AnAutomaticPencil's picture
data preprocessing update
a6326c7
raw
history blame
17.3 kB
from typing import List, Dict, Optional, Tuple
import random
import difflib
from rapidfuzz import fuzz
import sqlite3
import functools
from const import KNOWLEDGE_TO_SELECT, UTTERANCE, ROLES, BELIEF_STATE, DOMAIN
def None_knowledge():
return "None"
def concat_list_knowledge_wrapper(prompt: str = "", sep: str = " | "):
def get_list_knowledge(str_list: List[str]):
return prompt + sep.join(str_list)
return get_list_knowledge
def origin_knowledge(knowledge):
return knowledge
def extract_turn_knowledge(
knowledge, section_prompt_op, section_sep, section_value_sep
):
if isinstance(knowledge, dict):
sec_list = []
for section in sorted(knowledge.keys()):
sec_str = f"{section}{section_prompt_op}"
if isinstance(knowledge[section], str):
sec_str += knowledge[section]
elif isinstance(knowledge[section], list):
sec_str += section_value_sep.join(knowledge[section])
sec_list.append(sec_str)
return section_sep.join(sec_list)
elif isinstance(knowledge, str):
return knowledge
elif isinstance(knowledge, list):
return ";; ".join(
[
extract_turn_knowledge(
sec, section_prompt_op, section_sep, section_value_sep
)
for sec in knowledge
]
)
def extract_turn_domains_wrapper(prompt: str = "", sep: str = ", "):
def extract_turn_domains(knowledge, turn):
bs = turn[BELIEF_STATE]
domains = []
for state in bs:
domain = state[DOMAIN]
if domain not in domains:
domains.append(domain)
return prompt + sep.join(domains)
return extract_turn_domains
def extract_turn_knowledge_wrapper(section_prompt_op, section_sep, section_value_sep):
def extract_turn_knowledge_func(knowledge, turn):
return extract_turn_knowledge(
[knowledge[sec] for sec in turn[KNOWLEDGE_TO_SELECT]],
section_prompt_op,
section_sep,
section_value_sep,
)
return extract_turn_knowledge_func
# Text2SQL
EXIST = {"atis", "geo", "advising", "yelp", "restaurants", "imdb", "academic"}
# fmt: off
_stopwords = {'who', 'ourselves', 'down', 'only', 'were', 'him', 'at', "weren't", 'has', 'few', "it's", 'm', 'again',
'd', 'haven', 'been', 'other', 'we', 'an', 'own', 'doing', 'ma', 'hers', 'all', "haven't", 'in', 'but',
"shouldn't", 'does', 'out', 'aren', 'you', "you'd", 'himself', "isn't", 'most', 'y', 'below', 'is',
"wasn't", 'hasn', 'them', 'wouldn', 'against', 'this', 'about', 'there', 'don', "that'll", 'a', 'being',
'with', 'your', 'theirs', 'its', 'any', 'why', 'now', 'during', 'weren', 'if', 'should', 'those', 'be',
'they', 'o', 't', 'of', 'or', 'me', 'i', 'some', 'her', 'do', 'will', 'yours', 'for', 'mightn', 'nor',
'needn', 'the', 'until', "couldn't", 'he', 'which', 'yourself', 'to', "needn't", "you're", 'because',
'their', 'where', 'it', "didn't", 've', 'whom', "should've", 'can', "shan't", 'on', 'had', 'have',
'myself', 'am', "don't", 'under', 'was', "won't", 'these', 'so', 'as', 'after', 'above', 'each', 'ours',
'hadn', 'having', 'wasn', 's', 'doesn', "hadn't", 'than', 'by', 'that', 'both', 'herself', 'his',
"wouldn't", 'into', "doesn't", 'before', 'my', 'won', 'more', 'are', 'through', 'same', 'how', 'what',
'over', 'll', 'yourselves', 'up', 'mustn', "mustn't", "she's", 're', 'such', 'didn', "you'll", 'shan',
'when', "you've", 'themselves', "mightn't", 'she', 'from', 'isn', 'ain', 'between', 'once', 'here',
'shouldn', 'our', 'and', 'not', 'too', 'very', 'further', 'while', 'off', 'couldn', "hasn't", 'itself',
'then', 'did', 'just', "aren't"}
# fmt: on
_commonwords = {"no", "yes", "many"}
def is_number(s: str) -> bool:
try:
float(s.replace(",", ""))
return True
except:
return False
def is_stopword(s: str) -> bool:
return s.strip() in _stopwords
def is_commonword(s: str) -> bool:
return s.strip() in _commonwords
def is_common_db_term(s: str) -> bool:
return s.strip() in ["id"]
class Match(object):
def __init__(self, start: int, size: int) -> None:
self.start = start
self.size = size
def is_span_separator(c: str) -> bool:
return c in "'\"()`,.?! "
def split(s: str) -> List[str]:
return [c.lower() for c in s.strip()]
def prefix_match(s1: str, s2: str) -> bool:
i, j = 0, 0
for i in range(len(s1)):
if not is_span_separator(s1[i]):
break
for j in range(len(s2)):
if not is_span_separator(s2[j]):
break
if i < len(s1) and j < len(s2):
return s1[i] == s2[j]
elif i >= len(s1) and j >= len(s2):
return True
else:
return False
def get_effective_match_source(s: str, start: int, end: int) -> Match:
_start = -1
for i in range(start, start - 2, -1):
if i < 0:
_start = i + 1
break
if is_span_separator(s[i]):
_start = i
break
if _start < 0:
return None
_end = -1
for i in range(end - 1, end + 3):
if i >= len(s):
_end = i - 1
break
if is_span_separator(s[i]):
_end = i
break
if _end < 0:
return None
while _start < len(s) and is_span_separator(s[_start]):
_start += 1
while _end >= 0 and is_span_separator(s[_end]):
_end -= 1
return Match(_start, _end - _start + 1)
def get_matched_entries(
s: str, field_values: List[str], m_theta: float = 0.85, s_theta: float = 0.85
) -> Optional[List[Tuple[str, Tuple[str, str, float, float, int]]]]:
if not field_values:
return None
if isinstance(s, str):
n_grams = split(s)
else:
n_grams = s
matched = dict()
for field_value in field_values:
if not isinstance(field_value, str):
continue
fv_tokens = split(field_value)
sm = difflib.SequenceMatcher(None, n_grams, fv_tokens)
match = sm.find_longest_match(0, len(n_grams), 0, len(fv_tokens))
if match.size > 0:
source_match = get_effective_match_source(
n_grams, match.a, match.a + match.size
)
if source_match and source_match.size > 1:
match_str = field_value[match.b : match.b + match.size]
source_match_str = s[
source_match.start : source_match.start + source_match.size
]
c_match_str = match_str.lower().strip()
c_source_match_str = source_match_str.lower().strip()
c_field_value = field_value.lower().strip()
if (
c_match_str
and not is_number(c_match_str)
and not is_common_db_term(c_match_str)
):
if (
is_stopword(c_match_str)
or is_stopword(c_source_match_str)
or is_stopword(c_field_value)
):
continue
if c_source_match_str.endswith(c_match_str + "'s"):
match_score = 1.0
else:
if prefix_match(c_field_value, c_source_match_str):
match_score = (
fuzz.ratio(c_field_value, c_source_match_str) / 100
)
else:
match_score = 0
if (
is_commonword(c_match_str)
or is_commonword(c_source_match_str)
or is_commonword(c_field_value)
) and match_score < 1:
continue
s_match_score = match_score
if match_score >= m_theta and s_match_score >= s_theta:
if field_value.isupper() and match_score * s_match_score < 1:
continue
matched[match_str] = (
field_value,
source_match_str,
match_score,
s_match_score,
match.size,
)
if not matched:
return None
else:
return sorted(
matched.items(),
key=lambda x: (1e16 * x[1][2] + 1e8 * x[1][3] + x[1][4]),
reverse=True,
)
@functools.lru_cache(maxsize=1000, typed=False)
def get_column_picklist(table_name: str, column_name: str, db_path: str) -> list:
fetch_sql = "SELECT DISTINCT `{}` FROM `{}`".format(column_name, table_name)
try:
conn = sqlite3.connect(db_path)
conn.text_factory = bytes
c = conn.cursor()
c.execute(fetch_sql)
picklist = set()
for x in c.fetchall():
if isinstance(x[0], str):
picklist.add(x[0].encode("utf-8"))
elif isinstance(x[0], bytes):
try:
picklist.add(x[0].decode("utf-8"))
except UnicodeDecodeError:
picklist.add(x[0].decode("latin-1"))
else:
picklist.add(x[0])
picklist = list(picklist)
finally:
conn.close()
return picklist
def get_database_matches(
question: str,
table_name: str,
column_name: str,
db_path: str,
top_k_matches: int = 2,
match_threshold: float = 0.85,
) -> List[str]:
picklist = get_column_picklist(
table_name=table_name, column_name=column_name, db_path=db_path
)
matches = []
if picklist and isinstance(picklist[0], str):
matched_entries = get_matched_entries(
s=question,
field_values=picklist,
m_theta=match_threshold,
s_theta=match_threshold,
)
if matched_entries:
num_values_inserted = 0
for _match_str, (
field_value,
_s_match_str,
match_score,
s_match_score,
_match_size,
) in matched_entries:
if "name" in column_name and match_score * s_match_score < 1:
continue
if table_name != "sqlite_sequence": # Spider database artifact
matches.append(field_value)
num_values_inserted += 1
if num_values_inserted >= top_k_matches:
break
return matches
def serialize_schema(
question: str,
db_path: str,
db_id: str,
db_column_names: Dict[str, str],
db_table_names: List[str],
schema_serialization_type: str = "peteshaw",
schema_serialization_randomized: bool = False,
schema_serialization_with_db_id: bool = True,
schema_serialization_with_db_content: bool = False,
normalize_query: bool = True,
) -> str:
if schema_serialization_type == "verbose":
db_id_str = "Database: {db_id}. "
table_sep = ". "
table_str = "Table: {table}. Columns: {columns}"
column_sep = ", "
column_str_with_values = "{column} ({values})"
column_str_without_values = "{column}"
value_sep = ", "
elif schema_serialization_type == "peteshaw":
# see https://github.com/google-research/language/blob/master/language/nqg/tasks/spider/append_schema.py#L42
db_id_str = "{db_id}"
table_sep = ""
table_str = " | {table} : {columns}"
column_sep = " , "
column_str_with_values = "{column} ( {values} )"
column_str_without_values = "{column}"
value_sep = " , "
else:
raise NotImplementedError
def get_column_str(table_name: str, column_name: str) -> str:
column_name_str = column_name.lower() if normalize_query else column_name
if schema_serialization_with_db_content:
matches = get_database_matches(
question=question,
table_name=table_name,
column_name=column_name,
db_path=(db_path + "/" + db_id + "/" + db_id + ".sqlite"),
)
if matches:
return column_str_with_values.format(
column=column_name_str, values=value_sep.join(matches)
)
else:
return column_str_without_values.format(column=column_name_str)
else:
return column_str_without_values.format(column=column_name_str)
tables = [
table_str.format(
table=table_name.lower() if normalize_query else table_name,
columns=column_sep.join(
map(
lambda y: get_column_str(table_name=table_name, column_name=y[1]),
filter(
lambda y: y[0] == table_id,
zip(
db_column_names["table_id"],
db_column_names["column_name"],
),
),
)
),
)
for table_id, table_name in enumerate(db_table_names)
]
if schema_serialization_randomized:
random.shuffle(tables)
if schema_serialization_with_db_id:
serialized_schema = db_id_str.format(db_id=db_id) + table_sep.join(tables)
else:
serialized_schema = table_sep.join(tables)
return serialized_schema
def extract_schema_knowledge_wrapper(
schema_serialization_type: str = "peteshaw",
schema_serialization_randomized: bool = False,
schema_serialization_with_db_id: bool = True,
schema_serialization_with_db_content: bool = False,
normalize_query: bool = True,
):
def extract_turn_schema_knowledge_func(knowledge, turn):
schema = knowledge["schema"]
db_column_names = {
"table_id": [table_id for table_id, _ in schema["column_names_original"]],
"column_name": [
column_name for _, column_name in schema["column_names_original"]
],
}
return serialize_schema(
turn[UTTERANCE],
knowledge["db_path"],
knowledge["db_id"],
db_column_names,
schema["table_names_original"],
schema_serialization_type,
schema_serialization_randomized,
schema_serialization_with_db_id,
schema_serialization_with_db_content,
normalize_query,
)
return extract_turn_schema_knowledge_func
def extract_dict_knowledge(knowledge, key_prompt_op, pair_sep):
pair_list = []
for key in knowledge:
pair_list.append(f"{key}{key_prompt_op}{knowledge[key]}")
if not pair_list:
return "None"
return pair_sep.join(pair_list)
def extract_dict_knowledge_wrapper(key_prompt_op, pair_sep):
def extract_dict_knowledge_func(knowledge):
return extract_dict_knowledge(knowledge, key_prompt_op, pair_sep)
return extract_dict_knowledge_func
def extract_dialogue_knowledge(knowledge, key_prompt_op, pair_sep, role_sep):
pair_list = []
for key in knowledge:
if isinstance(knowledge[key], str):
pair_list.append(f"{key}{key_prompt_op}{knowledge[key]}")
elif isinstance(knowledge[key], list):
turns = []
for turn in knowledge[key]:
role_str = role_sep.join(turn[ROLES])
turns.append(f"{role_str}# {turn[UTTERANCE]}")
dial_str = " ".join(turns)
pair_list.append(f"{key}{key_prompt_op}{dial_str}")
if not pair_list:
return "None"
return pair_sep.join(pair_list)
def extract_dialogue_knowledge_wrapper(key_prompt_op, pair_sep, role_sep):
def extract_dialogue_knowledge_func(knowledge):
return extract_dialogue_knowledge(knowledge, key_prompt_op, pair_sep, role_sep)
return extract_dialogue_knowledge_func
def extract_kg_knowledge(
knowledge, key_prompt_op, pair_sep, intra_edge_sep, inner_edge_sep
):
pair_list = []
for key in knowledge:
if isinstance(knowledge[key], str):
pair_list.append(f"{key}{key_prompt_op}{knowledge[key]}")
elif isinstance(knowledge[key], list):
edges = []
for edge in knowledge[key]:
edges.append(inner_edge_sep.join(edge))
kg_str = intra_edge_sep.join(edges)
pair_list.append(f"{key}{key_prompt_op}{kg_str}")
if not pair_list:
return "None"
return pair_sep.join(pair_list)
def extract_kg_knowledge_wrapper(
key_prompt_op, pair_sep, intra_edge_sep, inner_edge_sep
):
def extract_kg_knowledge_func(knowledge):
return extract_kg_knowledge(
knowledge, key_prompt_op, pair_sep, intra_edge_sep, inner_edge_sep
)
return extract_kg_knowledge_func