Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Update README.md
Browse files
README.md
CHANGED
@@ -106,8 +106,317 @@ pip install torch transformers datasets tqdm numpy
|
|
106 |
### Full Processing Script
|
107 |
|
108 |
```python
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
```
|
112 |
|
113 |
## π Quality Analysis
|
@@ -145,7 +454,7 @@ If you use Ultra FineWeb EDU in your research or applications, please cite:
|
|
145 |
title={Ultra FineWeb EDU: High-Quality Educational Content from Ultra-FineWeb},
|
146 |
author={ProCreations},
|
147 |
year={2025},
|
148 |
-
url={https://huggingface.co/datasets/
|
149 |
note={Filtered from Ultra-FineWeb using educational quality threshold 3.5+}
|
150 |
}
|
151 |
```
|
|
|
106 |
### Full Processing Script
|
107 |
|
108 |
```python
|
109 |
+
#!/usr/bin/env python3
|
110 |
+
"""
|
111 |
+
Ultra FineWeb EDU Dataset Creator
|
112 |
+
Creates a high-quality educational dataset by filtering Ultra-FineWeb with edu classifier
|
113 |
+
"""
|
114 |
+
|
115 |
+
import os
|
116 |
+
import json
|
117 |
+
import time
|
118 |
+
import pickle
|
119 |
+
from datetime import datetime, timedelta
|
120 |
+
from pathlib import Path
|
121 |
+
import torch
|
122 |
+
import numpy as np
|
123 |
+
from tqdm.auto import tqdm
|
124 |
+
from datasets import load_dataset, Dataset, DatasetDict
|
125 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
126 |
+
import gc
|
127 |
+
import logging
|
128 |
+
|
129 |
+
# Setup logging
|
130 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
131 |
+
logger = logging.getLogger(__name__)
|
132 |
+
|
133 |
+
class UltraFineWebEDUCreator:
|
134 |
+
def __init__(self,
|
135 |
+
output_dir="",
|
136 |
+
checkpoint_interval_minutes=30,
|
137 |
+
batch_size=512,
|
138 |
+
max_length=512,
|
139 |
+
edu_threshold=3.5,
|
140 |
+
device=None):
|
141 |
+
|
142 |
+
if output_dir:
|
143 |
+
self.output_dir = Path(output_dir)
|
144 |
+
self.output_dir.mkdir(exist_ok=True)
|
145 |
+
else:
|
146 |
+
self.output_dir = Path(".")
|
147 |
+
self.checkpoint_interval = timedelta(minutes=checkpoint_interval_minutes)
|
148 |
+
self.batch_size = batch_size
|
149 |
+
self.max_length = max_length
|
150 |
+
self.edu_threshold = edu_threshold
|
151 |
+
|
152 |
+
# Setup device - prefer CUDA for maximum speed! π
|
153 |
+
if device is None:
|
154 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
155 |
+
else:
|
156 |
+
self.device = torch.device(device)
|
157 |
+
|
158 |
+
logger.info(f"π₯ Using device: {self.device}")
|
159 |
+
if torch.cuda.is_available():
|
160 |
+
logger.info(f"β‘ CUDA device: {torch.cuda.get_device_name()}")
|
161 |
+
|
162 |
+
# Initialize classifier
|
163 |
+
self._load_classifier()
|
164 |
+
|
165 |
+
# Tracking variables
|
166 |
+
self.processed_count = 0
|
167 |
+
self.filtered_count = 0
|
168 |
+
self.last_checkpoint_time = datetime.now()
|
169 |
+
self.start_time = datetime.now()
|
170 |
+
|
171 |
+
def _load_classifier(self):
|
172 |
+
"""Load the educational classifier model"""
|
173 |
+
logger.info("π§ Loading FineWeb-Edu classifier...")
|
174 |
+
logger.info("β‘ TURBO MODE: FP16 + Large batches for maximum speed!")
|
175 |
+
|
176 |
+
model_name = "HuggingFaceFW/fineweb-edu-classifier"
|
177 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
178 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(
|
179 |
+
model_name,
|
180 |
+
torch_dtype=torch.float16 # Force FP16 for max speed!
|
181 |
+
).to(self.device)
|
182 |
+
|
183 |
+
# Set to eval mode for inference
|
184 |
+
self.model.eval()
|
185 |
+
|
186 |
+
logger.info("β
Classifier loaded successfully!")
|
187 |
+
|
188 |
+
def _classify_batch(self, texts):
|
189 |
+
"""Classify a batch of texts and return edu scores - OPTIMIZED FOR SPEED!"""
|
190 |
+
with torch.no_grad(), torch.amp.autocast('cuda', dtype=torch.float16):
|
191 |
+
# Tokenize batch
|
192 |
+
inputs = self.tokenizer(
|
193 |
+
texts,
|
194 |
+
return_tensors="pt",
|
195 |
+
padding=True,
|
196 |
+
truncation=True,
|
197 |
+
max_length=self.max_length
|
198 |
+
).to(self.device, non_blocking=True) # Async transfer for speed
|
199 |
+
|
200 |
+
# Get predictions
|
201 |
+
outputs = self.model(**inputs)
|
202 |
+
scores = outputs.logits.squeeze(-1).float().detach().cpu().numpy()
|
203 |
+
|
204 |
+
# Handle single sample case
|
205 |
+
if scores.ndim == 0:
|
206 |
+
scores = np.array([scores])
|
207 |
+
|
208 |
+
return scores
|
209 |
+
|
210 |
+
def _save_checkpoint(self, filtered_data, split_name, resume_info):
|
211 |
+
"""Save checkpoint data"""
|
212 |
+
checkpoint_path = self.output_dir / f"checkpoint_{split_name}_{self.processed_count}.pkl"
|
213 |
+
|
214 |
+
checkpoint_data = {
|
215 |
+
'filtered_data': filtered_data,
|
216 |
+
'processed_count': self.processed_count,
|
217 |
+
'filtered_count': self.filtered_count,
|
218 |
+
'resume_info': resume_info,
|
219 |
+
'timestamp': datetime.now().isoformat()
|
220 |
+
}
|
221 |
+
|
222 |
+
with open(checkpoint_path, 'wb') as f:
|
223 |
+
pickle.dump(checkpoint_data, f)
|
224 |
+
|
225 |
+
logger.info(f"πΎ Checkpoint saved: {checkpoint_path}")
|
226 |
+
return checkpoint_path
|
227 |
+
|
228 |
+
def _should_checkpoint(self):
|
229 |
+
"""Check if it's time to save a checkpoint"""
|
230 |
+
return datetime.now() - self.last_checkpoint_time >= self.checkpoint_interval
|
231 |
+
|
232 |
+
def process_split(self, split_name, resume_from_checkpoint=None):
|
233 |
+
"""Process a single split of the dataset"""
|
234 |
+
logger.info(f"π Processing {split_name} split...")
|
235 |
+
|
236 |
+
# Load dataset in streaming mode for memory efficiency
|
237 |
+
dataset = load_dataset(
|
238 |
+
"openbmb/Ultra-FineWeb",
|
239 |
+
split=split_name,
|
240 |
+
streaming=True
|
241 |
+
)
|
242 |
+
|
243 |
+
filtered_data = []
|
244 |
+
|
245 |
+
# Resume from checkpoint if provided
|
246 |
+
start_idx = 0
|
247 |
+
if resume_from_checkpoint:
|
248 |
+
logger.info(f"π Resuming from checkpoint: {resume_from_checkpoint}")
|
249 |
+
with open(resume_from_checkpoint, 'rb') as f:
|
250 |
+
checkpoint_data = pickle.load(f)
|
251 |
+
filtered_data = checkpoint_data['filtered_data']
|
252 |
+
self.processed_count = checkpoint_data['processed_count']
|
253 |
+
self.filtered_count = checkpoint_data['filtered_count']
|
254 |
+
start_idx = checkpoint_data['resume_info']['start_idx']
|
255 |
+
|
256 |
+
# Create progress bar
|
257 |
+
pbar = tqdm(
|
258 |
+
desc=f"Processing {split_name}",
|
259 |
+
unit="samples",
|
260 |
+
dynamic_ncols=True,
|
261 |
+
initial=self.processed_count
|
262 |
+
)
|
263 |
+
|
264 |
+
# Process in batches for efficiency
|
265 |
+
batch_texts = []
|
266 |
+
batch_data = []
|
267 |
+
|
268 |
+
for idx, example in enumerate(dataset):
|
269 |
+
if idx < start_idx:
|
270 |
+
continue
|
271 |
+
|
272 |
+
# Extract content only (no metadata)
|
273 |
+
content = example['content']
|
274 |
+
batch_texts.append(content)
|
275 |
+
batch_data.append(example)
|
276 |
+
|
277 |
+
# Process batch when full
|
278 |
+
if len(batch_texts) >= self.batch_size:
|
279 |
+
scores = self._classify_batch(batch_texts)
|
280 |
+
|
281 |
+
# Filter by edu threshold
|
282 |
+
for i, (score, data) in enumerate(zip(scores, batch_data)):
|
283 |
+
if score >= self.edu_threshold:
|
284 |
+
# Only keep content field as requested
|
285 |
+
filtered_data.append({'content': data['content']})
|
286 |
+
self.filtered_count += 1
|
287 |
+
|
288 |
+
self.processed_count += 1
|
289 |
+
|
290 |
+
# Update progress bar with stats
|
291 |
+
filter_rate = (self.filtered_count / self.processed_count) * 100
|
292 |
+
pbar.set_postfix({
|
293 |
+
'filtered': self.filtered_count,
|
294 |
+
'rate': f'{filter_rate:.1f}%',
|
295 |
+
'avg_score': f'{np.mean(scores):.2f}'
|
296 |
+
})
|
297 |
+
pbar.update(1)
|
298 |
+
|
299 |
+
# Clear batch
|
300 |
+
batch_texts = []
|
301 |
+
batch_data = []
|
302 |
+
|
303 |
+
# Checkpoint if needed
|
304 |
+
if self._should_checkpoint():
|
305 |
+
self._save_checkpoint(
|
306 |
+
filtered_data,
|
307 |
+
split_name,
|
308 |
+
{'start_idx': idx + 1}
|
309 |
+
)
|
310 |
+
self.last_checkpoint_time = datetime.now()
|
311 |
+
|
312 |
+
# Clean GPU memory
|
313 |
+
if torch.cuda.is_available():
|
314 |
+
torch.cuda.empty_cache()
|
315 |
+
|
316 |
+
# Process remaining batch
|
317 |
+
if batch_texts:
|
318 |
+
scores = self._classify_batch(batch_texts)
|
319 |
+
for score, data in zip(scores, batch_data):
|
320 |
+
if score >= self.edu_threshold:
|
321 |
+
filtered_data.append({'content': data['content']})
|
322 |
+
self.filtered_count += 1
|
323 |
+
self.processed_count += 1
|
324 |
+
pbar.update(1)
|
325 |
+
|
326 |
+
pbar.close()
|
327 |
+
|
328 |
+
logger.info(f"β
{split_name} complete! Filtered {self.filtered_count}/{self.processed_count} samples")
|
329 |
+
return filtered_data
|
330 |
+
|
331 |
+
def create_dataset(self, splits=['en'], resume_from_checkpoint=None):
|
332 |
+
"""Create the Ultra FineWeb EDU dataset"""
|
333 |
+
logger.info(f"π Starting Ultra FineWeb EDU creation!")
|
334 |
+
logger.info(f"π Using edu threshold: {self.edu_threshold} (PREMIUM QUALITY!)")
|
335 |
+
logger.info(f"π Checkpoint interval: {self.checkpoint_interval}")
|
336 |
+
logger.info(f"β‘ Batch size: {self.batch_size} - TURBO SPEED ENGAGED!")
|
337 |
+
|
338 |
+
all_filtered_data = {}
|
339 |
+
|
340 |
+
for split in splits:
|
341 |
+
logger.info(f"\nπ Processing {split} split...")
|
342 |
+
|
343 |
+
# Reset counters for each split
|
344 |
+
self.processed_count = 0
|
345 |
+
self.filtered_count = 0
|
346 |
+
|
347 |
+
filtered_data = self.process_split(split, resume_from_checkpoint)
|
348 |
+
all_filtered_data[split] = filtered_data
|
349 |
+
|
350 |
+
# Save split results
|
351 |
+
split_path = self.output_dir / f"ultra_fineweb_edu_{split}.json"
|
352 |
+
with open(split_path, 'w', encoding='utf-8') as f:
|
353 |
+
json.dump(filtered_data, f, ensure_ascii=False, indent=2)
|
354 |
+
logger.info(f"πΎ Saved {split} split to {split_path}")
|
355 |
+
|
356 |
+
# Create HuggingFace dataset
|
357 |
+
logger.info("π€ Creating HuggingFace dataset...")
|
358 |
+
|
359 |
+
hf_datasets = {}
|
360 |
+
for split, data in all_filtered_data.items():
|
361 |
+
if data: # Only create dataset if we have data
|
362 |
+
hf_datasets[split] = Dataset.from_list(data)
|
363 |
+
|
364 |
+
if hf_datasets:
|
365 |
+
dataset_dict = DatasetDict(hf_datasets)
|
366 |
+
|
367 |
+
# Save as HuggingFace dataset
|
368 |
+
dataset_path = self.output_dir / "dataset"
|
369 |
+
dataset_dict.save_to_disk(str(dataset_path))
|
370 |
+
logger.info(f"πΎ Saved HuggingFace dataset to {dataset_path}")
|
371 |
+
|
372 |
+
# Print final stats
|
373 |
+
total_samples = sum(len(data) for data in all_filtered_data.values())
|
374 |
+
elapsed_time = datetime.now() - self.start_time
|
375 |
+
|
376 |
+
logger.info(f"\nπ ULTRA FINEWEB EDU CREATION COMPLETE! π")
|
377 |
+
logger.info(f"π Total filtered samples: {total_samples:,}")
|
378 |
+
logger.info(f"β±οΈ Total time: {elapsed_time}")
|
379 |
+
logger.info(f"β‘ Average speed: {total_samples / elapsed_time.total_seconds():.1f} samples/sec")
|
380 |
+
|
381 |
+
return dataset_dict
|
382 |
+
else:
|
383 |
+
logger.warning("β οΈ No data passed the filter!")
|
384 |
+
return None
|
385 |
+
|
386 |
+
def main():
|
387 |
+
"""Main execution function"""
|
388 |
+
# Configuration - adjust these as needed!
|
389 |
+
config = {
|
390 |
+
'output_dir': '', # Save in root directory
|
391 |
+
'checkpoint_interval_minutes': 30,
|
392 |
+
'batch_size': 512, # MASSIVE batch size for your 24GB GPU!
|
393 |
+
'max_length': 512,
|
394 |
+
'edu_threshold': 3.5, # Ultra high quality only!
|
395 |
+
'splits': ['en'], # Add 'zh' for Chinese if needed
|
396 |
+
}
|
397 |
+
|
398 |
+
print("π ULTRA FINEWEB EDU DATASET CREATOR π")
|
399 |
+
print("=" * 50)
|
400 |
+
|
401 |
+
# Create the dataset creator
|
402 |
+
creator = UltraFineWebEDUCreator(**{k: v for k, v in config.items() if k != 'splits'})
|
403 |
+
|
404 |
+
# Create the dataset
|
405 |
+
dataset = creator.create_dataset(splits=config['splits'])
|
406 |
+
|
407 |
+
if dataset:
|
408 |
+
print(f"\n⨠Success! Your Ultra FineWeb EDU dataset is ready!")
|
409 |
+
print(f"π Location: {creator.output_dir}")
|
410 |
+
print(f"π Preview:")
|
411 |
+
for split_name, split_data in dataset.items():
|
412 |
+
print(f" {split_name}: {len(split_data):,} samples")
|
413 |
+
if len(split_data) > 0:
|
414 |
+
print(f" Sample: {split_data[0]['content'][:100]}...")
|
415 |
+
else:
|
416 |
+
print("π Dataset creation failed or no samples passed the filter.")
|
417 |
+
|
418 |
+
if __name__ == "__main__":
|
419 |
+
main()
|
420 |
```
|
421 |
|
422 |
## π Quality Analysis
|
|
|
454 |
title={Ultra FineWeb EDU: High-Quality Educational Content from Ultra-FineWeb},
|
455 |
author={ProCreations},
|
456 |
year={2025},
|
457 |
+
url={https://huggingface.co/datasets/ProCreations/Ultra-FineWeb-EDU]},
|
458 |
note={Filtered from Ultra-FineWeb using educational quality threshold 3.5+}
|
459 |
}
|
460 |
```
|