--- annotations_creators: - expert-generated languages: - es multilinguality: - monolingual task_categories: - text-classification - multi-label-text-classification task_ids: - named-entity-recognition --- # CANTEMIST Corpus ## BibTeX citation If you use these resources in your work, please cite the following paper: ```bibtex @inproceedings{miranda2020named, title={Named entity recognition, concept normalization and clinical coding: Overview of the cantemist track for cancer text mining in spanish, corpus, guidelines, methods and results}, author={Miranda-Escalada, A and Farr{\'e}, E and Krallinger, M}, booktitle={Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2020), CEUR Workshop Proceedings}, year={2020} } ``` ## Digital Object Identifier (DOI) and access to dataset files TO DO: link to zenodo ## Introduction TO DO: This is a dataset for Named Entity Recognition (NER) from... ### Supported Tasks and Leaderboards Named Entities Recognition, Language Model ### Languages ES - Spanish ### Directory structure * cantemist-ner.py * dev.conll * test.conll * train.conll * README.md ## Dataset Structure ### Data Instances Three four-column files, one for each split. ### Data Fields Every file has four columns: * 1st column: Word form or punctuation symbol * 2nd column: Original BRAT file name * 3rd column: Spans * 4th column: IOB tag ### Example:
El cc_onco101 662_664 O informe cc_onco101 665_672 O HP cc_onco101 673_675 O es cc_onco101 676_678 O compatible cc_onco101 679_689 O con cc_onco101 690_693 O adenocarcinoma cc_onco101 694_708 B-MORFOLOGIA_NEOPLASIA moderadamente cc_onco101 709_722 I-MORFOLOGIA_NEOPLASIA diferenciado cc_onco101 723_735 I-MORFOLOGIA_NEOPLASIA que cc_onco101 736_739 O afecta cc_onco101 740_746 O a cc_onco101 747_748 O grasa cc_onco101 749_754 O peripancreĆ”tica cc_onco101 755_770 O sobrepasando cc_onco101 771_783 O la cc_onco101 784_786 O serosa cc_onco101 787_793 O , cc_onco101 793_794 O infiltraciĆ³n cc_onco101 795_807 O perineural cc_onco101 808_818 O . cc_onco101 818_819 O### Data Splits * train: 18,916 tokens * development: 17,656 tokens * test: 10,886 tokens ## Dataset Creation ### Methodology TO DO ### Curation Rationale For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines. ### Source Data #### Initial Data Collection and Normalization TO DO #### Who are the source language producers? TO DO ### Annotations #### Annotation process TO DO #### Who are the annotators? TO DO ### Dataset Curators TO DO: Martin? ### Personal and Sensitive Information No personal or sensitive information included. ## Contact TO DO: Casimiro? ## License