klamike mtanneau commited on
Commit
fa60d04
·
verified ·
1 Parent(s): 820c1df

Create README.md (#1)

Browse files

- Create README.md (8623ebfa4608017b28ea325ad3cf455d71682968)


Co-authored-by: Mathieu Tanneau <[email protected]>

Files changed (1) hide show
  1. README.md +35 -0
README.md ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ tags:
4
+ - energy
5
+ - optimization
6
+ - optimal_power_flow
7
+ - power_grid
8
+ pretty_name: PGLearn Optimal Power Flow (small)
9
+ size_categories:
10
+ - 100K<n<1M
11
+ task_categories:
12
+ - tabular-regression
13
+ viewer: false
14
+ ---
15
+
16
+ # PGLearn optimal power flow (small) dataset
17
+
18
+ This dataset contains input data and solutions for small-size Optimal Power Flow (OPF) problems.
19
+ Original case files are based on instances from Power Grid Lib -- Optimal Power Flow ([PGLib OPF](https://github.com/power-grid-lib/pglib-opf));
20
+ this dataset comprises instances corresponding to systems with up to 300 buses.
21
+
22
+ ## Contents
23
+
24
+ For each system (e.g., `14_ieee`, `118_ieee`), the dataset provides multiple OPF instances,
25
+ and corresponding primal and dual solutions for the following OPF formulations
26
+ * AC-OPF (nonlinear, non-convex)
27
+ * DC-OPF approximation (linear, convex)
28
+ * Second-Order Cone (SOC) relaxation of AC-OPF (nonlinear, convex)
29
+
30
+ This dataset was created using [OPFGenerator](https://github.com/AI4OPT/OPFGenerator);
31
+ please see the [OPFGenerator documentation](https://ai4opt.github.io/OPFGenerator/dev/) for details on mathematical formulations.
32
+
33
+ ## Use cases
34
+
35
+ The primary intended use case of this dataset is to learn a mapping from input data to primal and/or dual solutions.