--- annotations_creators: - expert-generated languages: - es multilinguality: - monolingual task_categories: - text-classification - multi-label-text-classification task_ids: - named-entity-recognition --- # CANTEMIST Corpus ## BibTeX citation If you use these resources in your work, please cite the following paper: ```bibtex @inproceedings{miranda2020named, title={Named entity recognition, concept normalization and clinical coding: Overview of the cantemist track for cancer text mining in spanish, corpus, guidelines, methods and results}, author={Miranda-Escalada, A and Farr{\'e}, E and Krallinger, M}, booktitle={Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2020), CEUR Workshop Proceedings}, year={2020} } ``` ## Digital Object Identifier (DOI) and access to dataset files TO DO: link to zenodo ## Introduction TO DO: This is a dataset for Named Entity Recognition (NER) from... ### Supported Tasks and Leaderboards Named Entities Recognition, Language Model ### Languages ES - Spanish ### Directory structure * cantemist-ner.py * dev.conll * test.conll * train.conll * README.md ## Dataset Structure ### Data Instances Three four-column files, one for each split. ### Data Fields Every file has four columns: * 1st column: Word form or punctuation symbol * 2nd column: Original BRAT file name * 3rd column: Spans * 4th column: IOB tag ### Example:
El                  cc_onco101	662_664	O
informe             cc_onco101	665_672	O
HP                  cc_onco101	673_675	O
es                  cc_onco101	676_678	O
compatible          cc_onco101	679_689	O
con                 cc_onco101	690_693	O
adenocarcinoma      cc_onco101	694_708	B-MORFOLOGIA_NEOPLASIA
moderadamente       cc_onco101	709_722	I-MORFOLOGIA_NEOPLASIA
diferenciado        cc_onco101	723_735	I-MORFOLOGIA_NEOPLASIA
que                 cc_onco101	736_739	O
afecta              cc_onco101	740_746	O
a                   cc_onco101	747_748	O
grasa               cc_onco101	749_754	O
peripancreƔtica     cc_onco101	755_770	O
sobrepasando        cc_onco101	771_783	O
la                  cc_onco101	784_786	O
serosa              cc_onco101	787_793	O
,                   cc_onco101	793_794	O
infiltraciĆ³n        cc_onco101	795_807	O
perineural          cc_onco101	808_818	O
.                   cc_onco101	818_819	O
### Data Splits * train: 18,916 tokens * development: 17,656 tokens * test: 10,886 tokens ## Dataset Creation ### Methodology TO DO ### Curation Rationale For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines. ### Source Data #### Initial Data Collection and Normalization TO DO #### Who are the source language producers? TO DO ### Annotations #### Annotation process TO DO #### Who are the annotators? TO DO ### Dataset Curators TO DO: Martin? ### Personal and Sensitive Information No personal or sensitive information included. ## Contact TO DO: Casimiro? ## License Attribution 4.0 International License
This work is licensed under a Attribution 4.0 International License.