import numpy as np from pyquaternion import Quaternion from nuplan.database.utils.pointclouds.pointcloud import PointCloud def _load_points(pc_file_name): pc = PointCloud.parse_from_file(pc_file_name).to_pcd_bin2().T return pc def transform_pcs_to_images( pc, cam2lidar_rotation, cam2lidar_translation, cam_intrinsic, img_shape=None, eps=1e-3, return_depth=False, ): """Transform point clouds from LiDAR coordinates to the camera coordinates. Args: pc: a numpy array with shape [-1, 6] cam_infos: dict of camera information. Return: pc_cam: dict of 2d coordinates in corresponding camera space. """ pc_xyz = pc[:, :3] lidar2cam_r = np.linalg.inv(cam2lidar_rotation) lidar2cam_t = cam2lidar_translation @ lidar2cam_r.T lidar2cam_rt = np.eye(4) lidar2cam_rt[:3, :3] = lidar2cam_r.T lidar2cam_rt[3, :3] = -lidar2cam_t viewpad = np.eye(4) viewpad[: cam_intrinsic.shape[0], : cam_intrinsic.shape[1]] = cam_intrinsic lidar2img_rt = viewpad @ lidar2cam_rt.T cur_pc_xyz = np.concatenate([pc_xyz, np.ones_like(pc_xyz)[:, :1]], -1) cur_pc_cam = lidar2img_rt @ cur_pc_xyz.T cur_pc_cam = cur_pc_cam.T cur_pc_in_fov = cur_pc_cam[:, 2] > eps depth = cur_pc_cam[..., 2:3] cur_pc_cam = cur_pc_cam[..., 0:2] / np.maximum( cur_pc_cam[..., 2:3], np.ones_like(cur_pc_cam[..., 2:3]) * eps ) if img_shape is not None: img_h, img_w = img_shape cur_pc_in_fov = ( cur_pc_in_fov & (cur_pc_cam[:, 0] < (img_w - 1)) & (cur_pc_cam[:, 0] > 0) & (cur_pc_cam[:, 1] < (img_h - 1)) & (cur_pc_cam[:, 1] > 0) ) if return_depth: cur_pc_cam = np.concatenate([cur_pc_cam, depth], axis=-1) return cur_pc_cam, cur_pc_in_fov def transform_cam_to_img(pc_cam, cam_intrinsic, img_shape=None, eps=1e-3, return_depth=False): """Transform point clouds from LiDAR coordinates to the camera coordinates. Args: pc: a numpy array with shape [-1, 6] cam_infos: dict of camera information. Return: pc_cam: dict of 2d coordinates in corresponding camera space. """ pc_cam = pc_cam[:, :3] viewpad = np.eye(4) viewpad[: cam_intrinsic.shape[0], : cam_intrinsic.shape[1]] = cam_intrinsic pc_img = np.concatenate([pc_cam, np.ones_like(pc_cam)[:, :1]], -1) pc_img = viewpad @ pc_img.T pc_img = pc_img.T cur_pc_in_fov = pc_img[:, 2] > eps depth = pc_img[..., 2:3] pc_img = pc_img[..., 0:2] / np.maximum(pc_img[..., 2:3], np.ones_like(pc_img[..., 2:3]) * eps) if img_shape is not None: img_h, img_w = img_shape cur_pc_in_fov = ( cur_pc_in_fov & (pc_img[:, 0] < (img_w - 1)) & (pc_img[:, 0] > 0) & (pc_img[:, 1] < (img_h - 1)) & (pc_img[:, 1] > 0) ) if return_depth: pc_img = np.concatenate([pc_img, depth], axis=-1) return pc_img, cur_pc_in_fov def transform_nuplan_boxes_to_cam(box, cam2lidar_rotation, cam2lidar_translation): """Transform point clouds from LiDAR coordinates to the camera coordinates. Args: box: a numpy array with shape [-1, 7] """ locs, dims, rots = box[:, :3], box[:, 3:6], box[:, 6:] dims_cams = dims[:, [0, 2, 1]] # l, w, h -> l, h, w rots_cam = np.zeros_like(rots) for idx, rot in enumerate(rots): rot = Quaternion(axis=[0, 0, 1], radians=rot) rot = Quaternion(matrix=cam2lidar_rotation).inverse * rot rots_cam[idx] = -rot.yaw_pitch_roll[0] lidar2cam_r = np.linalg.inv(cam2lidar_rotation) lidar2cam_t = cam2lidar_translation @ lidar2cam_r.T lidar2cam_rt = np.eye(4) lidar2cam_rt[:3, :3] = lidar2cam_r.T lidar2cam_rt[3, :3] = -lidar2cam_t locs_cam = np.concatenate([locs, np.ones_like(locs)[:, :1]], -1) # -1, 4 locs_cam = lidar2cam_rt.T @ locs_cam.T locs_cam = locs_cam.T locs_cam = locs_cam[:, :-1] return np.concatenate([locs_cam, dims_cams, rots_cam], -1) def transform_sweep_pc_to_lidar_top(sweep_pc, sensor2lidar_rotation, sensor2lidar_translation): sweep_xyz = sweep_pc[:, :3] sweep_xyz = np.concatenate([sweep_xyz, np.ones_like(sweep_xyz)[:, :1]], -1) sensor2lidar_rt = np.eye(4) sensor2lidar_rt[:3, :3] = sensor2lidar_rotation.T sensor2lidar_rt[3, :3] = sensor2lidar_translation sweep_xyz = sweep_xyz @ sensor2lidar_rt return sweep_xyz[:, :3]