer:

A.2.2 ACTOR

The Actor was prompted to propose B = 2 distinct actions. In some instances, the Actor failed
to propose two distinct actions. In those cases, we iteratively scaled the temperature by a factor of
0.1. This was done for a maximum of 10 attempts or until two distinct actions were produced. If
the Actor was not able to propose two distinct actions even after 10 attempts, we then used only a
single action. The specific prompt and in-context examples for the ToH task are shown below:

Consider the following puzzle problem:

Problem description:
- There are three lists labeled A, B, and C.
- There is a set of numbers distributed among those three lists.
- You can only move numbers from the rightmost end of one list to
the rightmost end of another list.
Rule #1: You can only move a number if it is at the rightmost end
of its current list.
Rule #2: You can only move a number to the rightmost end of a
list if it is larger than the other numbers in that list.
A move is valid if it satisfies both Rule #1 and Rule #2.
A move is invalid if it violates either Rule #1 or Rule #2.

Goal: The goal is to end up in the goal configuration using
minimum number of moves.

Here are two examples:

Example 1:

16

Preprint. Under review.

This is the starting configuration:
A = [0, 1]
B = [2]
C = []
This is the goal configuration:
A = []
B = []
C = [0, 1, 2]

Here is the sequence of minimum number of moves to reach the goal
configuration from the starting configuration:

Move 2 from B to C.
A = [0, 1]
B = []
C = [2]

Move 1 from A to B.
A = [0]
B = [1]
C = [2]

Move 2 from C to B.
A = [0]
B = [1, 2]
C = []

Move 0 from A to C.
A = []
B = [1, 2]
C = [0]

Move 2 from B to A.
A = [2]
B = [1]
C = [0]

Move 1 from B to C.
A = [2]
B = []
C = [0, 1]

Move 2 from A to C.
A = []
B = []
C = [0, 1, 2]

Example 2:

This is the starting configuration:
A = [1]
B = [0]
C = [2]
This is the goal configuration:
A = []
B = []
C = [0, 1, 2]

Here is the sequence of minimum number of moves to reach the goal
configuration from the starting configuration:

Move 2 from C to A.
A = [1, 2]

17

Preprint. Under review.

B = [0]
C = []

Move 0 from B to C.
A = [1, 2]
B = []
C = [0]

Move 2 from A to B.
A = [1]
B = [2]
C = [0]

Move 1 from A to C.
A = []
B = [2]
C = [0, 1]

Move 2 from B to C.
A = []
B = []
C = [0, 1, 2]

Here is the task:

This is the starting configuration:
A = [0, 1, 2]
B = []
C = []
This is the goal configuration:
A = [0]
B = [1, 2]
C = []

Give me only two different valid next moves possible from the
starting configuration that would help in reaching the goal
configuration using as few moves as possible.
Your answer should be in the format as below:
1. Move <N> from <src> to <trg>.

A.2.3 MONITOR

The Monitor was prompted with chain-of-thought reasoning in which each of the rules of the task
were checked before determining action validity. We stored the actions deemed valid by the Monitor
in a separate buffer, and we terminated the action proposal loop (Algorithm 1) when there were two
distinct actions in this buffer, or exceeded a maximum of 10 interactions with the Monitor. After
termination of the action proposal loop, if the buffer didn’t contain two distinct actions, we used the
only action in the buffer. If the buffer was empty, we used the action(s) proposed by the Actor at
the last attempt. The following text was used as a prompt and in-context examples in the ToH task:

Consider the following puzzle problem:

Problem description:
- There are three lists labeled A, B, and C.
- There is a set of numbers distributed among those three lists.
- You can only move numbers from the rightmost end of one list to
the rightmost end of another list.
Rule #1: You can only move a number if it is at the rightmost end
of its current list.
Rule #2: You can only move a number to the rightmost end of a
list if it is larger than the other numbers in that list.

18

Preprint. Under review.

A move is valid if it satisfies both Rule #1 and Rule #2.
A move is invalid if it violates either Rule #1 or Rule #2.

Goal: The goal is to check if the proposed move satisfies or
violates Rule #1 and Rule #2 and based on that if it is a valid
or invalid move.

Here are two examples:

Example 1:

This is the initial configuration:
A = []
B = [1]
C = [0, 2]

Proposed move:
Move 0 from C to B.

Answer:
First check whether the move satisfies or violates Rule #1. Index
of 0 in list C is 0. Length of list C is 2. The difference in
length of list C and index of 0 in list C is 2, which is not equal
to 1. Hence 0 is not at the rightmost end of list C, and the move
violates Rule #1.
Next check whether the move satisfies or violates Rule #2. For
that compute the maximum of list B, to which 0 is moved. Maximum
of list B is 1. 0 is not larger than 1. Hence the move violates
Rule #2.
Since the Move 0 from list C to list B violates both Rule #1 and
Rule #2, it is invalid.

Example 2:

This is the initial configuration:
A = []
B = [1]
C = [0, 2]

Proposed move:
Move 2 from C to B.

Answer:
First check whether the move satisfies or violates Rule #1. Index
of 2 in list C is 1. Length of list C is 2. The difference in
length of list C and index of 2 in list C is 1. Hence 2 is at the
rightmost end of list C, and the move satisfies Rule #1.
Next check whether the move satisfies or violates Rule #2. For
that compute the maximum of list B, to which 2 is moved. Maximum
of list B is 1. 2 is larger than 1. Hence the move satisfies
Rule #2.
Since the Move 2 from list C to list B satisfies both Rule #1 and
Rule #2, it is valid.

Here is the task:

This is the initial configuration:
A = []
B = [0, 1]
C = [2]

19

Preprint. Under review.

Proposed move:
Move 1 from B to A.

Answer:

A.2.4 PREDICTOR

The Predictor was prompted to predict the next state, given the current state and the proposed
action. The following text was used as a prompt and in-context examples in the ToH task:

Consider the following puzzle problem:

Problem description:
- There are three lists labeled A, B, and C.
- There is a set of numbers distributed among those three lists.
- You can only move numbers from the rightmost end of one list to
the rightmost end of another list.
Rule #1: You can only move a number if it is at the rightmost end
of its current list.
Rule #2: You can only move a number to the rightmost end of a
list if it is larger than the other numbers in that list.

Goal: The goal is to predict the configuration of the
three lists, if the proposed move is applied to the current
configuration.

Here are two examples:

Example 1:

This is the current configuration:
A = []
B = [1]
C = [0, 2]

Proposed move:
Move 2 from list C to list B.

Answer:
A = []
B = [1, 2]
C = [0]

Example 2:

This is the current configuration:
A = []
B = [1]
C = [0, 2]

Proposed move:
Move 1 from list B to list A.

Answer:
A = [1]
B = []
C = [0, 2]

Here is the task:

This is the current configuration:
A = []

20

Preprint. Under review.

B = [0, 1]
C = [2]

Proposed move:
Move 1 from list B to list A.

Answer:

A.2.5 EVALUATOR

For the Evaluator, in the ToH task, GPT-4 was prompted to generate a heuristic function that could
be used to estimate the distance between the current state and the goal state. The description of this
heuristic function was then included in the Evaluator’s prompt. In the graph traversal tasks, we
used only in-context examples, with no heuristic function prompt.

The following text shows prompt and in-context examples used in the ToH task. The first User
message prompts GPT-4 to generate a heuristic function. After GPT-4’s response, another User
message prompts the Evaluator to use this function:

USER: Consider the following puzzle problem:

Problem description:
- There are three lists labeled A, B, and C.
- There is a set of numbers distributed among those three lists.
- You can only move numbers from the rightmost end of one list to
the rightmost end of another list.
Rule #1: You can only move a number if it is at the rightmost end
of its current list.
Rule #2: You can only move a number to the rightmost end of a
list if it is larger than the other numbers in that list.
A move is valid if it satisfies both Rule #1 and Rule #2.
A move is invalid if it violates either Rule #1 or Rule #2.

Goal: The goal is to predict the minimum number of valid
moves required to reach the goal configuration from the current
configuration.

Here are two examples:

Example 1:

This is the current configuration:
A = [0, 1, 2]
B = []
C = []

This is the goal configuration:
A = []
B = []
C = [0, 1, 2]

Answer:
The minimum number of valid moves required to reach the goal
configuration from the current configuration is 7.

Example 2:

This is the current configuration:
A = [1, 2]
B = [0]
C = []

21

Preprint. Under review.

This is the goal configuration:
A = []
B = []
C = [0, 1, 2]

Answer:
The minimum number of valid moves required to reach the goal
configuration from the current configuration is 4.

What heuristic function can be used to estimate the minimum number
of valid moves required to reach the goal configuration from a
given current configuration?

GPT-4: A suitable heuristic function for this problem is the "sum
of the distances" heuristic. This heuristic estimates the minimum
number of valid moves required to reach the goal configuration by
calculating the sum of the distances each number needs to travel
to reach its final position in the goal configuration.

Here’s how the heuristic function works:

1. For each number in the current configuration, determine its
current position (list and index) and its goal position (list and
index) in the goal configuration.
2. Calculate the distance between the current position and the
goal position for each number. The distance can be calculated
as the absolute difference between the indices of the current and
goal positions, plus a penalty if the number needs to move to a
different list.
3. Sum the distances calculated in step 2 for all numbers.

The heuristic function will return the sum of the distances, which
is an estimate of the minimum number of valid moves required to
reach the goal configuration from the current configuration.

This heuristic is admissible because it never overestimates
the cost of reaching the goal configuration. It considers the
minimum number of moves required for each number to reach its goal
position, without taking into account the constraints imposed by
the rules of the puzzle. Therefore, the actual number of moves
required to reach the goal configuration will always be greater
than or equal to the heuristic value.

USER: This is the current configuration:
A = [0]
B = []
C = [1, 2]
This is the goal configuration:
A = [0]
B = [1, 2]
C = []

Use the heuristic function to predict the minimum number of valid
moves required to reach the goal configuration from the current
configuration.

Please provide your answer according to the heuristic function in
the format as below:
The minimum number of valid moves required to reach the goal
configuration from the current configuration is <N>.

22

Preprint. Under review.

A.2.6 TASK COORDINATOR

The TaskCoordinator was prompted to determine whether the current subgoal was achieved by the
current state. The following text was used as a prompt and in-context examples in the ToH task:

Consider the following puzzle problem:

Problem description:
- There are three lists labeled A, B, and C.
- There is a set of numbers distributed among those three lists.
- You can only move numbers from the rightmost end of one list to
the rightmost end of another list.
Rule #1: You can only move a number if it is at the rightmost end
of its current list.
Rule #2: You can only move a number to the rightmost end of a
list if it is larger than the other numbers in that list.

Goal: The goal is to predict whether the current configuraton
matches the goal configuration or not.

Here are two examples:

Example 1:

This is the current configuration:
A = []
B = []
C = [0, 1, 2]

This is the goal configuration:
A = []
B = []
C = [0, 1, 2]

Answer: The current configuraton matches the goal configuration.
Hence yes.

Example 2:

This is the current configuration:
A = [0, 1]
B = [2]
C = []

This is the goal configuration:
A = []
B = []
C = [0, 1, 2]

Answer: The current configuraton doesn’t match the goal
configuration. Hence no.

Here is the task:

This is the current configuration:
A = []
B = [0, 1, 2]
C = []

This is the goal configuration:
A = []
B = []
C = [0, 1, 2]

23

Preprint. Under review.

Answer:

24

	Introduction
	Approach
	Modules
	Action proposal loop
	Search loop
	Plan generation

	Experiments
	Tasks
	Baselines
	Experiment Details

	Results
	Ablation Study

	Related Work
	Conclusion and Future Directions
	Appendix
	Results Tables
	Prompts and in-context examples
	Task Decomposer
	Actor
	Monitor
	Predictor
	Evaluator
	Task Coordinator

