diff --git "a/APY250314001/竞赛题.jsonl" "b/APY250314001/竞赛题.jsonl" new file mode 100644--- /dev/null +++ "b/APY250314001/竞赛题.jsonl" @@ -0,0 +1,808 @@ +{"_id": "596206c4cb0043c9bc9a2e2e28cae04c", "question": "解方程组:$$\\begin{cases}\\frac{x-y}{2}-\\frac{x+y}{5}=1 \\\\ 3(x-y)+2(x+y)=6 \\end{cases}$$.\n", "answer": "$$\\begin{cases}x=-\\frac{2}{3} \\\\ y=-8 \\end{cases}$$.\n", "Analysis": "$$\\begin{cases}\\frac{x-y}{2}-\\frac{x+y}{5}=1① \\\\ 3(x-y)+2(x+y)=6 ②\\end{cases}$$,\n\n由①可得:$$5(x-y)-2(x+y)=10$$,\n\n整理得:$$3x-7y=10$$③,\n\n由②整理得:$$3x-y=6$$④,\n\n③$$-$$④,得:$$-6x=4$$,\n\n解得:$$x=-\\frac{2}{3}$$,\n\n把$$x=-\\frac{2}{3}$$代入④,得$$-2-y=6$$,\n\n解得:$$y=-8$$,\n\n∴方程组的解为$$\\begin{cases}x=-\\frac{2}{3} \\\\ y=-8 \\end{cases}$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["二元一次方程(组)", "解二元一次方程组", "方程与不等式", "加减消元法"]} +{"_id": "92d912d59635428a9b3b130643effaed", "question": "点$$P\\left( -3,-5 \\right)$$所在的象限是(    ).\n", "answer": "C", "Analysis": "根据各象限点的特征可知点$$P$$在第三象限,答案选$$\\text{C}$$.\n\n", "options": "A:第一象限\nB:第二象限\nC:第三象限\nD:第四象限", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["函数", "象限内坐标的特征", "坐标系基础", "平面直角坐标系"]} +{"_id": "916248522594428bb89030f52e2cd677", "question": "若关于$$x$$的一元一次不等式组$$\\begin{cases}3-2x>1 \\\\ x-a>0 \\end{cases}$$恰有$$3$$个整数解,那么$$a$$的取值范围是 ___          ___ .\n", "answer": "$$-3\\leqslant a<{}-2$$", "Analysis": "解不等式$$3-2x>1$$,得:$$x  <  1$$,\n\n解不等式$$x-a>0$$,得:$$x>a$$,\n\n则不等式组的解集为$$a  <  x  <  1$$,\n\n∵不等式组恰有$$3$$个整数解,\n\n∴不等式组的整数解为$$-2$$、$$-1$$、$$0$$,\n\n则$$-3\\leqslant a  <  -2$$,\n\n故答案为:$$-3\\leqslant a  <  -2$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["一元一次不等式组", "不等式(组)", "方程与不等式", "一元一次不等式组的整数解"]} +{"_id": "f56dbc7e22ac4a5b8b2a5f99e19f97dc", "question": "甲、乙两人做同样的零件,如果甲先做$$1$$天,乙再开始做,$$5$$天后两人做的一样多,如果甲先做$$30$$个,乙再开始做,$$4$$天后乙反比甲多做$$10$$个,甲,乙两人每天分别做多少个,设甲,每天做$$x$$个,乙每天做$$y$$个,列出的方程组是(  ).\n", "answer": "C", "Analysis": "设甲,每天做$$x$$个,乙每天做$$y$$个,根据题意.\n\n列方程组为$$\\begin{cases}6x=5y \\\\ 30+4x=4y-10 \\end{cases}$$.\n\n", "options": "A:$$\\begin{cases}6x=5y \\\\ 30+4x=4y+10 \\end{cases}$$\n\nB:$$\\begin{cases}1+5x=6y \\\\ 30+4x=4y-10 \\end{cases}$$\n\nC:$$\\begin{cases}6x=5y \\\\ 30+4x=4y-10 \\end{cases}$$\n\nD:$$\\begin{cases}1+5x=6y \\\\ 30+4x=4y+10 \\end{cases}$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["二元一次方程(组)", "方程与不等式", "二元一次方程组应用题", "二元一次方程组的和差倍分"]} +{"_id": "1203ad94ee8b4a75a43183b547688bc8", "question": "把命题“对顶角相等”改写成“如果……那么……”的形式: ___          ___ .\n", "answer": "如果有两个角是对顶角,那么这两个角相等", "Analysis": "题设为:对顶角,结论为:相等,\n\n故写成“如果…那么…”的形式是:如果有两个角是对顶角,那么这两个角相等.\n\n故答案为:如果有两个角是对顶角,那么这两个角相等.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["对顶角的定义与性质", "相交线", "平行线判定", "几何图形初步", "平行线", "相交线与平行线"]} +{"_id": "ce2fb79fa33341749c7c3b858401b836", "question": "已知$$x$$,$$y$$满足方程组$$\\begin{cases}x+6y=12 \\\\ 3x-2y=8 \\\\ \\end{cases}$$,则$$x+y$$的值为 ___          ___ .\n", "answer": "$$5$$", "Analysis": "$$\\begin{cases}x+6y=12 ①\\\\ 3x-2y=8② \\\\ \\end{cases}$$,\n\n①$$+$$②得:$$4x+4y=20$$,\n\n则$$x+y=5$$,\n\n故答案为:$$5$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["二元一次方程(组)", "解二元一次方程组", "方程与不等式", "加减消元法"]} +{"_id": "a516398c2d444e5a835715b2394e8e87", "question": "如图,$$AB\\text{//}CD$$,直线$$EF$$与$$AB$$,$$CD$$分别交于$$M$$、$$N$$两点,过点$$M$$作$$MG\\bot MN$$交$$CD$$于$$G$$点,过点$$G$$作$$GH$$平分$$\\angle MGD$$,若$$\\angle EMB=40^\\circ$$,求$$\\angle MGH$$的度数.\n\n\"\"\n", "answer": "$$65^\\circ$$.\n", "Analysis": "∵$$MG\\bot EF$$,\n\n∴$$\\angle GME=90^\\circ$$,\n\n∴$$\\angle BMG=90^\\circ$$-$$\\angle EMB=50^\\circ$$,\n\n∵$$AB\\text{//}CD$$,\n\n∴$$\\angle BMG=\\angle MGN=50^\\circ$$,\n\n∴$$\\angle MGD=130^\\circ$$,\n\n∵$$GH$$平分$$\\angle MGD$$,\n\n∴$$\\angle MGH=\\frac12\\angle MGD=65^\\circ$$.\n\n故答案为:$$65^\\circ$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 1, "difficulty": 2, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["几何图形初步", "角", "角的和差的计算与证明-不需要分类讨论", "角的和差的计算与证明", "角度的运算", "角的和差的计算与证明-需要分类讨论"]} +{"_id": "2ae62a30c63f4cc48fe9917d3df1a3ff", "question": "下列各式表示正确的是(   ).\n", "answer": "C", "Analysis": "A选项:$$\\sqrt{25}=5$$,本选项错误;\n\nB选项:$$\\pm \\sqrt{25}=\\pm 5$$,本选项错误;\nC选项:$$\\pm \\sqrt{25}=\\pm 5$$,本选项正确;\n\nD选项:$$\\pm \\sqrt{{{\\left( -5 \\right)}^{2}}}=\\pm 5$$,本选项错误.\n故选C.\n", "options": "A:$$\\sqrt{25}=\\pm 5$$\n\nB:$$\\pm \\sqrt{25}=5$$\n\nC:$$\\pm \\sqrt{25}=\\pm 5$$\n\nD:$$\\pm \\sqrt{{{\\left( -5 \\right)}^{2}}}=-5$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["实数", "平方根", "求一个数的平方根", "数", "开平方", "平方根和立方根"]} +{"_id": "87e494f759ec4423a457101124249791", "question": "将点$$P$$向下平移$$3$$个单位,向左平移$$2$$个单位后得到点$$Q(3,-1)$$,则点$$P$$坐标为 ___          ___ .\n", "answer": "$$(5,2)$$", "Analysis": "设点$$P$$的坐标为$$(x,y)$$,\n\n根据题意,$$x-2=3$$,$$y-3=-1$$,\n\n解得$$x=5$$,$$y=2$$,\n\n则点$$P$$的坐标为$$(5,2)$$.\n\n故答案为:$$(5,2)$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["函数", "题型:坐标系中的平移", "平面直角坐标系", "坐标系综合"]} +{"_id": "3c4a9f2540be4b87974ad89262800399", "question": "第三象限内的点$$P$$到$$x$$轴的距离是$$5$$,到$$y$$轴的距离是$$6$$,那么点$$P$$的坐标是(   ).\n", "answer": "D", "Analysis": "∵点$$P$$在第三象限内,故$$x<{}0$$,$$y<{}0$$,\n\n又∵点$$P$$到$$x$$轴距离是$$5$$,\n\n∴$$y=-5$$,到$$y$$轴距离是$$6$$,\n\n∴$$x=-6$$,\n\n∴点$$P$$坐标为$$(-6,-5)$$,\n\n\n故选$$\\text{D}$$.\n", "options": "A:$$(5,6)$$\n\nB:$$(-5,-6)$$\n\nC:$$(6,5)$$\n\nD:$$(-6,-5)$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["函数", "坐标与距离", "平面直角坐标系", "坐标系综合"]} +{"_id": "1592b0a9e1ef4bec83a2e5e17171c3ae", "question": "在数轴上表示不等式$$3-x\\leqslant 1$$的解集,正确的是(   ).\n", "answer": "D", "Analysis": "∵$$3-x\\leqslant 1$$,\n\n∴$$3-1\\leqslant x$$,\n\n$$x\\geqslant 2$$,\n\n∴不等式的解集在数轴上表示为:\n\n\"\"\n\n\n∴选择:$$\\text{D}$$.\n", "options": "A:\"\"\n\nB:\"\"\n\nC:\"\"\n\nD:\"\"\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["不等式(组)", "一元一次不等式", "方程与不等式", "解一元一次不等式"]} +{"_id": "96962c28527f4c18b6dbfabcfcdf01be", "question": "如图,$$AB//CD$$,$$\\angle A={{20}^{\\circ }}$$,$$\\angle CDP={{145}^{\\circ }}$$,则$$\\angle P=$$ ___          ___ $$^{\\circ }$$.\n\n\"\"\n", "answer": "$$55$$", "Analysis": "延长$$DP$$交$$AB$$于点$$E$$,\n\n\"\"\n\n∵$$AB//CD$$,\n\n∴$$\\angle CDP+\\angle AEP={{180}^{\\circ }}$$,\n\n∴$$\\angle AEP={{180}^{\\circ }}-\\angle CDP$$\n\n$$={{35}^{\\circ }}$$,\n\n∴$$\\angle APD=\\angle A+\\angle AEP$$\n\n$$={{20}^{\\circ }}+{{35}^{\\circ }}$$\n\n$$={{55}^{\\circ }}$$.\n\n故答案为:$$55$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 1, "difficulty": 2, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["相交线与平行线", "几何图形初步", "平行线的判定与性质", "平行线的性质"]} +{"_id": "f22f2d995be743dab8b0027ee2793835", "question": "如图所示的图形中,下列说法正确的是(   ).\n\n\"\"\n\n①$$\\angle 1$$和$$\\angle 2$$是对顶角   ②$$\\angle 1$$和$$\\angle 5$$是同位角\n\n③$$\\angle 4$$和$$\\angle 5$$是内错角   ④$$\\angle 3$$和$$\\angle 4$$是同旁内角\n", "answer": "B", "Analysis": "①$$ \\angle 1$$和$$\\angle 2$$是邻补角,故原说法错误;\n\n②$$\\angle 1$$和$$\\angle 5$$是同位角,正确;\n\n③$$\\angle 4$$和$$\\angle 5$$是内错角,正确;\n\n④$$\\angle 3$$和$$\\angle 4$$是邻补角,故原说法错误.\n\n故选:$$\\text{B}$$.\n", "options": "A:①②③\n\nB:②③\n\nC:②④\n\nD:②③④\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 1, "difficulty": 2, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["内错角的定义", "相交线与平行线", "几何图形初步", "同位角、内错角、同旁内角"]} +{"_id": "569555c7587840199b05bf9f0012af2e", "question": "计算:$$\\sum\\limits_{i=0}^{7}{{{(\\text{C}_{i}^{7})}^{2}}=}$$ ___          ___ .\n", "answer": "$$3432$$", "Analysis": "原式$$=\\sum\\limits_{i=0}^{7}{(\\text{C}_{i}^{7})(\\text{C}_{i}^{7})}$$\n\n$$=\\sum\\limits_{i=0}^{7}{(\\text{C}_{i}^{7})(\\text{C}_{7-i}^{7})}$$\n\n$$=\\text{C}_{7}^{14}$$\n\n$$=3432$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["排列与组合", "组合"]} +{"_id": "d00ea277b5c24b2289fcb358a97abca1", "question": "若某$$8$$个连续奇数之和是$$2016$$,求当中最大的数.\n\nIf the sum of $$ 8$$ consecutive odd numbers is $$2016$$, find the largest number among them.\n", "answer": "$$259$$.\n", "Analysis": "$$2016\\div 8+1+2+2+2=259$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["有理数", "有理数除法", "数", "有理数除法运算", "有理数基础运算"]} +{"_id": "941f844ce11c4c12a30b1110f6557721", "question": "有一个「时钟」,钟面上有$$20$$「小时」(而非$$12$$小时),而每小时有$$45$$「分钟」(而非$$60$$分钟).当钟面显示「$$7$$时$$30$$分」时,求时针与分针所形成的较小夹角(答案以度表示).\n\nA \"clock\" has $$20$$ \"hours\" (rather than $$12$$) on its face and $$45$$ \"minutes\" (rather than $$60$$) for each hour. When the clock shows $$7:30$$, find the included angle between the hours hand and the minutes hand (Express the answer in degree).\n", "answer": "$$102{}^\\circ $$.\n", "Analysis": "时针每小时转动$$18{}^\\circ $$,每分钟转动$$0.4{}^\\circ $$;分针每分钟转动$$8{}^\\circ $$.\n\n设时针和分针向上为$$0{}^\\circ $$,当钟面显示$$7$$时$$30$$分时,\n\n时针在$$18{}^\\circ \\times 7+0.4{}^\\circ \\times 30=138{}^\\circ $$的位置;分针则在$$8{}^\\circ \\times 30=240{}^\\circ $$的位置.\n\n所以,它们所形成的角度为$$240{}^\\circ -138{}^\\circ =102{}^\\circ $$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["角", "角的定义和分类", "几何图形初步", "钟面角"]} +{"_id": "64a04c062ad14eefb6babab51f7deff0", "question": "舞会中共有$$20$$对夫妻,每人都与自己伴侣以外的所有人握手,问一共握了多少次手?\n\nThere are $$20$$ couples in a ball. Each person shakes hands with anyone other than his/her spouse. How many times of hand-shaking have occurred?\n", "answer": "$$760$$.\n", "Analysis": "每人都与自己伴侣以外的所有人握手,即每人都与$$38$$人握手,当中每次握手重复计算了两次.\n\n$$38\\times 40\\div 2=760$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["有理数", "有理数与实际问题", "数", "有理数乘除法与实际问题"]} +{"_id": "e6a46d70fd9f482db22aa3448418e04e", "question": "若三位数$$n$$除以$$6$$和$$11$$时的余数分别是$$3$$和$$8$$﹐求$$n$$的可能值之和.\n\nIf the remainder of a three-digit number $$n$$ divided by $$6$$ and $$11$$ is $$3$$ and $$8$$ respectively, find the sum of all possible values of $$n$$.\n", "answer": "$$7812$$.\n", "Analysis": "由题目条件得知$$n+3$$可同时被$$6$$和$$11$$整除.\n\n$$n+3$$的可能值有︰$$132$$﹑$$198$$﹑$$264$$﹑$$330$$﹑$$396$$﹑$$\\cdots $$﹑$$858$$﹑$$924$$﹑$$990$$\n\n$$n$$的可能值有∶$$129$$﹑$$195$$﹑$$261$$﹑$$327$$﹑$$393$$﹑$$\\cdots $$﹑$$855$$﹑$$921$$﹑$$987$$,\n\n所以,$$n$$的可能值之和$$=129+195+261+327+393+\\cdots +855+921+987$$\n\n$$=\\left( 129+987 \\right)\\times 14\\div 2$$\n\n$$=7812$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["整除", "数论", "整除的概念与基本性质"]} +{"_id": "cb8f86782e1c407cbf9672a50019b154", "question": "将一个正方形的每条边长各增加百分之十五,问面积增加了百分之几?\n\nIncrease the length of each side of a square by $$15\\%$$. By how many percent is the area increased?\n", "answer": "$$32.25$$.\n", "Analysis": "$${{1.15}^{2}}-1=0.3225$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["正方形的周长与面积", "特殊平行四边形", "正方形", "四边形"]} +{"_id": "43849a0f79304e5990fcd28b10683996", "question": "在“平面直角坐标系”中,将$$A(-4,5)$$沿原点逆时针旋转$$270{}^\\circ $$至$$B(x,y)$$,求$$x+y$$的值.\n\nIn the rectan gular coordinate plane, rotate $$A(-4,5)$$  $$270{}^\\circ $$ anti-clockwise about the origin to $$B(x,y)$$. Find the value of $$x+y$$.\n", "answer": "$$9$$.\n", "Analysis": "“逆时针旋转$$270{}^\\circ $$”即“顺时针旋转$$90{}^\\circ $$”,所以$$B$$的坐标为$$(5,4)$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "2", "gradeGroupName": "初中", "subjectName": "数学", "knowledge": ["函数", "坐标系综合", "坐标系中的旋转-点关于原点的旋转", "平面直角坐标系", "坐标系中的旋转"]} +{"_id": "ff8080814502fa24014503a7714901a3", "question": "在算式$$2014\\times(\\frac{1}{19}-\\frac{1}{53})$$的计算结果是(       ).\n ", "answer": "B", "Analysis": "原式=$$2014\\times \\frac{1}{19}-2014\\times \\frac{1}{53}=106-38=68$$.\n ", "options": "A:$$34$$\n \nB:$$68$$\n \nC:$$144$$\n \nD:$$72$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分数", "计算模块", "分数直接运用分配律", "分数巧算", "乘法分配律"]} +{"_id": "ff8080814502fa24014503a7819e01a9", "question": "式子$$\\frac{2014}{x+1}$$为整数,则正整数$$x$$有(       )种取值.\n ", "answer": "B", "Analysis": "因为$$2014=2\\times 19\\times 53$$,$$x+1$$可能的取值为:$$2$$、$$19$$、$$53$$、$$38$$、$$106$$、$$1007$$、$$2014$$共七种.\n ", "options": "A:$$6$$\n\nB:$$7$$\n\nC:$$8$$\n\nD:$$9$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分解质因数(式)", "数论模块", "分解质因数"]} +{"_id": "ff8080814502fa24014503a78d2001ad", "question": "算式$$2013\\times \\frac{2015}{2014}+2014\\times\\frac{2016}{2015}+\\frac{4029}{2014\\times 2015}$$计算结果是(       ).\n ", "answer": "B", "Analysis": "$$2013\\times \\frac{2015}{2014}>2013$$,$$2014\\times\\frac{2016}{2015}>2014$$结果大于$$4027$$.结果为B.\n ", "options": "A:$$4027$$\n \nB:$$4029$$\n \nC:$$2013$$\n \nD:$$2015$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分数四则混合运算", "分数运算", "分数", "计算模块"]} +{"_id": "ff8080814502fa24014506587cab0311", "question": "小明将$$1$$至$$2014$$按如下顺序写了一排,先写$$1$$,之后在$$1$$的右侧写$$1$$个数$$2$$,左侧写$$1$$个数$$3$$,接着在右侧写$$2$$个数$$4$$、$$5$$,左侧写$$2$$个数$$6$$、$$7$$,右侧写$$3$$个数$$8$$、$$9$$、$$10$$,左侧写$$3$$个数$$11$$、$$12$$、$$13$$(如下列)$$\\cdots $$ $$13$$   $$12$$   $$11$$  $$7$$   $$6$$   $$3$$  $$1$$   $$2$$   $$4$$  $$5$$   $$8$$   $$9$$   $$10$$ $$\\cdots $$当写到$$2014$$时,$$1$$至$$2014$$中间所有数的和是(       ).(不包括$$1$$和$$2014$$)\n ", "answer": "B", "Analysis": "根据题意我们���现如此规律,1的左边两边的数的个数是相等的,左边和右边写数的个数的顺序是$$1$$个、$$2$$个、$$3$$个、$$4$$个、$$5$$个、$$\\cdots $$,经过试算可知:$$(1+44)\\times 44\\div 2=990$$个,$$990\\times2=1980$$个\n 当在$$1$$的左边各写$$44$$个数后,一共有$$1980$$个数,且$$1981$$位于$$1$$的左侧.\n 接下来要在$$1$$的两侧各写$$45$$个数,而$$2014-1980=34$$个,所以从$$1982~2014$$在$$1$$的右侧.\n 然后我们在$$1$$的左右两侧进行比较,\n
第一组 $$3$$ $$2$$ 差$$1$$
第二组 $$6$$、$$7$$ $$4$$、$$5$$ 差$$2\\times  2$$
第三组 $$11$$、$$12$$、$$13$$ $$8$$、$$9$$、$$10$$ 差$$3\\times 3$$
$$\\cdots $$\n $$\\cdots $$\n $$\\cdots $$\n $$\\cdots $$\n
第四十四组     差$$44\\times 44$$
写完第$$44$$组后除了$$1$$外所有数的和为:$$(2+1981)\\times 1980\\div 2=1963170$$\n 左侧比右侧大:$$1\\times 1+2\\times 2+3\\times 3+\\cdots +44\\times 44=29370$$(平方和公式)\n 所以,当写完第$$44$$组时,右侧的和为:$$(1963170-29370)\\div 2=966900$$\n 此时千万别忘记要加上$$1982~2013$$的和\n 当写到2014时,右侧的总和为:$$966900+(1982+2013)\\times 32\\div 2=966900+63920=1030820$$.\n ", "options": "A:$$966900$$\n\nB:$$1030820$$\n\nC:$$1989370$$\n\nD:$$2014260$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数列规律", "智巧趣题", "找规律", "综合与实践"]} +{"_id": "ff8080814502fa240145065888f90313", "question": "甲、乙、丙、丁四人参加了一个满分为$$100$$分的考试,每个人的得分都是整数,考完试后,他们预测自己的成绩与排名:\n\n甲说:“我的排名在乙的前面,也在丙的前面.”\n\n乙说:“我得$$90$$分,我比丁高$$2$$分.”\n\n丙说:“我排名在丁的前面,也在甲的前面.”\n\n丁说:“我得$$91$$分,我比乙高$$3$$分.”\n\n成绩出来后,发现他们每个人的得分互不相同,且每个人的话都有一半是对的,另一半是错的,那么甲得了(   )分.\n", "answer": "B", "Analysis": "逻辑推理题.采用假设法来进行推理.\n\n假设甲的前半句是真话,后半句是假话,可以得到丙在甲的前面,甲在乙的前面.再通过丙的话,可知丙的前半句是假话,后半句是真话.得到四人的排名顺序是:丁、丙、甲、乙.\n\n由此可得到乙的前半句是真话,后半句是假话;丁的前半句是假话,后半句是真话.四人得分如下表:\n\n\n\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\n
​$$93$$$$92$$$$91$$$$90$$
", "options": "A:$$90$$\n \nB:$$91$$\n \nC:$$92$$\n \nD:$$93$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["真假话", "半真半假", "逻辑推理", "假设型逻辑推理", "组合模块"]} +{"_id": "ff8080814502fa240145065892570315", "question": "在下面的每个方框中填入“$$+$$”或“$$-$$”,得到所有不同计算结果的总和是(       ).\n $$ 25\\square 9 \\square 7 \\square 5 \\square 3 \\square 1 $$\n ", "answer": "B", "Analysis": "由于$$25=9+7+5+3+1$$ ,所以我们可以猜测$$0~50$$之间的所有偶数都有可能得到,那么总和就是$$(0+50)\\times 26\\div 2=650$$,但是我们认真思考下,$$4$$和$$46$$是无法凑出来的.所以答案是$$650-4-46=600$$.\n ", "options": "A:$$540$$\n \nB:$$600$$\n \nC:$$630$$\n \nD:$$650$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["等式填符号", "必填符号型", "数字谜", "组合模块", "巧填算符"]} +{"_id": "ff8080814502fa2401450658994d0317", "question": "在$$3$$个笔袋里面一共放着$$15$$支铅笔和$$14$$支钢笔,要求每个笔袋至少有$$4$$支铅笔和$$2$$支钢笔.如果每个笔袋里铅笔数量都不比钢笔少,那么,放笔最多的笔袋里面最多有(       )支笔.\n", "answer": "B", "Analysis": "铅笔只比钢笔多$$1$$根,所以每袋中要么铅笔$$=$$钢笔,要么铅笔$$=$$钢笔$$+1$$,最多的袋要最多,其它袋应该尽量少,最少只能$$4$$支铅笔$$3$$支钢笔,剩下$$15-4-4=7$$(支)铅笔,$$14-3-3=8$$(支)钢笔,不符合要求,退一支钢笔,\n\n\n\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\n
铅笔$$4$$$$4$$$$7$$
钢笔$$3$$$$4$$$$7$$
", "options": "A:$$12$$\n\nB:$$14$$\n\nC:$$15$$\n\nD:$$16$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组合模块最值问题", "组合模块", "枚举型最值问题"]} +{"_id": "ff8080814502fa24014507533c8809e2", "question": "整数除法算式:$$a\\div b=c\\cdots \\cdots r$$,若$$a$$和$$b$$同时扩大$$3$$倍,则(        ).\n ", "answer": "D", "Analysis": "被除数和除数同时乘或除以相同的数($$0$$除外),商不变,但是余数相应的扩大或缩小相同的倍数.\n", "options": "A:$$r$$不变\n \nB:$$c$$扩大$$3$$倍\n\nC:$$c$$和$$r$$都扩大$$3$$倍\n\nD:$$r$$扩大$$3$$倍\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整数除法", "除法", "商不变性质", "数与运算"]} +{"_id": "ff8080814502fa2401450753aa7e09ea", "question": "在“爸爸去哪儿”的节目中有一个任务,五个参加任务的孩子(天天、石头、Kimi、Cindy、Angela)需要换爸爸(每个小朋友可以选择除了自己爸爸之外其他四位父亲中的任何一位),那么最终五人有(        )种不同的选择结果.\n ", "answer": "B", "Analysis": "设五个爸爸分别是$$ABCDE$$,五个孩子分别是$$abcde$$,$$a$$ 有4种选择,假设$$a$$选择$$B$$ ,接着让$$b$$选择,有两种可能,选择$$A$$和不选择$$A$$,(1)选择$$A$$,$$c$$、$$d$$、$$e$$ 选择三个人错排,(2)不选择$A$,则$$bcde$$ 选择情况同$$4$$人错排.所以$${{S}_{5}}=4\\times ({{S}_{4}}+{{S}_{3}})$$ 同理$${{S}_{4}}=3\\times({{S}_{3}}+{{S}_{2}})$$ ,$${{S}_{3}}=2\\times ({{S}_{2}}+{{S}_{1}})$$,而$${{S}_{1}}=0$$(不可能排错),$${{S}_{2}}=1$$,所以$${{S}_{3}}=2$$,$${{S}_{4}}=9$$,$${{S}_{5}}=44$$.\n\n方法二:\n\n$$5$$个人错排,可以拆出$$5$$人全部错排,与$$3+2$$人错排,\n\n$$5$$人全部错排有$$5!=4\\times3\\times2\\times1=24$$,\n\n$$3+2$$人错排有$$\\text{C}_{5}^{2}\\times 2=20$$\n\n$$24+20=44$$.\n", "options": "A:$$40$$\n\nB:$$44$$\n\nC:$$48$$\n\nD:$$52$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "排列组合综合"]} +{"_id": "ff8080814502fa2401450753fb4d09ed", "question": "在纸上任意写一个自然数,把这张纸旋转$$180$$度,数值不变,如$$0$$、$$11$$、$$96$$、$$888$$等,我们把这样的数称为“神马数”.在所有五位数中共有(        )个不同的“神马数”.\n ", "answer": "D", "Analysis": "设这个数为$$\\overline{ABCBA}$$,$$A$$位可以填$$11$$,$$ 88$$,$$ 69$$,$$96$$,$$4$$种情况,$$B$$位可以填$00$$,$$11$$,$$88$$,$$69$$,$$96$,$$5$$种情况,$$C$$位可以填$$0$$,$$1$$,$$8$$,$$3$$种情况,$$4\\times 5\\times 3=60$$(个).\n ", "options": "A:$$12$$\n \nB:$$36$$\n \nC:$$48$$\n \nD:$$60$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组数问题", "计数模块", "有特殊要求的组数问题", "加乘原理"]} +{"_id": "ff8080814502fa24014507544dd409f6", "question": "你能根据以下的线索找出百宝箱的密码吗?\n (1)密码是一个八位数;\n (2)密码既是$$3$$的倍数又是$$25$$的倍数;\n (3)这个密码在$$20000000$$到$$30000000$$之间;\n (4)百万位与十万位上的数字相同;\n (5)百位数字比万位数字小$$2$$;\n (6)十万位、万位、千位上数字组成的三位数除以千万位、百万位上数字组成的两位数,商是$$25$$.\n 依据上面的条件,推理出这个密码应该是(        ).\n ", "answer": "B", "Analysis": "将A、B、C、D 逐一代入检验.只有B 满足$$(1)$$、$$(2)$$、$$(3)$$、$$(4)$$、$$(5)$$.\n ", "options": "A:$$25526250$$\n \nB:$$26650350$$\n \nC:$$27775250$$\n \nD:$$28870350$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["答案(数字)正误问题", "组合模块", "假设型逻辑推理", "逻辑推理"]} +{"_id": "ff8080814502fa2401450775bb5d0aa1", "question": "小元和小芳合作进行一项$$10000$$字的打字作业,但他们都非常马虎,小元每打$$10$$个字,就会打错$$1$$个;小芳每打字$$10$$个,就会打错$$2$$个,最后,当两人完成工作时,小元打正确的字数恰好是小芳打正确的字数的$$2$$倍,那么,两人打正确的字共有(        )个.\n ", "answer": "D", "Analysis": "我们可以理解为小元每打$$10$$份的字数就会打错$$1$$份,小芳每打$$10$$份的字数就会打错$$2$$份,即小芳打$$5$$份的字数只能正确$$4$$份.\n 假设小元打的总字数为$$80$$份,那么他正确的为$$8\\times 9=72$$份,根据题意可知小芳正确的为$$72\\div 2=36$$份,\n 那么小芳打字的总分数为$$36\\div 4\\times 5=45$$份.小元和小芳的总字数份为$$80+45=125$$份,共$$10000$$字,即每份字数为$$10000\\div125=80$$.\n 小元和小芳共正确的字数为$$(72+36)\\times 80=8640$$.\n ", "options": "A:$$5000$$\n \nB:$$7320$$\n \nC:$$8000$$\n \nD:$$8640$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["两人合作", "合作工程问题", "已知工时反推", "应用题模块", "工程问题"]} +{"_id": "ff8080814502fa24014507b668e20b9e", "question": "甲乙两人合作打一份材料.开始甲每分钟打$$100$$ 个字,乙每分钟打$$200$$个字.合作到完成总量的一半时,甲速度变为原来的$$3$$倍,而乙休息了$$5$$分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共(        )个字.\n ", "answer": "D", "Analysis": "前一半时乙的工作量是甲的$$2$$倍,所以后一半甲应是乙的$$2$$倍.把后一半工作量分为$$6$$份,甲应为$$4$$份,乙应为$$2$$份,说明乙休息时甲打了$$1$$份,这一份的量是$$100\\times 3\\times 5=1500$$字,故总工作量是$$1500\\times6\\times 2=18000$$字.\n ", "options": "A:$$3000$$\n \nB:$$6000$$\n \nC:$$12000$$\n \nD:$$18000$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "休息工程问题", "工程问题"]} +{"_id": "ff8080814502fa24014507b670c60ba0", "question": "$$2$$个樱桃的价钱与$$3$$个苹果价钱一样,但是一个苹果的大小却是一个樱桃的$$12$$倍,如果妈妈用买$$1$$箱樱桃的钱买同样大小箱子的苹果,能买(        )箱.\n ", "answer": "C", "Analysis": "$$12$$ 个樱桃的钱可以买$$18$$个苹果,大小是$$1$$个苹果的大小,所以$$1$$个苹果大小的樱桃可以买到$$18$$个苹果,所以$$1$$箱樱桃的钱可以买$$18$$箱苹果.\n ", "options": "A:$$4$$\n \nB:$$6$$\n \nC:$$18$$\n \nD:$$27$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["等量代换", "等量关系", "等式字母与数", "计算模块", "物品代换", "式与方程", "方程基础"]} +{"_id": "ff8080814502fa24014507b673810ba4", "question": "一只大熊猫从$$A$$地往$$B$$地运送竹子,他每次可以运送$$50$$根,但是他从$$A$$地走到$$B$$地和从$$B$$地返回$$A$$地都要吃$$5$$根,$$A$$地现在有$$200$$根竹子,那么大熊猫最多可以运到$$B$$地(        )根.\n ", "answer": "D", "Analysis": "运四次,去四次回三次,吃掉了$$5\\times (4+3)=35$$根,则最多可以运到$$B$$地$$200-35=165$$根.\n ", "options": "A:$$150$$\n \nB:$$155$$\n \nC:$$160$$\n \nD:$$165$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["统筹规划", "组合模块", "调运中的统筹", "操作与策略"]} +{"_id": "ff8080814502fa24014507b67a500ba6", "question": "有$$3$$盒同样重的苹果,如果从每盒中都取出$$4$$千克,那么盒子里剩下的苹果的重量正好等于原来$$1$$盒苹果的重量,原来每盒苹果重(        )千克.\n ", "answer": "B", "Analysis": "剩下的是原来$$1$$盒的重量,则取出的是两盒的重量,原来每盒重$$3\\times 4\\div 2=6$$千克.\n ", "options": "A:$$4$$\n \nB:$$6$$\n \nC:$$8$$\n \nD:$$12$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整数的简单实际问题", "数的运算的实际应用(应用题)", "数与运算"]} +{"_id": "ff8080814502fa2401450b0db35911b5", "question": "甲乙两车分别从$$A$$、$$B$$两地同时出发,相向而行,甲车的速度大于乙车.甲行驶了$$60$$千米后和乙车在$$C$$点相遇.此后甲车继续向前行驶,乙车掉头与甲车同向行驶.那么当甲车到达$$B$$地时,甲乙两车最远相距(        )千米.\n ", "answer": "B", "Analysis": "假设甲走$$60$$千米时,乙走了$$a$$千米,甲到达$$B$$地时,乙车应走$$\\frac{a}{60}\\times a=\\frac{{{a}^{2}}}{60}$$千米,此时甲、乙相差最远为$$a-\\frac{a^2}{60}=\\frac{1}{60}\\times(60-a)\\times a$$,和一定,差小积大,$$60-a=a$$,$$a=30$$.甲、乙最远相差$$30-\\frac{900}{60}=15$$(千米).\n ", "options": "A:$$10$$\n\nB:$$15$$\n\nC:$$25$$\n\nD:$$30$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "两人相遇与追及问题", "直线型行程问题", "追及与相遇结合"]} +{"_id": "ff8080814502fa2401450bc65c4a1591", "question": "计算:$$2014\\div (2\\times 2+2\\times 3+3\\times 3)=$$(        ).\n ", "answer": "D", "Analysis": "$$2014\\div 19=106$$.\n", "options": "A:$$53$$\n \nB:$$56$$\n \nC:$$103$$\n \nD:$$106$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["四则混合运算", "计算模块", "整数"]} +{"_id": "ff8080814502fa2401450bc65f921593", "question": "算式$$826446281\\times11\\times 11$$的计算结果是(        ).\n ", "answer": "D", "Analysis": "根据$$11$$乘法的特征“两边一拉,中间相加”可得到结果D\n ", "options": "A:$$9090909091$$\n \nB:$$909090909091$$\n \nC:$$10000000001$$\n \nD:$$100000000001$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["乘法", "乘11巧算", "整数乘法", "数与运算"]} +{"_id": "ff8080814502fa2401450bc67b2f1596", "question": "算式$$\\frac{25\\times 8+1\\div \\frac{5}{7}}{2014-201.4\\times 2}$$的计算结果是(        ).\n ", "answer": "D", "Analysis": "$$\\frac{25\\times 8+1\\div\\frac{5}{7}}{2014\\ -201.4\\times 2}=\\frac{200+1.4}{201.4\\times 10-201.4\\times2}=\\frac{201.4}{201.4\\times 8}=\\frac{1}{8}$$\n ", "options": "A:$$\\frac{1}{5}$$\n \nB:$$\\frac{1}{6}$$\n \nC:$$\\frac{1}{7}$$\n \nD:$$\\frac{1}{8}$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分数", "计算模块", "繁分数", "繁分数计算"]} +{"_id": "ff8080814502fa2401450bc687b31598", "question": "有一种特殊的计算器,当输入一个$$10$$~$$49$$的自然数后,计算器会先将这个数乘$$2$$,然后将所得结果的十位和个位顺序颠倒,再加$$2$$后显示出最后的结果.那么,下列四个选项中,(   )可能是最后显示的结果.\n", "answer": "A", "Analysis": "倒推.$$44$$ 对应的是$$44-2=42$$,颠倒后是$$24$$,除以$$2$$ 为$$12$$.符合条件.其他的均不符合条件.\n ", "options": "A:$$44$$\n\nB:$$43$$\n\nC:$$42$$\n\nD:$$41$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "逆运算", "还原问题"]} +{"_id": "ff8080814502fa2401450bc68de1159c", "question": "下列算式结果为$$500$$的是(       ).\n ", "answer": "C", "Analysis": "A等于$$5\\times(100-1)+1=500-5+1=496$$,B等于$$100+100=200$$ ,C等于$$(88+37)\\times4=125\\times 4=500$$ ,D等于$$0$$.\n ", "options": "A:$$5\\times99+1$$\n \nB:$$100+25\\times4$$\n \nC:$$88\\times4+37\\times4$$\n \nD:$$100\\times0\\times5$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["四则混合运算", "计算模块", "整数"]} +{"_id": "ff8080814502fa2401450bdf56e11785", "question": "一个最大的三位数除以一个整数,得到的商四舍五入保留一位小数后是$$2.5$$,除数最小是(        ).\n ", "answer": "C", "Analysis": "要使得除数最小,那么商就尽可能的大,因此商无限接近于$$2.54\\cdots $$;$$999$$除以$$2.54$$符合条件的结果是$$392$$.\n ", "options": "A:$$400$$\n \nB:$$396$$\n \nC:$$392$$\n \nD:$$388$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["取近似值", " 小数基础", "多位数除以一位数", "余数问题", "计算模块", "除法中四量关系", "数与运算", "整数除法", "除法", "数论模块", "余数问题带余除法", "小数"]} +{"_id": "ff8080814502fa2401450bdf764d178f", "question": "在下列算式的空格中填入互不相同的数字:$$\\square \\times \\left( \\square +\\square \\square \\right)\\times \\left( \\square +\\square +\\square +\\square \\square \\right)=2014$$.其中五个一位数的和最大是(        ).\n ", "answer": "C", "Analysis": "$$2014=2\\times 19\\times 53$$,五个一位数之和最大,则两位数应最小\n $$2\\times (a+\\overline{1b})\\times(c+d+e+\\overline{3f})=2014$$,$$\\Rightarrow \\left\\{ \\begin{align}& a+b=9=9+0 \\\\& c+d+e+f=23=8+6+5+4 \\\\ \\end{align} \\right.$$,$$\\Rightarrow{{(2+a+c+d+e)}_{\\max }}=2+9+8+6+5=30$$.\n ", "options": "A:$$15$$\n \nB:$$24$$\n \nC:$$30$$\n \nD:$$35$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数字谜", "横式数字谜", "组合模块", "横式数字谜的最值"]} +{"_id": "ff8080814502fa2401450bea93a51ca7", "question": "一个$$12$$项的等差数列,公差是$$2$$,且前$$8$$项的和等于后$$4$$项的和,那么,这个数列的第二项是(        ).\n ", "answer": "A", "Analysis": "根据题意得$$({{a}_{1}}+{{a}_{8}})\\times 8\\div 2=({{a}_{9}}+{{a}_{12}})\\times4\\div 2$$,因为$${{a}_{8}}={{a}_{1}}+14$$,$${{a}_{9}}={{a}_{1}}+16$$,$${{a}_{12}}={{a}_{1}}+22$$,\n 所以$$({{a}_{1}}+{{a}_{1}}+14)\\times 8\\div2=({{a}_{1}}+16+{{a}_{1}}+22)\\times 4\\div 2$$,解得$${{a}_{1}}=5$$,因此$${{a}_{2}}=5+2=7$$.\n ", "options": "A:$$7$$\n \nB:$$9$$\n \nC:$$11$$\n \nD:$$13$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数列与数表", "等差数列求通项", "计算模块", "等差数列"]} +{"_id": "ff8080814502fa2401450bea998d1ca9", "question": "老师在黑板上将从$$1$$ 开始的计数连续地写下去:$$1$$,$$3$$,$$5$$,$$7$$,$$9$$,$$11$$……写好后,擦去了其中的两个数,将这些奇数隔成了$$3$$ 段,如果前两段的和分别是$$961$$ 和$$1001$$,那么,老师擦去的两个奇数之和是(        ).\n ", "answer": "A", "Analysis": "从$$1$$开始连续奇数相加应该等于项数的平方.因为$$961={{31}^{2}}$$,所以擦去的第一个奇数为$$31\\times2-1+2=63$$.\n 设第二段有$$n$$个数,$$[65+65+2(n-1)]\\times n\\div 2=1001=7\\times 11\\times 13$$,经尝试,$$n=13$$.所以擦去的第二个数为$$65+2\\times(13-1)+2=91$$.\n 两个数的和为$$63+91=154$$.\n ", "options": "A:$$154$$\n \nB:$$156$$\n \nC:$$158$$\n \nD:$$160$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数列与数表", "等差数列求和", "计算模块", "等差数列"]} +{"_id": "ff8080814502fa240145171bd04a398e", "question": "老师把一个三位完全平方数的百位告诉了甲,十位告诉了乙,个位告诉了丙,并且告诉三人他们的数字互不相同.三人都不知道其他两人的数是多少,他们展开了如下对话:\n 甲:我不知道这个完全平方数是多少.\n 乙:不用你说,我也知道你一定不知道.\n 丙:我已经知道这个数是多少了.\n 甲:听了丙的话,我也知道这个数是多少了.\n 乙:听了甲的话,我也知道这个数是多少了.\n 请问这个数是(        )的平方.\n ", "answer": "B", "Analysis": "通过枚举不难发现,百位是$$6$$,$$8$$,$$9$$ 的满足条件的平方数分别只有$$625$$,$$841$$,$$961$$,\n\n因此第一句说明百位不是$$6$$,$$8$$,$$9$$;\n\n进而得知第二句说明十位不是$$2$$,$$4$$,$$6$$;\n\n第三句说明这个数的个位在剩下所有可能中是唯一的,而只有当个位是$$4$$或$$9$$,$${{28}^{2}}=784$$,$${{17}^{2}}=289$$是唯一满足之前所有条件的数;\n\n第四句说明甲在丙说话之前还不知道结果,而若百位是$$7$$,而$${{28}^{2}}=784$$,$${{17}^{2}}=289$$,\n\n于是甲听完乙说话后已经知道结果了,因此百位只能是$$2$$.\n\n从而这个数为$${{17}^{2}}=289$$.\n", "options": "A:$$14$$\n\nB:$$17$$\n\nC:$$28$$\n\nD:$$29$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["逻辑推理", "列表法找对应", "智巧趣题", "综合与实践"]} +{"_id": "ff808081451596cc014516b4bff0024b", "question": "等腰三角形底边上的高为$$8$$,周长为$$32$$,则三角形的面积为(        ).\n ", "answer": "B", "Analysis": "底边上的高为$$8$$,高将等腰三角形分成了两个相等的直角三角形,周长为$$32\\div 2+8=24$$,其中一条直角边(高)为$$8$$另一条(底边的一半)记作$$a$$、则斜边(等腰三角形的腰)应为$$16-a$$,根据勾股定理$${{(16-a)}^{2}}={{8}^{2}}+{{a}^{2}}$$,求得$$a=6$$所以三角形的面积为$$48$$.\n ", "options": "A:$$56$$\n \nB:$$48$$\n \nC:$$40$$\n \nD:$$321$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["公式法求三角形面积", "几何图形", "三角形", "空间与图形"]} +{"_id": "ff8080814518d524014519081d2002f2", "question": "$$A$$在$$B$$地西边$$60$$千米处.甲乙从$$A$$地,丙丁从$$B$$地同时出发.甲、乙、丁都向东行驶,丙向西行驶.已知甲乙丙丁的速度依次成为一个等差数列,甲的速度最快.出发后经过$$n$$小时乙丙相遇,再过$$n$$小时甲在$$C$$地追上丁.则$$B$$、$$C$$两地相距(      )千米.\n ", "answer": "B", "Analysis": "由$n$小时乙丙相遇,知$$n$$小时内$${{S}_{乙}}+{{S}_{丙}}=60$$千米,因此在$$2n$$小时内$${{S}_{乙}}+{{S}_{丙}}=120$$千米.由$$2n$$小时甲追上丁,知$$2n$$小时内$${{S}_{甲}}-{{S}_{丁}}=60$$.由于甲乙丙丁的速度成等差数列,因此甲乙丙丁在$$2n$$小时内的路程也成等差数列,于是由$${{S}_{甲}}-{{S}_{丁}}=60$$知路程的公差为$$60\\div3=20$$千米.再由$${{S}_{乙}}+{{S}_{丙}}=120$$容易解出$${{S}_{乙}}=70$$,$${{S}_{丙}}=50$$千米,进而求出$${{S}_{丁}}=30$$千米.而$${{S}_{丁}}$$恰为$$BC$$两地之间的距离.\n ", "options": "A:$$15$$\n \nB:$$30$$\n\nC:$$60$$\n\nD:$$90$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇追及问题", "直线型行程问题", "多人相遇与追及问题"]} +{"_id": "ff8080814518d52401451908239902f4", "question": "甲、乙两人比赛折返跑,同时从$$A$$出发,到达$$B$$点后,立即返回,先回到$$A$$点的人获胜.甲先到达$$B$$点,在距离$$B$$点$$24$$米的地方遇到乙.相遇后,甲的速度减为原来的一半,乙的速度保持不变.在距离终点$$48$$米的地方,乙追上甲.那么,当乙到达终点时,甲距离终点还有(     )米.\n ", "answer": "D", "Analysis": "注意到第一次遇到时乙走了一个全程少$$24$$米,而两次加起来,乙一共走了两个全程少$$48$$米,则第二次遇到时乙也是走了一个全程少$$24$$米,而乙的速度不变,所以两人这两次相遇追及时间是相同的,而甲两次的路程分别为全程多$$24$$米和全程少$$72$$米,两次甲的路程差了$$96$$米,速度比$$2:1$$,则路程比$$2:1$$,说明甲第二次走了$$96$$米,乙走了$$96+24\\times 2=144$$米,甲乙速度比$$2:3$$,所以乙走完剩下的$$48$$米时甲应该只走了$$48\\div3\\times 2=32$$米,剩$$16$$米.\n ", "options": "A:$$6$$\n \nB:$$8$$\n \nC:$$12$$\n \nD:$$16$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "两人相遇与追及问题", "直线型行程问题", "追及与相遇结合"]} +{"_id": "ff8080814518d5240145190910980309", "question": "一辆大卡车一次可以装煤$$2.5$$吨,现在要一次运走$$48$$吨煤,那么至少需要(     )辆这样的大卡车.\n ", "answer": "C", "Analysis": "$$48\\div 2.5=19\\cdots 0.5$$,$$19+1=20$$(辆).\n", "options": "A:$$18$$\n\nB:$$19$$\n\nC:$$20$$\n\nD:$$21$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "归一归总问题", "乘除法应用", "除法应用"]} +{"_id": "ff8080814518d5240145190915fe030b", "question": "甲、乙、丙、丁四人拿出同样多的钱,一起订购同样规格的若干件新年礼物,礼物买来后,甲、乙、丙分别比丁多拿了$$3$$,$$7$$,$$14$$件礼物,最后结算时,乙付给了丁$$14$$元钱,并且乙没有付给甲钱.那么丙应该再付给丁(     )元钱.\n ", "answer": "D", "Analysis": "设丁拿了$$a$$件礼物,则四人花同样的钱,每人可以拿到$$a+\\frac{3+7+14}{4}=a+6$$件礼物, 实际情况:丁少拿了$$6$$件,乙多拿了$$1$$件,给丁$$14$$元,则货物单价$$14$$元, 丙多拿了$$14-6=8$$件,$$3$$件给甲,$$5$$件给丁,$$5\\times14=70$$元.\n ", "options": "A:$$6$$\n\nB:$$28$$\n\nC:$$56$$\n\nD:$$70$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["方程法解其他问题", "应用题模块", "列方程解应用题", "一元一次方程解应用题"]} +{"_id": "ff8080814518d5240145190918fb030d", "question": "为了减少城市交通拥堵的情况,某城市拟定从$$2014$$年$$1$$月$$1$$日起开始试行新的限行规则,规定尾号为$$1$$、$$6$$的车辆周一、周二限行��尾号$$2$$、$$7$$的车辆周二、周三限行,尾号$$3$$、$$8$$的车辆周三、周四限行,尾号$$4$$、$$9$$的车辆周四、周五限行,尾号$$5$$、$$0$$的车辆周五、周一限行,周六、周日不限行.由于$$1$$月$$31$$日是春节,因此,$$1$$月$$30$$日和$$1$$月$$31$$日两天不限行.已知$$2014$$年$$1$$月$$1$$日是周三并且限行,那么$$2014$$年$$1$$月份(        )组尾号可出行的天数最少.\n", "answer": "B", "Analysis": "$$1$$月份共$$31$$天,由于$$1$$月$$1$$日是周三,所以$$1$$月份周三、周四、周五共$$5$$天,周一、周二共$$4$$天.其中$$1$$月$$30$$日周四、$$1$$月$$31$$日周五.所以只看周三即可.周三$$2$$、$$7$$以及$$3$$、$$8$$限行.所以此题B组尾号可出行的天数最少.\n", "options": "A:$$1$$、$$6$$\n\nB:$$2$$、$$7$$\n\nC:$$4$$、$$9$$\n\nD:$$5$$、$$0$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["日期中的周期", "应用题模块", "时间中的周期问题", "周期问题"]} +{"_id": "ff8080814518d5240145190941300312", "question": "奶奶折一个纸鹤用$$3$$分钟,每折好一个需要休息$$1$$分钟,奶奶从$$2$$时$$30$$分开始折,她折好第$$5$$个纸鹤时已经到了(        ).\n ", "answer": "B", "Analysis": "$$3\\times 5+1\\times 4=19$$,折好第$$5$$个时已经到了$$2$$时$$49$$分.\n ", "options": "A:$$2$$时$$45$$分\n \nB:$$2$$时$$49$$分\n \nC:$$2$$时$$50$$分\n \nD:$$2$$时$$53$$分\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["基本排列的周期问题", "周期问题", "钟表", "时间的计算", "应用题模块", "常见的量"]} +{"_id": "ff8080814518d5240145190945380314", "question": "祖玛游戏中,龙嘴里不断吐出很多颜色的龙珠,先$$4$$颗红珠,接着$$3$$颗黄珠,再$$2$$颗绿珠,最后$$1$$颗白珠,按此方式不断重复,从龙嘴里吐出的第$$2000$$颗龙珠是(   ).\n", "answer": "D", "Analysis": "$$2000\\div (4+3+2+1)=200$$(组).\n", "options": "A:红珠\n \nB:黄珠\n \nC:绿珠\n \nD:白珠\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "基本排列的周期问题", "周期问题"]} +{"_id": "ff8080814518d524014519095a860317", "question": "$$2013$$年$$12$$月$$21$$日是星期六,那么$$2014$$年的春节,即$$2014$$年$$1$$月$$31$$日是星期(        ).\n ", "answer": "C", "Analysis": "星期六有:$$21\\to 28\\to 4(35)\\to 11\\to 18\\to 25$$,所以 $$31$$日是星期五.\n\n$$10+31=41$$(天),$$41\\div7=5$$(周)$$\\cdots\\cdots 6$$ (天),差一天是星期六,所以$$31$$日是星期五.\n", "options": "A:一\n \nB:四\n \nC:五\n \nD:六\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["日期中的周期", "应用题模块", "时间中的周期问题", "周期问题"]} +{"_id": "ff8080814518d524014519095fde0319", "question": "同学们一起去划船,但公园船不够多,如果每船坐$$4$$人,会多出$$10$$人;如果每船坐$$5$$人,还会多出$$1$$人.共有(   )人去划船.\n", "answer": "B", "Analysis": "盈盈类问题:共有$$(10-1)\\div (5-4)=9$$(只)船,共有$$4\\times 9+10=46$$(人).\n", "options": "A:$$36$$\n \nB:$$46$$\n \nC:$$51$$\n \nD:$$52$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "盈亏基本类型盈亏问题", "盈亏问题", "盈亏基本类型"]} +{"_id": "ff8080814518d524014519096b8c031c", "question": "有四个数,它们的和是$$45$$,把第一个数加$$2$$,第二个数减$$2$$,第三个数乘$$2$$,第四个数除以$$2$$,得到的结果都相同.那么,原来这四个数依次是(        ).\n ", "answer": "C", "Analysis": "神蒙法:将答案一一代入检验,最后答案为C.\n 设相同的结果为$$2x$$,根据题意有:$$2x-2+2x+2+x+4x=45$$,$$\\Rightarrow x=5$$\n 易知原来的$$4$$ 个数依次是$$8$$,$$12$$,$$5$$,$$20$$.\n ", "options": "A:$$10$$,$$10$$,$$10$$,$$10$$\n \nB:$$12$$,$$8$$,$$20$$,$$5$$\n \nC:$$8$$,$$12$$,$$5$$,$$20$$\n \nD:$$9$$,$$11$$,$$12$$,$$13$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["方程法解其他问题", "应用题模块", "列方程解应用题", "一元一次方程解应用题"]} +{"_id": "ff8080814518d524014519098ce20320", "question": "一些糖果,如果每天吃$$3$$个,十多天吃完,最后一天只吃了$$2$$个,如果每天吃$$4$$个,不到$$10$$天就吃完了,最后一天吃了$$3$$个.那么,这些糖果原来有(   )个.\n", "answer": "C", "Analysis": "如果每天吃$$3$$个,十多天吃完,最后一天只吃了$$2$$个,说明糖果至少有$$3\\times 10+2=32$$(个),且糖果数应除以$$3$$ 余$$2$$;如果每天吃$$4$$个,不到$$10$$天就吃完了,最后一天吃了$$3$$个,说明糖果至多有$$4\\times 8+3=35$$(个),且除以$$4$$余$$3$$. 综上,糖果有$$35$$个.\n", "options": "A:$$32$$\n \nB:$$24$$\n \nC:$$35$$\n \nD:$$36$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "盈亏基本类型盈亏问题", "盈亏问题", "盈亏基本类型"]} +{"_id": "ff8080814518d5240145190994dd0323", "question": "甲乙丙三人进行一场特殊的真人CS比赛,规定:第一枪由乙射出,射击甲或者丙,以后的射击过程中,若甲被击中一次,则甲可以有$$6$$发子弹射击乙或丙,若乙被击中一次,则乙可以有$$5$$发子弹射击甲或丙,若丙被击中一次,则丙可以有$$4$$发子弹射击甲或乙,比赛结束后,共有$$16$$发子弹没有击中任何人,则甲乙丙三人被击中的次数有(        )种不同的情况.\n ", "answer": "B", "Analysis": "设甲乙丙分别被击中$$x$$、$$y$$、$$z$$次,则三人分别发射$$6x$$、$$5y+1$$,$$4z$$次,$$[6x+(5y+1)+4z]-(x+y+z)=16$$化简得$$5x+4y+3z=15$$,\n\n\n\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\n
 1234
$$x$$3100
$$y$$0130
$$z$$0215
\n但第一组和第四组不合理,舍去.选$$\\text{B}$$.\n", "options": "A:$$1$$\n \nB:$$2$$\n \nC:$$3$$\n \nD:$$4$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["代数式", "等量代换", "计算模块", "方程基础"]} +{"_id": "ff8080814518d52401451919f1a60385", "question": "一次考试有三道题,四个好朋友考完后互相交流了成绩.发现四人各对了$$3$$、$$2$$、$$1$$、$$0$$题.这时一个路人问:你们考的怎么样啊?\n 甲:“我对了两道题,而且比乙对的多,丙考的不如丁.”\n 乙:“我全对了,丙全错了,甲考的不如丁.”\n 丙:“我对了一道,丁对了两道,乙考的不如甲.”\n 丁:“我全对了,丙考的不如我,甲考的不如乙.”\n 已知大家都是对了几道题就说几句真话,那么对了$$2$$题的人是(      ).\n ", "answer": "B", "Analysis": "全对的人不会说自己对的题少于$$3$$,故只有乙、丁可能全对.若乙全对,则排名是乙、丁、甲、丙,与丙所说的“丁对了$$2$$道”是假话相矛盾;若丁全对,则丙的后两句是假话,不可能是第二名,又由丁的“甲考得不如乙”能知道第二名是乙,故丙全错,甲只有“丙考得不如丁”是真话,排名是丁、乙、甲、丙且$$4$$人的话没有矛盾.综上,答案是B.\n ", "options": "A:甲\n\nB:乙\n\nC:丙\n\nD:丁\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["真假话", "逻辑推理", "找矛盾", "假设型逻辑推理", "组合模块"]} +{"_id": "ff8080814518d5240145191ee20103f9", "question": "对于任何自然数,定义$$n!=1\\times 2\\times 3\\times \\cdots \\times n$$,如$$8!=1\\times2\\times 3\\times \\cdots \\times 8$$;那么,算式:$$2014!+2013!-2012!+2011!+\\cdots -4!+3!-2!+1!$$,计算结果的个位数字是(       ).\n ", "answer": "B", "Analysis": "因为从$$5!=1\\times 2\\times 3\\times 4\\times 5$$ 开始,都含有$$2$$和$$5$$,那么个位必然是$$0$$,那么我们只要计算$$-4!+3!-2!+1!$$的个位数字即可,得出个位数字为$$1$$.\n ", "options": "A:$$0$$\n \nB:$$1$$\n \nC:$$3$$\n \nD:$$9$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["末一位数", "尾数特征", "数论模块"]} +{"_id": "ff8080814518d5240145192480f704c5", "question": "已知$$4$$个质数的积是它们和的$$11$$倍,则它们的和为(        ).\n ", "answer": "D", "Analysis": "由已知条件,$$4$$个质数中一定有$$11$$,那么则满足$$a\\times b\\times c=a+b+c+11$$,其中$$a$$、$$b$$、$$c$$都是质数.若$$a$$、$$b$$、$$c$$都是奇数,那么等式左边是奇数,右边为偶数,矛盾.若$$a$$、$$b$$、$$c$$中有$$1 $$个偶数,那么一定是$$2$$.即$$a\\times b\\times 2=a+b+2+11$$,此时,根据奇偶性,$$a$$、$$b$$中也必有一个偶数为$$2$$,解得$$a$$、$$b$$、$$c$$、$$d$$为$$2$$、$$2$$、$$5$$、$$11$$和为$$20$$.选项中ABC均不符合条件,故选D.\n ", "options": "A:$$46$$\n \nB:$$47$$\n \nC:$$48$$\n \nD:没有符合条件的数\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["特殊质数运用", "特殊质数2", "质数与合数", "数论模块"]} +{"_id": "ff8080814518d52401451924c71804d0", "question": "对于大于零的分数,有如下$$4$$个结论:① 两个真分数的和是真分数; ② 两个真分数的积是真分数; ③ 一个真分数与一个假分数的和是一个假分数; ④ 一个真分数与一个假分数的积是一个假分数. 其中正确的有 ___          ___ 个.\n", "answer": "$$2$$", "Analysis": "对于这种类型的题目,我们可以采取“反驳”的方法来做,找出每个不成立的案例来,若找不到则正确.①反例:$$\\frac{1}{2}+\\frac{1}{2}=1$$,$$\\frac{4}{5}+\\frac{3}{5}=\\frac{7}{5}$$;④反例:$$\\frac{1}{2}\\times\\frac{3}{2}=\\frac{3}{4}$$,$$\\frac{1}{5}\\times \\frac{8}{5}=\\frac{8}{25}$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分数四则混合运算", "分数运算", "分数", "计算模块"]} +{"_id": "ff8080814518d5240145192574fe04ee", "question": "将一个数加上或减去或乘或除以一个一位数($$0$$不是一位数)视为一次操作,比如$$53$$可以通过加$$3$$,除以$$7$$,除以$$8$$三次操作变成$$1$$.那么$$2014$$至少经过(        )次操作可变成$$1$$.\n", "answer": "B", "Analysis": "$$2014$$要变成$$1$$就需要除以一个数,而除数只能是一位数,那么这个除数显然是越大越好.第一次操作$$2014+2=2016$$;第二次操作$$2016\\div9=224$$;第三次操作$$224\\div 8=28$$;第四次操作$$28\\div 7=4$$;第五次操作$$4\\div 4=1$$.\n ", "options": "A:$$4$$\n \nB:$$5$$\n \nC:$$6$$\n \nD:$$7$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组合模块", "游戏策略", "数字游戏", "操作与策略"]} +{"_id": "ff8080814518d52401451925774804f0", "question": "我们定义像:$$31024$$、$$98567$$这样的五位数为位“神马数”,“神马数”是中间的数字最小,从中间往两边越来越大,且各位数字均不相同,那么,这样的五位数有(        )个 .\n ", "answer": "A", "Analysis": "考察是计数问题中的排列组合.\n\n$$0~9$$是个数中任意挑选$$5$$个都可以组成“神马数”,$$\\text{C}_{10}^{5}=\\frac{10\\times9\\times 8\\times 7\\times 6}{5\\times 4\\times 3\\times 2\\times 1}=252$$种;在被挑选的$$5$$个数中,最小的放中间,剩下的$$4$$个数进行组合,从中任意挑选$$2$$个可以放在左边或者右边,$$\\text{C}_{4}^{2}=6$$种;\n\n在此一定要注意:$$4$$个数中任选$$2$$个放在左边然后再放到右边数的顺序改变了.\n\n所以共有“神马数”$$252\\times 6=1512$$个.\n", "options": "A:$$1512$$\n\nB:$$3024$$\n\nC:$$1510$$\n\nD:$$3020$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "组合综合", "组合"]} +{"_id": "ff8080814518d52401451925852804f4", "question": "三位数$$N$$,分别减$$3$$、加$$4$$、除以$$5$$、乘$$6$$,得到四个整数,已知这四个数的数字和恰好是$$4$$个连续的自然数,那么满足条件的三位数$$N$$有(     )个.\n ", "answer": "C", "Analysis": "考虑到一定会有进位,退位.设原数数字和为$$a$$,则$$-3$$,$$+4$$定不是差$$7$$,否则无法成为连续$$4$$个自然数.$$\\div 5$$说明末位为$$0$$或$$5$$,当末位���$$5$$时,$$-3$$,$$+4$$均不进位退位.当末位为$$0$$时,$$-3$$退位,符合.\n 所以$$-3$$相当于数字和多$$6$$,$$a+6$$;$$+4$$相当于数字和多$$4$$,$$a+4$$;$$\\div 5$$ 相当于数字和$$\\times 2$$,$$a\\times 2$$;$$a\\times 2$$、$$a+2$$、$$a+4$$连续,$$a\\times 2$$为$$a+7$$,$$a+5$$,$$a+3$$中的一个.\n 分类讨论得到$$a\\times 2=a+5$$成立,所以$$a=5$$,数字和为$$5$$,尾数为$$0$$的有,$$500$$(舍弃),$$410$$,$$320$$,$$230$$,$$140$$,共$$4$$个.\n ", "options": "A:$$8$$\n \nB:$$6$$\n \nC:$$4$$\n \nD:$$2$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["等量代换", "计算模块", "字母表示数", "方程基础"]} +{"_id": "ff8080814518d52401451925caa804fc", "question": "今天是$$2013$$年$$12$$月$$21$$日,七位数$$\\overline{ABCDEFG}$$恰好满足:前五位数字组成的五位数$$\\overline{ABCDE}$$是$$2013$$的倍数,后五位数字组成的五位数$$\\overline{CDEFG}$$是$$1221$$的倍数.那么四位数$$\\overline{ABFG}$$ 的最小值是(       ).\n", "answer": "D", "Analysis": "要求$$\\overline{ABFG}$$最小也就是要求$$\\overline{ABCDE}$$尽量小,$$\\overline{ABCDE}$$是$$2013$$的倍数,\n\n把$$\\overline{ABCDE}$$看成$$\\overline{AB}\\left| \\overline{CDE} \\right.$$,则$$\\overline{CDE}$$是$$13$$的倍数,而$$\\overline{CDEFG}$$是$$1221$$的倍数,\n\n把$$\\overline{CDEFG}$$看成$$\\overline{CDE}\\left|\\overline{FG} \\right.$$,从$$1$$倍、$$2$$倍、……变化的话,前段加$$12$$,后段加$$21$$,\n\n则每$$5$$次,$$\\overline{FG}$$向$$\\overline{CDE}$$进$$1$$,\n\n$$12\\times n+1\\times \\left[ \\frac{n}{5} \\right]$$ 是$$13$$的倍数,\n\n$$12\\times n+1\\times \\left[ \\frac{n}{5} \\right]=13n-n+\\left[ \\frac{n}{5} \\right]$$,\n\n不难看出$$n$$最小得$$16$$,\n\n$$1221\\times16=19536$$,$$195\\div 13=15$$,$$2013\\times 15=30195$$.\n", "options": "A:$$1034$$\n \nB:$$2021$$\n \nC:$$2815$$\n \nD:$$3036$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["位值原理运用", "位值原理与进制", "位值原理的综合应用", "数论模块"]} +{"_id": "ff8080814518d524014519271a710538", "question": "对于任何自然数,定义$$n!=1\\times 2\\times 3\\times \\cdots \\times n$$.那么算式$$2014!-3!$$的计算结果的个位数字是(      ).\n", "answer": "B", "Analysis": "由新定义:$$n!=1×2×3×…×n$$得:\n\n$$2014!=1×2×3×4×5×…×2013×2014$$\n\n$$=1×3×4×6×7×8×…×2013×2014×10$$\n\n所以$$1×3×4×6×7×8×…×2013×2014×10$$是$$10$$的倍数,\n\n所以$$2014!$$的个位数为$$0$$;\n\n$$3!=1×2×3=6$$\n\n所以$$2014!-3!$$的个位数也就为:$$10-6=4$$.\n", "options": "A:$$2$$\n \nB:$$4$$\n\nC:$$6$$\n \nD:$$8$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["观察规律型", "定义新运算", "计算模块", "找规律型定义新运算"]} +{"_id": "ff8080814518d524014519271d85053a", "question": "童童在计算有余数的除法时,把被除数$$472$$错看成了$$427$$,结果商比原来小$$5$$,但余数恰好相同,那么这个余数是(        ).\n ", "answer": "A", "Analysis": "除数$$=(472-427)\\div 5=9$$,$$472\\equiv 4(\\bmod9)$$,所以余数是4.\n ", "options": "A:$$4$$\n \nB:$$5$$\n \nC:$$6$$\n \nD:$$7$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["抄错数得出结果,求正确的", "应用题", "还原问题", "综合与实践"]} +{"_id": "ff8080814518d5240145192b34440567", "question": "甲乙二人进行下面的游戏.二人先约定一个整数$$N$$,然后由甲开始,轮流把$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,$$6$$,$$7$$,$$8$$,$$9$$这九个数字之一填入下面任一方格中:$$\\square$$$$\\square$$$$\\square$$$$\\square$$$$\\square$$$$\\square$$,每一方格只填入一个数字,形成一个数字可以重复的六位数.若这个六位数能被$$N$$整除,乙胜;否则甲胜.当$$N$$小于$$15$$时,使得乙有必胜策略的$$N$$有(      )个.\n", "answer": "B", "Analysis": "若$$N$$是偶数,甲只需第一次在个位填个奇数,乙必败只需考虑$$N$$是奇数.\n $$N=1$$,显然乙必胜.\n $$N=3\\ \\ 9$$,乙只需配数字和$$1-8$$,$$2-7$$,$$3-6$$,$$4-5$$,$$9-9$$即可.\n $$N=5$$,甲在个位填不是$$5$$的数,乙必败.\n $$N=7\\ \\ 11\\ \\ 13$$,乙只需配成$$\\overline{abcabc}=\\overline{abc}\\times1001=\\overline{abc}\\times 7\\times 11\\times 13$$.\n ", "options": "A:$$5$$\n\nB:$$6$$\n\nC:$$7$$\n\nD:$$8$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组合模块", "游戏策略", "数字游戏", "操作与策略"]} +{"_id": "ff8080814518d5240145192b5cdb0570", "question": "老师在黑板上从$$1$$开始将奇数连续地写下去,写了一长串数后,擦去了其中的两个数,将这些奇数隔成了$$3$$串,已知第二串比第一串多$$1$$个数,第三串比第二串多$$1$$个数,且第三串奇数和为$$4147$$,那么被划去的两个奇数的和是(      ).\n ", "answer": "C", "Analysis": "设第$$1$$段有$$n$$个,则第$$2$$段有$$n+1$$个,第一个擦的奇数是$$2n+1$$,第二个擦的奇数是$$4n+5$$,和为$$6n+6$$,是$$6$$的倍数.只有$$168$$符合.\n ", "options": "A:$$188$$\n\nB:$$178$$\n\nC:$$168$$\n\nD:$$158$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["奇数与偶数", "奇数与偶数的认识", "数论模块"]} +{"_id": "ff8080814518d5240145192bf4320578", "question": "老师把某个两位数的六个不同因数分别告诉了$$A\\sim F$$六个聪明诚实的同学.\n\n$$A$$和$$B$$同时说:“我知道这个数是多少了.”\n\n$$C$$和$$D$$同时说:“听了他们两人的话,我也知道这个两位数是多少了.”\n\n$$E$$:“听了他们的话,我知道我的数一定比$$F$$的大.”\n\n$$F$$:“我拿的数的大小在$$C$$和$$D$$之间.”\n\n那么六个人拿的数之和是(   ).\n", "answer": "A", "Analysis": "(1)这个数的因数个数肯定不低于$$6$$个(假定这个数为$$N$$,且拿到的$$6$$个数从大到小分别是$$ABCDEF$$ )\n (2)有两个人同时第一时间知道结果,这说明以下几个问题:\n 第一种情况:有一个人知道了最后的结果,这个结果是怎么知道的呢?很简单,他拿到的因数在$$50\\sim 99$$之间(也就是说$$A$$ 的$$2$$倍是$$3$$位数,所以$$A$$其实就是$$N$$)\n 第二种情况:有一个人拿到的不是最后结果,但是具备以下条件:\n 这个数的约数少于$$6$$个,比如:有人拿到$$36$$,单他不能断定$$N$$究竟是$$36$$还是$$72$$.\n 这个数小于$$50$$,不然这个数就只能也是$$N$$了.\n 这个数大于$$33$$,比如:有人拿到$$29$$,那么他不能断定$$N$$ 是$$58$$还是$$87$$;这里有个特例是$$27$$,因为$$27\\times 2=54$$,因数个数不少于$$6$$个;$$27\\times 3=81$$,因数个数少于$$6$$个,所以如果拿到$$27$$可以判断$$N$$只能为$$54$$)\n 这个数还不能是是质数,不然不存在含有这个因数的两位数.\n 最关键的是,这两人的数是$$2$$倍关系\n 但是上述内容并不完全正确,需要注意还有一些“奇葩”数:$$17$$、$$19$$、$$23$$也能顺利通过第一轮.\n 因此,这两个人拿到的数有如下可能:\n ($$54$$,$$27$$)($$68$$,$$34$$)($$70$$,$$35$$)($$76$$,$$38$$)($$78$$,$$39$$)($$92$$,$$46$$)($$98$$,$$49$$)\n (3)为了对比清晰,我们再来把上面所有的情况的因数都列举出来:\n ($$54$$,$$27$$,$$18$$,$$9$$,$$6$$,$$3$$,$$2$$,$$1$$)\n ($$68$$,$$34$$,$$17$$,$$4$$,$$2$$,$$1$$)($$\\times$$)\n ($$70$$,$$35$$,$$14$$,$$10$$,$$7$$,$$5$$,$$2$$,$$1$$)\n ($$76$$,$$38$$,$$19$$,$$4$$,$$2$$,$$1$$)($$\\times$$)\n ($$78$$,$$39$$,$$26$$,$$13$$,$$6$$,$$3$$,$$2$$,$$1$$)\n ($$92$$,$$46$$,$$23$$,$$4$$,$$2$$,$$1$$)($$\\times$$)\n ($$98$$,$$49$$,$$14$$,$$7$$,$$2$$,$$1$$)\n 对于第一轮通过的数,我们用红色标注,所以$$N$$不能是$$68$$、$$76$$、$$92$$中的任意一个.\n 之后在考虑第二轮需要通过的两个数.\n 用紫色标注的$$6$$、$$3$$、$$2$$、$$1$$,因为重复使用,如果出现了也不能判断$$N$$是多少,所以不能作为第二轮通过的数.\n 用绿色标注的$$14$$和$$7$$也不能作为第二轮通过的数,这样$$N$$也不是$$98$$.\n 那么通过第二轮的数只有黑色的数.\n 所以$$N$$ 只能是$$54$$、$$70$$、$$78$$中的一个.\n 我们再来观察可能满足$$E$$和$$F$$所说的内容:\n ($$54$$,$$27$$,$$18$$,$$9$$,$$6$$,$$3$$,$$2$$,$$1$$)\n ($$70$$,$$35$$,$$14$$,$$10$$,$$7$$,$$5$$,$$2$$,$$1$$)\n ($$78$$,$$39$$,$$26$$,$$13$$,$$6$$,$$3$$,$$2$$,$$1$$)\n 因为$$F$$说他的数在$$C$$和$$D$$之间,我们发现上面的数据只有当$$N=70$$的时候,$$F=7$$,在$$CD$$$$(10$$和$$5)$$之间,是唯一满足条件的一种情况.\n 又因为$$E$$ 确定自己比$$F$$的大,那么他拿到的数一定是该组中剩余数里最大的.所以$$E$$拿到的是$$14$$($$N=70$$ ).\n 所以$$N=70$$,六个人拿的数之和为:$$70+35+14+10+7+5=141$$.\n ", "options": "A:$$141$$\n \nB:$$152$$\n \nC:$$171$$\n \nD:$$175$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组合模块", "神推理", "条件型逻辑推理", "逻辑推理"]} +{"_id": "ff8080814518d52401451b56ace4069f", "question": "一个三位数各个数位上的数字都不相同.把$$2$$写在这个三位数的左端得到一个四位数;把$$2$$写在这个三位数的右端得到一个四位数;这两个四位数相差$$945$$,那么这个三位数是(       ).\n ", "answer": "B", "Analysis": "设原来的三位数是$$\\overline{abc}$$,则$$\\overline{2abc}-\\overline{abc2}=945$$或$$\\overline{abc2}-\\overline{2abc}=945$$,第一个式子可得$$1998-9\\times\\overline{abc}=945$$,$$\\overline{abc}=117$$,第二个式子可得$$9\\times \\overline{abc}-1998=945$$,$$\\overline{abc}=327$$,三位数各个数位上的数字都不相同,所以选$$\\text{B}$$.\n", "options": "A:$$117$$\n \nB:$$327$$\n \nC:$$219$$\n \nD:$$312$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["还原应用题", "应用题", "给运算方法和结果,求开始"]} +{"_id": "ff8080814518d52401451b56b37a06a1", "question": "$$2014$$年$$2$$月$$6$$日是星期四,小胖决定从这天起(含$$2$$月$$6$$日)练习计算,一直练习到$$2$$月$$17$$日,(含$$2$$月$$17$$日)开学为止.但是中间如果遇到周六和周日,小胖还是决定休息一下,不做练习.已知他第一天做$$1$$道题,第二天做$$3$$道题,第三天做$$5$$道题,依此变化做下去,那么小胖这段时间一共做了(        )道计算练习题.\n ", "answer": "D", "Analysis": "从$$2$$月$$6$$日到$$2$$月$$17$$日为止,一共有$$17-6+1=12$$(天)其中有$$2$$个星期六,星期日.工作了$$12-4=8$$(天),共完成$$1+3+5+7+9+11+13+15=64$$(题).\n ", "options": "A:$$144$$\n\nB:$$100$$\n \nC:$$81$$\n \nD:$$64$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数列与数表", "等差数列求和", "计算模块", "等差数列"]} +{"_id": "ff8080814518d5240145201abacc0a6c", "question": "在“神庙大逃亡”游戏中,吃一个黄色钱币可以得$$1$$元钱;吃一个红色钱币可以得$$3$$元钱;吃一个蓝色钱币可以得$$5$$元钱.已知阿奇在一次游戏中一共吃了$$2800$$个钱币,共获得$$7800$$元,并且吃到蓝色钱币比红色钱币多$$200$$个,那么阿奇吃到了(      )个红色钱币.\n ", "answer": "A", "Analysis": "把蓝色钱币比红色钱币多的$$200$$个在总数上减去,\n\n可以得到他一共吃了$$2800-200=2600$$个钱币,共获得$$7800-5\\times 200=6800$$元,\n\n由于红色蓝色一样多后可以看做有两种钱币,一种$$1$$元的黄色钱币,一种是$$(3+5)\\div 2=4$$(元)的红蓝钱币,\n\n假设$$2600$$个钱币全部是是一元的,\n\n那么可得红蓝钱币一共有$$(6800-2600\\times 1)\\div (4-1)=1400$$(个),\n\n则红色钱币有$$1400\\div2=700$$(个).\n", "options": "A:$$700$$\n\nB:$$900$$\n\nC:$$1200$$\n\nD:$$1500$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["鸡兔同笼问题", "应用题模块", "假设法解鸡兔同笼", "基本型", "变型题"]} +{"_id": "ff8080814518d5240145201ac0000a6e", "question": "三年级二班的同学在上游泳课,男生戴蓝泳帽,女生戴红泳帽.\n 男体育委员说:“我看见的蓝泳帽比红泳帽的$$4$$倍多$$1$$个.”\n 女体育委员说:“我看见的蓝泳帽比红泳帽多$$24$$个.”\n 根据两位体育委员的话,算出三年级二班共有(      )位同学.\n ", "answer": "C", "Analysis": "男体育委员少看到一个蓝色帽子,所以实际蓝泳帽比红泳帽的$$4$$倍多$$2$$个,女体育委员少看到一个红色帽子,所以实际蓝泳帽比红泳帽多$$23$$个,红泳帽有$$(23-2)\\div (4-1)=7$$(个),蓝泳帽有$$7+23=30$$(个),共有$$30+7=37$$(位)同学.\n ", "options": "A:$$35$$\n\nB:$$36$$\n\nC:$$37$$\n\nD:$$38$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["已知两量之间倍数关系和两量之差,求两个量", "倍数问题", "应用题", "综合与实践"]} +{"_id": "ff8080814518d5240145201acb9d0a72", "question": "过年了,小明家买了很多瓶果汁.年三十喝了总量的一半少$$1$$瓶;初一又喝了剩下的一半;初二又喝了剩下的一半多$$1$$瓶,这时还剩$$2$$瓶没有喝,那么小明家一共买了(      )瓶果汁.\n ", "answer": "B", "Analysis": "还原法,��二没喝之前有$$(2+1)\\times 2=6$$(瓶),初一没喝之前有$$6\\times 2=12$$(瓶),开始有$$(12-1)\\times 2=22$$(瓶).\n ", "options": "A:$$20$$\n\nB:$$22$$\n \nC:$$24$$\n \nD:$$26$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "多量还原问题", "还原问题"]} +{"_id": "ff8080814518d5240145201ad07c0a74", "question": "将$$6$$、$$7$$、$$8$$、$$9$$填入右边算式的方格中:“$$\\square\\times\\square+\\square \\square$$”那么这个算式的结果最大为(      ).\n ", "answer": "A", "Analysis": "结果最大应该是$$7\\times 8+96=152$$.\n ", "options": "A:$$152$$\n \nB:$$145$$\n \nC:$$140$$\n \nD:$$154$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数字谜", "横式数字谜", "组合模块", "横式数字谜的最值"]} +{"_id": "ff8080814518d5240145201ad74d0a76", "question": "甲、乙、丙、丁和戊参加$$100$$米比赛,比赛结束后丁说:“我比乙跑得快.”丙说:“戊在我前面冲过终点线.”甲说:“我的名次排在丁的前面,丙的后面.”请根据他们的话排出名次:(      ).\n ", "answer": "D", "Analysis": "根据丁说的可得“丁>乙”,根据丙说的可得“戊>丙”,根据甲说的可得“丙>甲>丁”,综合可得“戊>丙>甲>丁>乙”.\n ", "options": "A:戊>丙>丁>甲>乙\n\nB:甲>乙>丙>丁>戊\n\nC:乙>丁>甲>丙>戊\n\nD:戊>丙>甲>丁>乙\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["比较型逻辑推理", "组合模块", "逻辑推理"]} +{"_id": "ff8080814518d5240145201b528a0a79", "question": "春节时,妈妈买了$$3$$个完全一样的福袋,小悦想把$$10$$枚相同的一元硬币放到这三个福袋里,如果每个福袋里至少放$$1$$枚,不考虑福袋的先后顺序的话,共有(      )种放法.\n ", "answer": "C", "Analysis": "枚举法,$$10$$能被拆成哪三个数相加,$$10=1+1+8$$,$$10=1+2+7$$,$$10=1+3+6$$,$$10=1+4+5$$,$$10=2+2+6$$,$$10=2+3+5$$,$$10=2+4+4$$,$$10=3+3+4$$,共$$8$$种.\n ", "options": "A:$$6$$\n\nB:$$7$$\n\nC:$$8$$\n \nD:$$9$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["枚举法综合", "计数模块", "有序枚举", "枚举法"]} +{"_id": "ff8080814518d5240145201b5b8e0a7b", "question": "下式中,$$\\square $$和$$△$$分别代表(   ).\n\n$$\\square +\\square +\\square +△+△+△=27$$\n\n$$△+△+\\square =12$$\n", "answer": "D", "Analysis": "由“$$\\square +\\square +\\square +△+△+△=27$$”可得“$$\\square +△=9$$”,又由于“$$△+△+\\square =12$$”可得$$△=3$$,$$\\square =6$$.题目问的是$$\\square $$和$$△$$分别代表什么,所以选$$\\text{D}$$.\n", "options": "A:$$3$$和$$4$$\n\nB:$$3$$和$$6$$\n\nC:$$4$$和$$6$$\n\nD:$$6$$和$$3$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "计算模块", "整数系数方程组", "方程基础"]} +{"_id": "ff808081451d64f901451d90b3b40037", "question": "把$$1\\sim 5$$这$$5$$个自然数从左到右排成一排,要求从第三个数起,每个数都是前两个数的和或差,那么一共有(        )种放法.\n ", "answer": "B", "Analysis": "$$5$$只能在首位或者末位,$$52314$$,$$54132$$,$$41325$$,$$23145$$,所以选B.\n ", "options": "A:$$2$$\n \nB:$$4$$\n\nC:$$6$$\n\nD:$$8$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["枚举法", "给几个数字通过枚举求出组成几位数的个数", "智巧趣题", "综合与实践"]} +{"_id": "ff8080814526d2f401452f9088cd2443", "question": "已知$$a$$、$$b$$、$$c$$、$$d$$四个数的平均数是$$12.345$$,$$a>b>c>d$$,那么$$b$$(       ).\n ", "answer": "D", "Analysis": "排除法,A、B、C三个选项均可找到反例,故无法确定.\n ", "options": "A:大于$$12.345$$\n \nB:小于$$12.345$$\n \nC:等于$$12.345$$\n \nD:无法确定\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["综合题", "应用题模块", "综合题普通型", "平均数问题"]} +{"_id": "ff808081453c067901453fffcb460303", "question": "$$1$$只小猪的重量等于$$6$$只鸡的重量;$$3$$只鸡的重量等于$$4$$只鸭的重��;$$2$$只鸭的重量等于$$6$$条鱼的重量,那么$$2$$只小猪的重量等于(      )条鱼的重量.\n ", "answer": "A", "Analysis": "等量代换,设小猪为$$a$$,鸡为$$b$$,鸭为$$c$$,鱼为$$d$$,根据条件可得:$$a=6b$$,$$3b=4c$$,$$2c=6d$$,则:$$2a=12b=16c=48d$$.\n ", "options": "A:$$48$$\n\nB:$$36$$\n \nC:$$24$$\n \nD:$$18$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["等量代换", "计算模块", "文字转化为算式代换", "方程基础"]} +{"_id": "ff80808145ff6bf40146032a1134035a", "question": "老师问$$5$$名学生:“昨天你们有几个人复习数学了?”\n\n张:“没有人.”李:“一个人.”王:“二个人.”赵:“三个人.”刘:“四个人.”\n\n老师知道,他们昨天下午有人复习,也有人没复习,复习了的人说的都是真话,没复习的人说的都是假话.那么,昨天这$$5$$个人中复习数学的有(       )个人.\n", "answer": "B", "Analysis": "$$5$$名学生说的话相互矛盾,只能有$$1$$人说的是真话,则只有李复习了,说的是真话.\n\n故选:$$\\text{B}$$.\n", "options": "A:$$0$$\n\nB:$$1$$\n\nC:$$2$$\n\nD:$$3$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["逻辑推理", "排除矛盾法", "智巧趣题", "综合与实践"]} +{"_id": "ff8080814613dae901461c2ec57a05e1", "question": "$$A$$、$$B$$、$$C$$、$$D$$、$$E$$五个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小朋友:$$A\\to C$$,$$B\\to E$$,$$C\\to A$$,$$D\\to B$$,$$E\\to D$$.开始$$A$$、$$B$$拿着福娃,$$C$$、$$D$$、$$E$$拿着福牛,传递完$$5$$轮时,拿着福娃的小朋友是(       ).\n ", "answer": "A", "Analysis": "根据题意,$$A$$与$$C$$互相传,$$B$$、$$D$$、$$E$$之间则按$$B$$→$$E$$→$$D$$→$$B$$→…的顺序轮流传.开始时,两个福娃分别在$$A$$、$$B$$手上,其中$$A$$手上的福娃经过$$5$$轮的传递将到$$C$$的手里,$$B$$手上的福娃经过$$5$$轮的传递将到$$D$$的手里.所以传递完$$5$$轮时,拿着福娃的小朋友是$$C$$和$$D$$.正确答案为$$\\text{A}$$.\n", "options": "A:$$C$$与$$D$$\n \nB:$$A$$与$$D$$\n \nC:$$C$$与$$E$$\n \nD:$$A$$与$$B$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "基本排列的周期问题", "周期问题"]} +{"_id": "ff8080814638e07e01464fdd88d41da7", "question": "用若干台计算机同时录入一部书稿,计划若干小时完成,如果增加$$3$$台计算机,则只需原定时间的$$75\\%$$;如果减少$$3$$台计算机,则比原定时间多用$$\\frac{5}{6}$$小时,那么原定完成录入这部书稿的时间是(     )小时.\n ", "answer": "A", "Analysis": "增加$$3$$台计算机,时间变成$$75\\%$$也就是$$\\frac{3}{4}$$,说明计算机增加到$$\\frac{4}{3}$$,增加了$$\\frac{1}{3}$$,原来有$$9$$台;如果减少$$3$$台计算机,减少到$$\\frac{2}{3}$$,时间变为$$\\frac{3}{2}$$,增加了$$\\frac{1}{2}$$,所以原定时间是$$\\frac{5}{6}\\times 2=\\frac{5}{3}$$(小时).\n ", "options": "A:$$\\frac{5}{3}$$\n \nB:$$\\frac{10}{3}$$\n \nC:$$\\frac{5}{6}$$\n \nD:$$\\frac{11}{6}$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["量率对应求单位一", "应用题", "分数百分数应用题", "综合与实践"]} +{"_id": "ff808081465a848401465b54d7b90281", "question": "有七张卡片,每张卡片上写有一个数字,这七张卡片摆成一排,就组成了七位数$$2014315$$.将这七张卡片全部分给甲、乙、丙、丁四人,每人至多分$$2$$张.他们各说了一句话:\n 甲:“如果交换我卡片上的$$2$$个数字在七位数中的位置,那么新的七位数就是$$8$$的倍数”\n 乙:“如果交换我卡片上的$$2$$个数字在七位数中的位置,那么新的七位数仍不是$$9$$的倍数”\n 丙:“如果交换我卡片上的$$2$$个数字在七位数中的位置,那么新的七位数就是$$10$$的倍数”\n 丁:“如果交换我卡片上的$$2$$个数字在七位数中的位置,那么新的七位数就是$$11$$的倍数”\n 已知四人中恰有一个人说了谎,那么说谎的人是(       ).\n ", "answer": "C", "Analysis": "可以直接判断乙必定说的是真话,可以直接判断乙必定是说真话的,乙中的数字不管怎么变换都不可能是$$9$$的倍数.\n\n因为七位数的数字之和为$$2+0+1+4+3+1+5=16$$,不是$$9$$的倍数;\n\n如果丙说真话,那么他手中的��字是$$0$$和$$5$$,可以实现对调位置后被$$10$$整除;\n\n如果甲说真话,那么他手中的数字只能是$$5$$和$$2$$,可以实现对调位置后被$$8$$整除;\n\n如果丁说真话,那么他手中的数字只能是$$0$$和$$3$$,这样才能使得奇数位数字之和减去偶数位数字之和的差是$$11$$的倍数$$(2314015$$,$$(5+0+1+2)-(1+4+3)=0$$).\n\n综上,如果丙说真话,那甲和丁都是说谎话的人,两个人说谎话,不符合题意,所以说谎话的人是丙,选$$\\text{C}$$.\n", "options": "A:甲\n\nB:乙\n\nC:丙\n\nD:丁\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["真假话", "逻辑推理", "找矛盾", "假设型逻辑推理", "组合模块"]} +{"_id": "ff808081465a848401466a66a6cb1296", "question": "甲乙丙丁四个人今年的年龄之和是$$72$$岁.几年前(至少一年)甲是$$22$$岁时,乙是$$16$$岁.又知道,当甲是$$19$$岁的时候,丙的年龄是丁的$$3$$倍(此时丁至少$$1$$岁).如果甲乙丙丁四个人的年龄互不相同,那么今年甲的年龄可以有(       )种情况.\n ", "answer": "B", "Analysis": "甲乙的年龄差是$$22-16=6$$(岁);当甲$$19$$岁时, $$13$$岁;至少一年前甲$$22$$岁,所以当甲$$19$$岁的时候,此时至少是$$4$$年前的年龄,那么甲今年至少是$$23$$岁;甲$$19$$岁时,丙的年龄是丁的$$3$$倍,假设丁为$$1$$岁,丙为$$3$$岁,此时四人的年龄和至少是$$19+13+1+3=36$$(岁);且甲今年的年龄至多为$$19+\\left(72-36 \\right)\\div 4=28$$(岁);所以甲今年的年龄可能是$$23$$,$$24$$,$$25$$,$$26$$,$$27$$,$$28$$;共$$6$$种,所以选$$\\text{B}$$.\n", "options": "A:$$4$$\n \nB:$$6$$\n \nC:$$8$$\n \nD:$$10$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["年龄问题", "应用题模块", "年龄问题之差倍型"]} +{"_id": "ff808081466b745501467017af8a07a6", "question": "小华下午$$2$$点要到少年宫参加活动,但他的手表每个小时快了$$4$$分钟,他特意在上午$$10$$点时对好了表.当小华按照自己的表于下午$$2$$点到少年宫时,实际早到了(       ).\n ", "answer": "B", "Analysis": "小华所带的“快表”每小时快了$$4$$分钟,说明准确时间走$$60$$分钟的时候,“快表”已经走了$$64$$分钟了,这样我们就可以得到$$\\frac{快表}{准表}=\\frac{64}{60}=\\frac{16}{15}$$;现在快表走了$$4\\times60=240$$,那么标准表走了$$240\\times 15\\div 16=225$$;所以实际上早到了$$240-225=15$$,选$$B$$.\n", "options": "A:$$14$$\n\nB:$$15$$\n\nC:$$16$$\n\nD:$$17$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "坏钟问题", "时钟问题"]} +{"_id": "ff8080814670afec01467438443b0557", "question": "某学校组织一次远足活动,计划$$10$$点$$10$$分从甲地出发,$$13$$点$$10$$分到达乙地但出发晚了$$5$$分钟,却早到达了$$4$$分钟.甲乙两地之间的丙地恰好是按照计划时间到达的,那么到达丙地的时间是(  ).\n", "answer": "B", "Analysis": "相当于两辆车$$A$$,$$B$$在同一条路上,一辆按原速行驶,一辆按新的速度行驶.那么,晚出发五分钟相当于$$B$$追已经行驶了$$5$$分钟的$$A$$在丙地追上,当$$B$$到达乙地的时候$$A$$还有$$4$$分钟的路程,这样就是两次追击问题,速度差不变追击路程的比是$$5:4$$所以,(甲地到丙地的距离):(丙地到乙地的距离)$$=5:4$$,所以时间比为$$5:4$$,所以选择$$B$$.\n", "options": "A:$$11$$点$$40$$分\n\nB:$$11$$点$$50$$分\n\nC:$$12$$点\n\nD:$$12$$点$$10$$分\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "行程中的比例", "比例解行程问题"]} +{"_id": "ff8080814694a4fc014694fcff0801a6", "question": "计算$$\\left[ \\left( 0.8+\\frac{1}{5} \\right)\\times 24+6.6 \\right]\\div \\frac{9}{14}-7.6=$$(        ).\n ", "answer": "B", "Analysis": "$$\\left[ \\left( 0.8+\\frac{1}{5} \\right)\\times 24+6.6 \\right]\\div \\frac{9}{14}-7.6$$\n\n$$=\\left[ (0.8+0.2)\\times 24+6.6 \\right]\\div \\frac{9}{14}-7.6$$\n\n$$=\\left[ 1\\times 24+6.6 \\right]\\div \\frac{9}{14}-7.6$$\n\n$$=30.6\\div \\frac{9}{14}-7.6$$\n\n$$=30.6\\times \\frac{14}{9}-7.6$$\n\n$$=47.6-7.6$$\n\n$$=40$$.\n", "options": "A:$$30$$\n \nB:$$40$$\n \nC:$$50$$\n \nD:$$60$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分小四则混合运算", "分数运算", "分数", "计算模块"]} +{"_id": "ff80808146dc29ee0146e1142409079c", "question": "在下列四个算式中:$$\\overline{AB}\\div \\overline{CD}=2$$,$$E\\times F=0$$,$$G-H=1$$,$$I+J=4$$,$$A\\sim J$$代表$$0$$~$$9$$中的不同数字,那么两位数$$\\overline{AB}$$不可能是(       ).\n", "answer": "D", "Analysis": "首先可以确定的是$$E\\times F=0$$,$$\\Rightarrow$$ $$E$$,$$F$$中必有一个是$$0$$.那么$$I+J=4$$,$$\\Rightarrow I$$,$$J$$只能为$$1$$,$$3$$;此时剩下的数字还有$$2$$,$$4$$,$$5$$,$$6$$,$$7$$,$$8$$,$$9$$.$$G-H=1$$,$$\\Rightarrow$$ $$G$$,$$H$$相差$$1$$;讨论如下\n 若$$\\overline{AB}=54\\Rightarrow \\overline{CD}=27$$,那么$$G$$,$$H$$为$$8$$,$$9$$\n 若$$\\overline{AB}=58\\Rightarrow \\overline{CD}=29$$,那么$$G$$,$$H$$为$$6$$,$$7$$\n 若$$\\overline{AB}=92\\Rightarrow \\overline{CD}=46$$,那么$$G$$,$$H$$为$$7$$,$$8$$\n 若$$\\overline{AB}=96\\Rightarrow \\overline{CD}=48$$,此时$$G$$,$$H$$无法取值.所以$$\\overline{AB}\\ne96$$,选D.\n ", "options": "A:$$54$$\n\nB:$$58$$\n\nC:$$92$$\n\nD:$$96$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["位值原理运用", "位值原理与进制", "位值原理的综合应用", "数论模块"]} +{"_id": "ff808081472482f5014724fa89a400c3", "question": "一只青蛙$$8$$点从深为$$12$$米的井底向上爬,它每向上爬$$3$$米,因为井壁打滑,就会下滑$$1$$米,下滑$$1$$米的时间是向上爬$$3$$米所用时间的三分之一.$$8$$点$$17$$分时,青蛙第二次爬至离井口$$3$$米之处,那么青蛙从井底爬到井口时所花的时间为(       )分钟.\n", "answer": "A", "Analysis": "方法一:列表法\n\n\n\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\n
\n\t\t\t青蛙实\n\n\t\t\t际高度\n\n\t\t\t$$3$$\n\n\t\t\t$$2$$\n\n\t\t\t$$5$$\n\n\t\t\t$$4$$\n\n\t\t\t$$7$$\n\n\t\t\t$$6$$\n\n\t\t\t$$9$$\n\n\t\t\t$$8$$\n\n\t\t\t$$9$$\n\n\t\t\t$$11$$\n\n\t\t\t$$10$$\n\n\t\t\t$$12$$\n
\n\t\t\t向上爬\n\n\t\t\t$$3$$\n\n\t\t\t$$0$$\n\n\t\t\t$$3$$\n\n\t\t\t$$0$$\n\n\t\t\t$$3$$\n\n\t\t\t$$0$$\n\n\t\t\t$$3$$\n\n\t\t\t$$0$$\n\n\t\t\t$$1$$\n\n\t\t\t$$2$$\n\n\t\t\t$$0$$\n\n\t\t\t$$2$$\n
\n\t\t\t向下滑\n\n\t\t\t$$0$$\n\n\t\t\t$$1$$\n\n\t\t\t$$0$$\n\n\t\t\t$$1$$\n\n\t\t\t$$0$$\n\n\t\t\t$$1$$\n\n\t\t\t$$0$$\n\n\t\t\t$$1$$\n\n\t\t\t$$0$$\n\n\t\t\t$$0$$\n\n\t\t\t$$1$$\n\n\t\t\t$$0$$\n
\n\n从上表可以看出,当第二次到达了离井口$$3$$的地方的时候,青蛙运动了,$$3\\times 4+1+1\\times 4=17$$米.\n\n而当这只青蛙跳出井口的时候共走了$$3\\times 5+2+1\\times 5=22$$米\n\n根据题意$$17\\div 17\\times 22=22$$分钟.\n\n方法二:整体分析\n\n每向上爬$$3$$米,会下滑$$1$$米,可以理解为每次向上爬$$2$$米,每次需要$$4$$份时间,最后一次不下滑,所以青蛙第一次爬至离井口$$3$$米之处,需要$$(9-3)\\div 2\\times 4+3=15$$(份)时间,青蛙第二次爬至离井口$$3$$米之处,需要$$15+1+1=17$$(份)时间,青蛙从井底爬到井口时所花的时间为$$(12-3)\\div 2=4.5$$(次),$$5\\times 4+2=22$$(分钟).\n", "options": "A:$$22$$\n\nB:$$20$$\n\nC:$$17$$\n\nD:$$16$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小��", "subjectName": "数学", "knowledge": ["应用题模块", "蜗牛爬井求天数(爬出去类)", "蜗牛爬井问题", "周期问题"]} +{"_id": "ff808081472482f5014724fa9a1200c7", "question": "张老师每周的周一、周六和周日都跑步锻炼$$20$$分钟,而其余日期每日都跳绳$$20$$分钟.某月他总共跑步$$5$$小时,那么这个月的第$$10$$天是(       ).\n ", "answer": "D", "Analysis": "一般这种题目问这个月的第几天是周几时,我们要弄清楚这个月的周几被重复出现$$5$$次.计算$$5\\times 60\\div 20=15$$(天)说明这个月周一、周六、周日都是$$5$$次,说明这个月$$31$$天,且第一天是周六,所以第$$10$$天是$$10\\div 7=1\\cdots3$$,周六、周日、周一这个月的第$$10$$天是周一.\n ", "options": "A:周日\n \nB:周六\n \nC:周二\n \nD:周一\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["日期中的周期", "应用题模块", "时间中的周期问题", "周期问题"]} +{"_id": "ff808081472482f50147296100e10400", "question": "如果$$\\frac{2013\\times 2013}{2014\\times 2014+2012}=\\frac{n}{m}$$(其中$$m$$与$$n$$为互质的自然数),那么$$m+n$$的值是(       ).\n ", "answer": "B", "Analysis": "方法一:找规律\n $$\\frac{{{2}^{2}}}{{{3}^{2}}+1}=\\frac{2}{5}$$、$$\\frac{{{3}^{2}}}{{{4}^{2}}+2}=\\frac{1}{2}=\\frac{3}{6}$$、$$\\frac{{{4}^{2}}}{{{5}^{2}}+3}=\\frac{4}{7}$$、$$\\frac{{{5}^{2}}}{{{6}^{2}}+4}=\\frac{5}{8}$$$$\\cdots$$\n 规律找到了,$$\\frac{{{n}^{2}}}{{{(n+1)}^{2}}+(n-1)}=\\frac{n}{n+3}$$.\n $$\\frac{2013\\times 2013}{2014\\times 2014+2012}=\\frac{n}{m}$$=$$\\frac{2013}{2016}=\\frac{671}{672}$$.\n 方法二:原式=\n $$\\frac{2013\\times 2013}{(2013+1)\\times (2013+1)+2013-1}=\\frac{2013\\times2013}{2013\\times 2013+2\\times 2013+1+2013-1}=\\frac{2013}{2016}=\\frac{671}{672}$$.\n 方法三:原式=$$\\frac{2013\\times 2013}{2014\\times (2013+1)+2012}=\\frac{2013\\times2013}{2013\\times 2014+2014+2012}=\\frac{2013}{2016}=\\frac{671}{672}$$.\n ", "options": "A:$$1243$$\n \nB:$$1343$$\n \nC:$$4025$$\n \nD:$$4029$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["繁分数化简", "分数", "计算模块", "繁分数"]} +{"_id": "ff808081472482f50147325d98630ac2", "question": "从$$1$$~$$11$$这$$11$$个整数中任意取出$$6$$个数,则下列结论正确的有(       )个.\n\n①其中必有两个数互质;\n\n②其中必有一个数是其中另一个数的倍数;\n\n③其中必有一个数的$$2$$倍是其中另一个数的倍数.\n", "answer": "B", "Analysis": "对于“任意$$\\cdots$$必有”这样的语句,应该考虑到“抽屉原理”.如果需要证明结论正确的话,那就要构造抽屉,而抽屉的个数,应该是小于$$6$$的\n 第一句说必有两个数互质,如果这是正确的话,那么就要构造出小于$$6$$的抽屉,且每一组抽屉中的数一定是两两互质的,而很容易想到,每相邻的两个数都是互质的,所以可以这样构造($$1$$,$$2$$,$$3$$)($$4$$,$$5$$)($$6$$,$$7$$)($$8$$,$$9$$)($$10$$,$$11$$)其实构造的方法不是唯一的,还有很多构造方法如:【($$1$$,$$3$$,$$4$$)($$2$$,$$9$$)($$8$$,$$11$$)($$5$$,$$6$$)($$7$$,$$10$$)】;\n 第二句很容易举出反例,($$6$$、$$7$$、$$8$$、$$9$$、$$10$$、$$11$$)最大的六个数就没有倍数关系,同样的还有:($$4$$、$$5$$、$$6$$、$$7$$、$$9$$、$$11$$);\n 第三句,根据第二句话的反例,可以看出,第三句话是成立的,那么就要严谨的证明一下,还是要构造抽屉,按照什么构造呢,可以按照$$1$$到$$11$$中的$$5$$个质因数来构造$$5$$个抽屉,$$1$$放在哪个抽屉里都可以,($$1$$,$$2$$,$$4$$,$$8$$)($$3$$,$$6$$,$$9$$)($$5$$,$$10$$)($$7$$)($$11$$)这五个抽屉中,要任意取$$6$$个数,必有两个数在同一个抽屉中,就必满足其中一个数的$$2$$倍是另一个数的倍数.\n ", "options": "A:$$3$$\n\nB:$$2$$\n\nC:$$1$$\n\nD:$$0$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["抽屉原理", "组合模块", "简单抽屉原理"]} +{"_id": "ff80808147248448014724de17e80129", "question": "在由$$1$$,$$3$$,$$4$$,$$7$$,$$9$$组成的没有重复数字的数中,是$$9$$的倍数的有(       )个.\n ", "answer": "A", "Analysis": "数字和是$$9$$的倍数才可以,只有$$9$$.所以只有$$1$$个.\n ", "options": "A:$$1$$\n \nB:$$2$$\n \nC:$$3$$\n \nD:$$4$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组数问题", "计数模块", "有特殊要求的组数问题", "加乘原理"]} +{"_id": "ff80808147248448014724de18cb012b", "question": "将$$39$$,$$41$$,$$44$$,$$45$$,$$47$$,$$52$$,$$55$$这$$7$$个数重新排成一列,使得其中任意相邻的三个数的和都为$$3$$的倍数.在所有这样的排列中,第四个数的最大值是(       ).\n ", "answer": "C", "Analysis": "除以$$3$$分别于余:$$0$$,$$2$$,$$2$$,$$0$$,$$2$$,$$1$$,$$1$$,使得其中任意相邻的三个数的和都为$$3$$的倍数重新排成一列,余数顺序为$$2$$,$$0$$,$$1$$,$$2$$,$$0$$,$$1$$,$$2$$.第四个数就是余$$2$$的数,则余$$2$$的数分别是$$41$$,$$44$$,$$47$$.最大是$$47$$.\n ", "options": "A:$$44$$\n \nB:$$45$$\n \nC:$$47$$\n \nD:$$52$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["余数问题", "余数的性质", "余数性质综合", "数论模块"]} +{"_id": "ff80808147248448014724de1968012d", "question": "两个数的最大公因数是$$20$$,最小公倍数是$$100$$,下面说法正确的有(   )个.\n\n(1)两个数的乘积是$$2000$$.\n\n(2)两个数都扩大$$10$$倍,最大公因数扩大$$100$$倍.\n\n(3)两个数都扩大$$10$$倍,最小公倍数扩大$$10$$倍.\n\n(4)两个数都扩大$$10$$倍,两个数乘积扩大$$100$$倍.\n", "answer": "C", "Analysis": "$$(1)$$$$(3)$$$$(4)$$正确.\n ", "options": "A:$$1$$\n \nB:$$2$$\n \nC:$$3$$\n \nD:$$4$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["因数与倍数基础", "数论模块", "因数与倍数"]} +{"_id": "ff80808147248448014724de1a560131", "question": "已知正整数$$A$$分解质因数可以写成$$A={{2}^{\\alpha }}\\times {{3}^{\\beta }}\\times {{5}^{\\gamma }}$$,其中$$\\alpha $$、$$\\beta $$、$$\\gamma $$是自然数.如果$$A$$的二分之一是完全平方数,$$A$$的三分之一是完全立方数,$$A$$的五分之一是某个自然数的五次方,那么$$\\alpha +\\beta +\\gamma $$的最小值是(       ).\n", "answer": "D", "Analysis": "根据“$$A$$的二分之一是完全平方数”可以知道,$$\\alpha -1$$、$$\\beta $$、$$\\gamma $$都是$$2$$的倍数.\n\n根据“$$A$$的三分之一是完全立方数”可以知道,$$\\alpha $$、$$\\beta -1$$、$$\\gamma $$都是$$3$$的倍数.\n\n根据“$$A$$的五分之一是某个自然数的五次方”可以知道,$$\\alpha $$、$$\\beta $$、$$\\gamma -1$$都是$$5$$的倍数.\n\n同时满足三个条件的$$\\alpha $$的最小值恰好是$$\\left[ 3,5 \\right]=15$$;$$\\beta $$的最小值恰好是$$\\left[2,5 \\right]=10$$;$$\\gamma $$的最小值恰好是$$\\left[ 2,3 \\right]=6$$.\n\n所以,$$\\alpha +\\beta +\\gamma $$的最小值是$$15+10+6=31$$.\n", "options": "A:$$10$$\n\nB:$$17$$\n\nC:$$23$$\n\nD:$$31$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分解质因数(式)", "数论模块", "分解质因数"]} +{"_id": "ff80808147248448014724de1aca0133", "question": "$$2+2\\times 3+2\\times 3\\times 3+\\cdots +2\\times \\underbrace{3\\times 3\\times \\cdots \\times 3}_{9个3}$$的个位数字是(       ).\n", "answer": "B", "Analysis": "方法一:原式$$=$$$$2\\times (1+3+{{3}^{2}}+{{3}^{3}}+\\cdots +{{3}^{9}})$$,$${{3}^{n}}$$的个位数按$$3$$、$$9$$、$$7$$、$$1$$呈周期出现,$$3+9+7+1=20$$,$$9\\div 4=2\\cdots\\cdots 1$$,所以原式的个位数为$$2\\times (1+20\\times 2+3)\\equiv 2\\times 4=8(\\bmod 10)$$\n 方法二:原式$$=$$$$2\\times (1+3+{{3}^{2}}+{{3}^{3}}+\\cdots +{{3}^{9}})={{3}^{10}}-1$$,$${{3}^{n}}$$的个位数按$$3$$、$$9$$、$$7$$、$$1$$呈周期出现,$$10\\div4=2\\cdots \\cdots 2$$,所以原式的个位数为$$9-1=8$$\n 方法三:按顺序几个尾数按周期$$2$$、$$6$$、$$8$$、$$4$$,四个一循环,$$10\\div 4=2\\cdots \\cdots 2$$,$$(2+6+8+4)\\times 2+2+6\\equiv8(\\bmod 10)$$.\n ", "options": "A:$$2$$\n\nB:$$8$$\n\nC:$$4$$\n\nD:$$6$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["位值原理运用", "位值原理与进制", "位值原理的综合应用", "数论模块"]} +{"_id": "ff80808147248448014724de1bef0137", "question": "$$2013$$年的钟声敲响了,小明的哥哥感慨地说:这是我有生以来遇到的第一个没有重复数字的年份.已知小明哥哥出生的年份是$$19$$的倍数,那么$$2013$$年小明哥哥的年龄是(       )岁.\n ", "answer": "B", "Analysis": "根据“小明哥哥出生的年份是$$19$$的倍数,第一个没有重复数字的年份��”可以考虑之前的年份是$$19--$$年,所以考虑到重复数字$$199-$$年,$$1995$$年是$$19$$的倍数.$$2013-1995=18$$.\n ", "options": "A:$$16$$\n \nB:$$18$$\n \nC:$$20$$\n \nD:$$22$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["因数与倍数基础", "数论模块", "因数与倍数"]} +{"_id": "ff80808147342b7e0147353d484c021a", "question": "在七个三角形的所有内角中,有两个直角,三个钝角.那么这些三角形中有(       )个锐角三角形.\n ", "answer": "B", "Analysis": "一个三角形中最多有一个钝角,也最多一个直角.钝角和直角不会再同一个三角形内出现,有钝角的三角形叫钝角三角形,有直角的三角形叫做直角三角形,没有直角或钝角的三角形叫锐角三角形.\n ", "options": "A:$$1$$\n \nB:$$2$$\n \nC:$$3$$\n \nD:$$4$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["三角形的认识", "图形认知", "几何模块", "直线型", "图形认知三角形"]} +{"_id": "ff80808147342b7e014735453a14023d", "question": "甲、乙两仓的稻谷数量一样,爸爸,妈妈和阳阳单独运完一仓稻谷分别需要$$10$$天,$$12$$天和$$15$$天.爸爸妈妈同时开始分别运甲、乙两仓的稻谷,阳阳先帮妈妈,后帮爸爸,结果同时运完两仓稻谷,那么阳阳帮妈妈运了(   )天.\n", "answer": "C", "Analysis": "设一个仓库的稻谷量为“$$1$$”,爸爸、妈妈、阳阳的效率分别是$$\\frac{1}{10}$$、$$\\frac{1}{12}$$、$$\\frac{1}{15}$$, 三人同时运完两仓,需要的时间:$$(1+1)\\div \\left( \\frac{1}{10}+\\frac{1}{12}+\\frac{1}{15} \\right)=8$$(天);妈妈$$8$$天共搬运了:$$8\\times \\frac{1}{12}=\\frac{2}{3}$$(仓);妈妈剩下的就是阳阳帮妈妈运的,所以,阳阳帮妈妈运了$$\\left( 1-\\frac{2}{3} \\right)\\div \\frac{1}{15}=5$$(天).\n\n三人一共搬了:\n\n$$(1+1)\\div \\left( \\frac{1}{10}+\\frac{1}{12}+\\frac{1}{15} \\right)$$,\n\n$$=2\\div \\frac{1}{4}$$\n\n$$=8$$(天);\n\n阳阳帮妈妈运的天数:\n\n$$\\left( 1-\\frac{1}{12}\\times 8 \\right)\\div \\frac{1}{15}$$\n\n$$=\\frac{1}{3}\\times 15$$\n\n$$=5$$(天);\n\n答:阳阳帮妈妈运了$$5$$天.\n\n故答案为:$$\\rm C$$.\n", "options": "A:$$3$$\n \nB:$$4$$\n \nC:$$5$$\n \nD:$$6$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多人合作", "合作工程问题", "已知工时反推", "应用题模块", "工程问题"]} +{"_id": "ff80808147342b7e01473e079d8f10a0", "question": "水池$$A$$和$$B$$同为长$$3$$米,宽$$2$$米,深$$1.2$$米的长方体,一号阀门用来向$$A$$池注水,$$18$$分钟可将无水的$$A$$池注满,二号阀门用来从$$A$$池向$$B$$池放水,$$24$$分钟可将$$A$$池中满池水放入$$B$$池.若同时打开一号和二号阀门,那么当$$A$$池水深$$0.4$$米时,$$B$$池有(   )立方米的水.\n", "answer": "D", "Analysis": "1号阀门的工效是$$\\frac{1}{18}$$,$$2$$号阀门的工效是$$\\frac{1}{24}$$,若同时打开一号和二号阀门,$$A$$池向$$B$$池放水,$$A$$池剩下$$\\frac{1}{18}-\\frac{1}{24}=\\frac{1}{72}$$, $$B$$池有水$$\\frac{1}{24}$$,$$A$$池和$$B$$池水量比$$\\frac{1}{72}:\\frac{1}{24}=1:3$$,当$$A$$池水深$$0.4$$米时,$$A$$池有$$3\\times 2\\times 0.4=2.4$$立方米的水,$$B$$池有$$7.2$$立方米的水.\n", "options": "A:$$0.9$$\n\nB:$$1.8$$\n\nC:$$3.6$$\n\nD:$$7.2$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "进水与排水问题", "工程问题"]} +{"_id": "ff80808147342b7e01474868ebad2592", "question": "一个盒子里有黑棋子和白棋子若干粒,若取出一粒黑子,则余下的黑子数与白子数之比为$$9:7$$,若放回黑子,再取出一粒白子,则余下的黑子数与白子数之比为$$7:5$$,那么盒子里原有黑子数比白子数多(       )个.\n ", "answer": "C", "Analysis": "方法一:\n 取出一粒黑子,总数少一粒棋子,黑子数占全部的$$\\frac{9}{16}$$,取出一粒白子,总数少一粒棋子,黑子数占全部的$$\\frac{7}{12}$$,$$1\\div (\\frac{7}{12}-\\frac{9}{16})=48$$(粒)盒子里原有黑子数比白子数多$$48\\times (\\frac{9}{16}-\\frac{7}{16})+1=7$$(粒)\n 方法二:方程法\n 设白棋有$$7x$$粒,黑棋有$$9x+1$$粒,列方程为$$\\frac{7x-1}{9x+1}=\\frac{7}{5}$$;$$x=3$$,白棋有$$21$$粒,黑棋有$$28$$粒,盒子里原有黑子数比白子数多$$28-21=7$$(粒).\n ", "options": "A:$$5$$\n \nB:$$6$$\n \nC:$$7$$\n \nD:$$8$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["摸小球", "计数模块", "统计与概率", "概率", "典型问题"]} +{"_id": "ff8080814767495f01476b21736f0631", "question": "用$$8$$个$$3$$和$$1$$个$$0$$组成的九位数有若干个,其中除以$$4$$余$$1$$的有(       )个.\n ", "answer": "B", "Analysis": "判断能否被$$4$$整除,要看末两位.用$$8$$个$$3$$和$$1$$个$$0$$组成的九位数,被$$4$$除余$$1$$的,末尾只能是$$33$$,所以有$$6$$种.\n ", "options": "A:$$5$$\n \nB:$$6$$\n \nC:$$7$$\n \nD:$$8$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组数问题", "计数模块", "有特殊要求的组数问题", "加乘原理"]} +{"_id": "ff8080814767499401477b3b55cc15bb", "question": "某日,甲学校买了$$56$$千克水果糖,每千克$$8.06$$元.过了几日,乙学校也需要买同样的$$56$$千克水果糖,不过正好赶上促销活动,每千克水果糖降价$$0.56$$元,而且只要买水果糖都会额外赠送$$5\\%$$同样的水果糖.那么乙学校将比甲学校少花(       )元.\n ", "answer": "B", "Analysis": "甲学校花钱$$56\\times 8.06=451.36$$元;乙学校要买糖$$56\\div (1+5\\%)=\\frac{160}{3}$$kg,单价$$8.06-0.56=7.5$$元,甲学校花钱$$\\frac{160}{3}\\times7.5=400$$元;乙学校将比甲学校少花$$51.36$$元.\n", "options": "A:$$20$$\n\nB:$$51.36$$\n\nC:$$31.36$$\n\nD:$$10.36$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "归一归总问题", "归总问题"]} +{"_id": "ff808081477bd88b0147859206210e04", "question": "甲、乙、丙、丁、戊围坐在圆形桌子边玩扑克,甲有自己的固定座位.如果乙和丁的座位不能相邻,那么共有(       )种不同的围坐方法.\n ", "answer": "C", "Analysis": "乙、丙、丁、戊四个人的位置有$$4\\times 3\\times 2\\times 1=24$$种方法;乙丁相邻可以把他们看成一个人,三个人的排法有$$2\\times 3\\times 2\\times 1=12$$,则乙和丁的座位不能相邻的排法有$$24-12=12$$种.\n ", "options": "A:$$10$$\n \nB:$$8$$\n \nC:$$12$$\n \nD:$$16$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["排队问题", "计数模块", "加乘原理"]} +{"_id": "ff808081488801c601488c270e6f0f18", "question": "甲从一个鱼摊上买了三条鱼,平均每条$$a$$元,又从另一个鱼摊上买了两条鱼,平均每条$$b$$元,后来他又以每条$$\\frac{a+b}{2}$$元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是(       ).\n ", "answer": "A", "Analysis": "可根据题意算出买进和卖出鱼所花钱的总数,买进一共花了$$(3a+2b)$$元,一共卖了$$\\frac{a+b}{2}$$$$\\times5$$元,前者大于后者,即可推导出$$a>b$$.\n ", "options": "A:$$a>b$$\n \nB:$$a<{b}$$\n \nC:$$a=b$$\n \nD:与$$a$$和$$b$$的大小无关\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "不定方程解应用题", "列方程解应用题"]} +{"_id": "ff80808148880257014888b117d50a1b", "question": "平面上的四条直线将平面分割成八个部分,则这四条直线中至多有(       )条直线互相平行.\n ", "answer": "C", "Analysis": "这是一道考前公开题.当四条直线相互平行的时候把平面分成五个部分,当三条直线平行,另一条直线与它们相交的时候四条直线恰好把平面分成八个部分.所以选择$$\\text{C}$$.\n ", "options": "A:$$0$$\n \nB:$$2$$\n \nC:$$3$$\n \nD:$$4$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["归纳递推", "组合模块", "线分面递推", "操作与策略"]} +{"_id": "ff80808148c43ff50148c9712ff205f3", "question": "新生开学后去远郊步行拉练,到达$$A$$地时比原计划时间$$10$$点$$10$$分晚了$$6$$分钟,到达$$C$$地时比原计划时间$$13$$点$$10$$分早了$$6$$分钟,$$A$$,$$C$$之间恰有一点$$B$$是按照原计划时间到达的,那么到达$$B$$点的时间是(       ).\n ", "answer": "C", "Analysis": "到达$$\\text{A}$$地实际是$$10$$点$$16$$分,到达$$\\text{C}$$地是$$13$$点$$04$$分,从$$\\text{A}$$地到$$\\text{B}$$地共耗时$$168$$分钟;即实际比原计划少用时间$$12$$分钟.那么在远足过程中本来是应该要走$$180$$分钟,现在节约了$$12$$分钟,则每走一分钟就节约时间$$12\\div 180=\\frac{1}{15}$$分钟;如果按照正常情况,晚出发$$6$$分钟,应该晚$$6$$分钟到达$$\\text{B}$$点,现在准时到达$$\\text{B}$$点,那么从$$\\text{A}$$到$$\\text{B}$$的过程中节约了$$6$$分钟,则所用的时间应该为$$6$$除以$$\\frac{1}{15}$$,则$$\\text{A}$$到$$\\text{B}$$耗时$$90$$分钟,则是$$11$$点$$40$$分钟到达$$\\text{B}$$点.\n", "options": "A:$$11$$点$$35$$分\n \nB:$$12$$点$$5$$分\n \nC:$$11$$点$$40$$分\n \nD:$$12$$点$$20$$分\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "路程速度时间", "直线型行程问题", "单人简单行程问题"]} +{"_id": "ff808081498992ec01498ee74d2b0ba4", "question": "某次考试有$$50$$道试题,答对一道题得$$3$$分,答错一道题扣$$1$$分,不答题不得分,小龙得分$$120$$分,那么小龙最多答对了(       )道试题.\n ", "answer": "B", "Analysis": "因为要求小龙最多答对了几道题,又因为小龙最后得$$120$$分每对一道得$$3$$分,所以小龙错的题目数是$$3$$的倍数,所以答对与答错题目总数也是$$3$$的倍数且最大为$$48$$道,\n 所以\n $$\\left\\{ \\begin{matrix}& 3x-y=120 \\\\ &x+y=48 \\\\\\end{matrix} \\right.$$\n 解得,\n $$\\left\\{ \\begin{matrix}& x=42 \\\\ & y=6\\\\\\end{matrix} \\right.$$\n 所以选择B.\n ", "options": "A:$$40$$\n \nB:$$42$$\n \nC:$$48$$\n \nD:$$50$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["鸡兔同笼问题", "应用题模块", "假设法解鸡兔同笼", "基本型", "变型题"]} +{"_id": "ff80808149990d5e0149a4dd9954143f", "question": "现有一个正方形和一个长方形,长方形的周长比正方形的周长多$$4$$厘米,宽比正方形的边长少$$2$$厘米,那么长比正方形的边长多( )厘米.\n", "answer": "D", "Analysis": "长方形周长比正方形的周长多$$4$$厘米,则长与宽的和比$$2$$个边长多$$2$$厘米,宽比正方形的边长少$$2$$厘米,则长比宽多$$4$$厘米.\n ", "options": "A:$$2$$\n\nB:$$8$$\n\nC:$$12$$\n\nD:$$4$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["图形认知", "几何模块", "直线型", "长方形周长", "正方形和长方形"]} +{"_id": "ff8080814502fa2401450bc6eb5c15b6", "question": "计算:$2006+200.6+20.06+2.006+994+99.4+9.94+0.994=$ ___          ___ .\n", "answer": "$$3333$$", "Analysis": "原式$$=(2006+994)+(200.6+99.4)+(20.06+9.94)+(2.006+0.994)$$\n $$=3000+300+30+3$$\n $$=3333$$.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["小数加减", "小数加减巧算之凑整法", "计算模块", "小数“好朋友数”的应用", "小数"]} +{"_id": "ff8080814502fa2401450bc73ec415d2", "question": "计算: $$(425\\times 5776-425+4225\\times 425)\\div 125\\div 8$$.\n ", "answer": "$$4250$$.\n ", "Analysis": "原式$$=425\\times(5776-1+4225)\\div (125\\times 8)$$\n $$=425\\times 10000\\div 1000$$\n $$=4250$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整数乘法巧算之提取公因数(普通型)", "整数提取公因数", "计算模块", "整数"]} +{"_id": "ff8080814502fa2401450bc75ae115d8", "question": "计算:$$113\\times5-37\\times 15$$.\n ", "answer": "$$10$$.\n ", "Analysis": "根据“一个因数扩大若干倍,另一个因数缩小相同的倍数,积不变”的道理,\n 进行适当变换,再提取公因数,进而凑整求和.\n 原式$$=113\\times 5-37\\times3\\times 5$$\n $$=113\\times 5-111\\times 5$$\n $$=(113-111)\\times 5$$\n $$=10$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整数提取公因数", "整数", "整数构造提取", "计算模块", "整数利用积/商不变性质"]} +{"_id": "ff8080814502fa2401450bc7db2115fa", "question": "计算:$$(1234+2341+3412+4123)\\div5$$.\n ", "answer": "$$2222$$.\n ", "Analysis": "原式中千位数的和除以$$5$$为,$$(1+2+3+4)\\div 5=2$$,\n 同样百位、十位、个位都为$$2$$,所以结果为$$2222$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整数加减巧算之位值原理", "整数加减", "计算模块", "整数"]} +{"_id": "ff8080814502fa2401450bc828b41610", "question": " 计算:$$12.5\\div 3.6-7\\div 9+8.3\\div 3.6$$.\n \n ", "answer": "$$5$$.\n ", "Analysis": "方法一:\n 原式$$=125\\div 36-28\\div36+83\\div 36$$\n $$=$$($$125-28+83$$)$$\\div 36$$\n $$=5$$.\n 方法二:\n 原式$$=12.5\\div 3.6-7\\div 9+8.3\\div3.6$$\n $$=\\frac{125}{36}-\\frac{7}{9}+\\frac{83}{36}$$\n $$=\\frac{125-28+83}{36}$$\n $$=\\frac{180}{36}$$\n $$=5$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["小数倍数关系", "计算模块", "小数构造提取", "小数提取公因数", "小数"]} +{"_id": "ff8080814502fa2401450bc893c0162c", "question": "计算:$$0.125\\times 0.25\\times 0.5\\times 64$$.\n ", "answer": "$$1$$.\n ", "Analysis": "原式$$=0.125\\times0.25\\times 0.5\\times (8\\times 4\\times 2)$$\n $$=(0.125\\times 8)\\times (0.25\\times 4)\\times (0.5\\times 2)$$\n $$=1$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计算模块", "小数乘除", "小数乘除法巧算", "小数", "小数好朋友数"]} +{"_id": "ff8080814502fa2401450bc8ff92165b", "question": "计算:$$12345\\times2345 + 2469\\times38275$$.\n ", "answer": "$$123450000$$.\n ", "Analysis": "首先注意到:$$12345=5\\times2469$$.\n 所以如果将后一项中的其中的乘数$$2469$$乘一个$$5$$,那么就可以利用乘法分配律了,可以从$$38275$$借.\n 原式$$=12345\\times2345+2469\\times(5\\times7655)$$\n $$=12345\\times2345+(2469\\times5)\\times7655$$\n $$=12345\\times2345+12345\\times7655$$\n $$=12345\\times(2345+7655)$$\n $$=12345\\times10000$$\n $$=123450000$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整数提取公因数", "整数", "整数构造提取", "计算模块", "整数利用积/商不变性质"]} +{"_id": "ff8080814502fa2401450bc9278c1667", "question": "计算:$$2.89 \\times 47 + 1.53 - 1.4 \\times 1.1 + 24 \\times 0.11 + 288 \\times 0.53 - 0.1$$.\n ", "answer": "$$291$$.\n ", "Analysis": "原式$$=2.88\\times(0.47+0.53)\\times100 +0.47+1.53+(24-14)\\times0.11-0.1$$\n $$=288+2+1$$\n $$=291$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计算模块", "小数构造提取", "小数拆补构造", "小数提取公因数", "小数"]} +{"_id": "ff8080814502fa2401450bc948af1676", "question": "已知$$1.08 \\div 1.2 \\div 2.3 = 10.8 \\div \\square $$ ,其中$$\\square$$表示的数是 ___          ___ .\n ", "answer": "$$27.6$$", "Analysis": "$$1.08 \\div 1.2 \\div 2.3 = 10.8 \\div \\square $$\n $$0.9 \\div 2.3 = 10.8 \\div \\square $$\n $$0.9 \\times \\square  = 10.8 \\times 2.3 = 12 \\times 0.9 \\times 2.3$$\n $$\\square  = 12 \\times 2.3 = 27.6$$  .\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["小数乘除", "小数", "计算模块", "小数除法运算"]} +{"_id": "ff8080814502fa2401450be1df8b17c3", "question": "在方框中填入适当的数字,使得除法竖式成立.已知商为奇数,那么除数为 ___          ___ .\n\n□□□  \n\n\n\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\n
   
 2   
  0 
  0 
   9
   
     0
", "answer": "$$136$$", "Analysis": "先看除式的第二、三行,一个三位数减去一个两位数,得到一个一位数,\n\n可得这个三位数的前两位为$$1$$、$$0$$,这个两位数的十位数字为$$9$$,个位不能为$$0$$.\n\n除数是一个三位数,它与商的百位和个位相乘,所得的两个三位数的百位都是$$9$$,\n\n那么可得商的百位和个位相同.\n\n先将已得出的信息填入方框中,并用字母来表示一些方框中的数,如下图所示.\n\nab c \n\n\n\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\n
   $$e$$$$f$$$$e$$
1022
 9$$d$$2   
  0 
  0 
   9$$d$$2
   9$$d$$2
     0
\n由于商为奇数,所以$$e$$是奇数,可能为$$1$$、$$3$$、$$7$$、$$9$$$$($$不可能为$$5$$).\n\n若为$$1$$,则$$\\overline{abc}=\\overline{9d2}$$,而$$\\overline{abc}\\times f=\\overline{9d2}\\times f$$为三位数,于是$$f=1$$,\n\n又这个乘积的十位数字为$$0$$,而$$d$$不能为$$0$$,矛盾.所以$$e$$不为$$1$$;\n\n若为$$3$$,则$$\\overline{abc}=\\overline{9d2}\\div 3$$,$$d$$可能为$$1$$、$$4$$、$$7$$,\n\n$$\\overline{abc}$$相应的为$$304$$、$$314$$、$$324$$.当$$\\overline{abc}$$为$$314$$和$$324$$时$$\\overline{abc}\\times f$$所的结果的十位数字不可能为$$0$$,不合题意;\n\n若$$\\overline{abc}$$为$$304$$,则$$f$$可能为$$1$$或$$2$$,\n\n经检验$$f$$为$$1$$和$$2$$时都与竖式不符,所以$$e$$也不能为$$3$$;若为$$7$$,则$$\\overline{abc}=\\overline{9d2}\\div 7$$,只有$$d=5$$时满足,\n\n此时$$\\overline{abc}=136$$,那么$$f=3$$.经检验满足题意;\n\n若为$$9$$,则$$\\overline{abc}=\\overline{9d2}\\div9$$,$$d$$只能为$$7$$,\n\n此时$$\\overline{abc}=108$$,$$f$$则只能为$$1$$.经检验也不合题意.\n\n所以只有除数为$$136$$时竖式成立,所以所求的除数即为$$136$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数字谜", "组合模块", "除法竖式谜", "竖式数字谜"]} +{"_id": "ff8080814502fa2401450be89a0f1bcb", "question": "$$\\begin{cases} (0.04+x+y)0.4\\%=0.04+x \\\\ x+y+0.04=20-5 \\end{cases}$$.\n ", "answer": "$$\\begin{cases} x=0.02 \\\\ y=14.94 \\end{cases}$$.\n ", "Analysis": "先整理成整系数方程组,然后求解.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "分、小数系数方程组", "计算模块", "方程基础"]} +{"_id": "ff8080814502fa2401450be8a7711bcf", "question": "$$\\begin{cases} 2x-y=0 \\\\ { x }^{ 2 }-{ y }^{ 2 }+3=0 \\end{cases}$$\n ", "answer": "$$x=1$$,$$y=2$$\n ", "Analysis": "由于方程$$(1)$$是二元一次方程,故可由方程$$(1)$$,得$$y=2x$$,代入方程$$(2)$$消去$$y$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "计算模块", "整数系数方程组", "方程基础"]} +{"_id": "ff8080814502fa2401450be8a99e1bd1", "question": "$$\\begin{cases} x+2y=5 \\\\ x+2z=5 \\\\ z+2u=11 \\\\ u+2x=6 \\end{cases}$$.\n ", "answer": "$$x=1$$,$$y=2$$,$$z=3$$,$$u=4$$.\n ", "Analysis": " 依次叠代有:\n $$x=5-2y=5-2(8-2z)=4z-11=4(11-2u)-11=33-8u=33-8(6-2x)=16x-15$$.\n 所以 $$x=1$$,$$y=2$$,$$z=3$$,$$u=4$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "计算模块", "整数系数方程组", "方程基础"]} +{"_id": "ff8080814502fa2401450be8abc61bd3", "question": "解方程组$$\\left\\{ \\begin{matrix}\\frac{a+b}{2}+c=29 \\\\ \\frac{a+c}{2}+b=23 \\\\ \\frac{b+c}{2}+a=20 \\\\\\end{matrix} \\right.$$,则b=(      ).\n ", "answer": "$$10$$.\n ", "Analysis": "三式相加$$2\\left( a+b+c \\right)=72\\\\a+b+c=36$$\n 每个式子都乘$$2$$减去上式,得$$\\begin{cases} a=4 \\\\ b=10 \\\\ c=22 \\end{cases}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "分、小数系数方程组", "计算模块", "方程基础"]} +{"_id": "ff8080814502fa2401450be8afe51bd5", "question": "$$\\begin{cases} x-y+z=1 \\\\ y-z+u=2 \\\\ z-u+v=5 \\\\ u-v+x=2 \\\\ v-x+y=7 \\end{cases}$$.\n ", "answer": "$$\\begin{cases} x=0 \\\\ y=6 \\\\ z=7 \\\\ u=3 \\\\ v=1 \\end{cases}$$.\n ", "Analysis": "将$$5$$个式子相加得$$x+y+z+u+v=17$$,将$$1$$式与$$2$$式相加得$$x+u=3$$,将$$2$$式与$$3$$式相加得$$y+v=7$$,同理连续相加得到$$\\begin{cases} x+u=3 \\\\ y+v=7 \\\\ z+x=7 \\\\ u+y=9 \\\\ v+z=8 \\end{cases}$$,整理后解为$$\\begin{cases} x=0 \\\\ y=6 \\\\ z=7 \\\\ u=3 \\\\ v=1 \\end{cases}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "计算模块", "整数系数方程组", "方程基础"]} +{"_id": "ff8080814502fa2401450be8cba71bdd", "question": "$$\\left\\{ \\begin{matrix}x+y=4 \\\\ \\frac{x+y}{3}-\\frac{x}{2}=1 \\\\\\end{matrix} \\right.$$\n ", "answer": "$$\\left\\{ \\begin{matrix}x=\\frac{2}{3} \\\\ y=3\\frac{1}{3} \\\\\\end{matrix} \\right.$$\n ", "Analysis": "把①变形为$$y=4-x$$③,把③代入②得:$$\\frac { x+4-x }{ 3 } -\\frac { x }{ 2 } =1$$即$$\\frac { 4 }{ 3 } -\\frac { x }{ 2 } =1$$,$$\\frac { x }{ 2 } =\\frac { 4 }{ 3 } -1$$,$$\\frac { x }{ 2 } =\\frac { 1 }{ 3 } $$ ∴$$x=\\frac{2}{3}$$把$$x=\\frac{2}{3}$$代入③得$$y=4-\\frac{2}{3}=3\\frac{1}{3}$$\n 所以原方程的解是$$\\left\\{ \\begin{matrix}x=\\frac{2}{3} \\\\ y=3\\frac{1}{3} \\\\\\end{matrix} \\right.$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "分、小数系数方程组", "计算模块", "方程基础"]} +{"_id": "ff8080814502fa2401450be8d18c1bdf", "question": "$$\\begin{cases} 3x-4z=7 \\\\ 2x+3y-z=9 \\\\ 5x-9y-7z=8 \\end{cases}$$.\n", "answer": "$$\\begin{cases} x=5 \\\\ y=\\dfrac{1}{3} \\\\ z=2 \\end{cases}$$\n", "Analysis": "观察$$x$$,$$y$$,$$z$$的系数发现,第二个式子与第三个式子中$$y$$的系数是$$3$$倍关系,所以将第二个式子扩大$$3$$倍与第三个式子相减得到:$$3(2x+3y-z)+(5x-9y-7z)=3\\times 9+8$$,去括号整理得$$11x-10z=35$$,与第一个式子整理得$$\\begin{cases} 3x-4z=7 \\\\ 11x-10z=35 \\end{cases}$$,若想消掉$$z$$,因为$$\\left[ 4,10 \\right]=20$$,所以第一个方程应该扩大$$5$$倍,第二个式子应该扩大$$2$$倍,又因为$$z$$的系数符号相同,所以应该用减消元,计算结果如下:$$2(11x-10z)-5(3x-4z)=2\\times 35-5\\times 7$$,去括号整理得$$7x=35$$,$$x=5$$,所以方程解为$$\\begin{cases} x=5 \\\\ y=\\dfrac{1}{3} \\\\ z=2 \\end{cases}$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "计算模块", "整数系数方程组", "方程基础"]} +{"_id": "ff8080814502fa2401450be8d4051be1", "question": "$$\\left\\{ \\begin{matrix}\\frac{x+y}{3}+\\frac{x-y}{2}=6 \\\\ 3(x+y)-2(x-y)=28 \\\\\\end{matrix} \\right.$$.\n ", "answer": "$$\\begin{cases} x=8 \\\\ y=4 \\end{cases}$$.\n ", "Analysis": "整理的式$$1$$:$$5x-y=36$$;式$$2$$:$$x+5y=28$$,利用消元法得$$x=8$$,$$y=4$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "分、小数系数方程组", "计算模块", "方程基础"]} +{"_id": "ff8080814502fa2401450be8d6371be3", "question": "$$\\begin{cases}\\dfrac{3}{x-4}+\\dfrac{4}{y-1}=3 \\\\ \\dfrac{9}{x-4}-\\dfrac{2}{y-1}=2 \\end{cases}$$.\n", "answer": "$$\\begin{cases} x=7 \\\\ y=3 \\end{cases}$$.\n ", "Analysis": "本题需要同学能够利用整体思想进行解题,将$$x-4$$与$$y-1$$看出相应的未知数,\n\n因为每一项的分母不同,所以先将分母系数化成同样的,\n\n所以第二个式子等号两边同时乘以$$2$$整理得:\n\n$$(\\frac{3}{x-4}+\\frac{4}{y-1})+2(\\frac{9}{x-4}-\\frac{2}{y-1})=3+2\\times2$$,\n\n去括号整理后得到$$\\frac{21}{x-4}=7$$,\n\n根据分数的性质计算得$$x=7$$,\n\n所以方程的解为:$$\\begin{cases} x=7 \\\\ y=3 \\end{cases}$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "分、小数系数方程组", "计算模块", "方程基础"]} +{"_id": "ff8080814502fa2401450be8db0e1be5", "question": "$$\\left\\{ \\begin{matrix}\\frac{x}{4}+\\frac{y}{3}=7 \\\\ \\frac{2}{3}x+\\frac{y}{2}=14 \\\\\\end{matrix} \\right.$$.\n ", "answer": "$$\\begin{cases} x=12 \\\\ y=12 \\end{cases}$$.\n ", "Analysis": "整理的$$(1)$$$$3x+4y=84$$$$(2)$$$$4x+3y=84$$,利用消元法求出$$x=y=12$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "分、小数系数方程组", "计算模块", "方程基础"]} +{"_id": "ff8080814502fa2401450be8dcf91be7", "question": "$$\\left\\{ \\begin{matrix}4x+3y-2=0 \\\\ y-1=-\\frac{4}{3}x \\\\\\end{matrix} \\right.$$\n ", "answer": "无解.\n ", "Analysis": "整理这个方程组里的两个方程,可以得到:$$\\begin{cases} 4x+3y-2=0 \\\\ 4x+3y-3=0 \\end{cases}$$,可以看出,两个方程是不可能同时成立的,所以这是题目本身的问题,无解.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "分、小数系数方程组", "计算模块", "方程基础"]} +{"_id": "ff8080814502fa2401450be8e27c1be9", "question": "$$\\begin{cases} 3(x-150)=4(3y+60) \\\\ 0.01x+0.06y=0.13\\times 110 \\end{cases}$$.\n ", "answer": "$$\\begin{cases} x=710 \\\\ y=120 \\end{cases}$$.\n ", "Analysis": "$$\\begin{cases} 3x-12y=690 \\\\ 1x+6y=13\\times 110 \\end{cases}$$\n $$\\begin{cases} 3x-12y=690 \\\\ 3x+18y=4290\\end{cases}$$\n $$\\begin{cases} x=710 \\\\ y=120 \\end{cases}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "分、小数系数方程组", "计算模块", "方程基础"]} +{"_id": "ff8080814502fa2401450be8f49e1bed", "question": "小吴和小林两人解方程组,$$\\begin{cases} ax-2y=2 \\\\ 7x-by=1 \\end{cases}$$由手小吴看错了方程①中的$$a$$而得到方程组的解为$$\\begin{cases} x=4 \\\\ y=9 \\end{cases}$$,小林看错了方程②中的$$b$$而得到的解为$$\\begin{cases} x=3 \\\\ y=8 \\end{cases}$$,如果按正确的$$a$$、$$b$$计算,试求出原方程组的解.\n ", "answer": "$$\\begin{cases} x=1 \\\\ y=2 \\end{cases}$$.\n ", "Analysis": "因为小吴同学没有看错②,所以$$\\begin{cases} x=4 \\\\ y=9 \\end{cases}$$是符合②的解,有$$4\\times7-b\\times9=1$$,解得$$b=3$$;因为小林同学没有看错①,所以$$\\begin{cases} x=3\\\\ y=8 \\end{cases}$$是符合①的解,有$$a\\times3-2\\times8=2$$,解得$$a=6$$;\n 即原方程组为$$\\begin{cases} 6x-2y=2 \\\\ 7x-3y=1 \\end{cases}$$解得$$\\begin{cases} x=1 \\\\ y=2 \\end{cases}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "计算模块", "整数系数方程组", "方程基础"]} +{"_id": "ff8080814502fa2401450be8f8bc1bef", "question": "解方程$$\\begin{cases} 9u+2v=20 \\\\ 3u+4v=10 \\end{cases}$$($$u$$,$$v$$为正整数).\n ", "answer": "$$\\begin{cases} u=2 \\\\ v=1 \\end{cases}$$.\n ", "Analysis": "方法一:加减消元法\n 化$$v$$的系数相同,加减消元法计算得 $$2(9u+2v)-(3u+4v)=2\\times 20-10$$\n 去括号和并同类项得$$18u-3u=20$$ $$15u=30$$ $$u=2$$\n $$\\begin{cases} u=2 \\\\ v=1 \\end{cases}$$\n 方法二:代入消元法由$$9u+2v=20$$得到$$v=10-4.5u$$,代入方程$$3u+4v=10$$中得到$$3u+4\\left( 10-4.5u\\right)=10$$,整理得$$u=2$$,$$v=1$$,所以方程解为$$\\begin{cases} u=2 \\\\ v=1 \\end{cases}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "计算模块", "整数系数方程组", "方程基础"]} +{"_id": "ff8080814502fa2401450be8fcf91bf1", "question": "试用代入消元法和加减消元法求解方程组$$\\begin{cases} x+y=7 \\\\ 3x+y=17 \\end{cases}$$.\n ", "answer": "$$\\begin{cases} x=5 \\\\ y=2 \\end{cases}$$.\n ", "Analysis": "代人消元法:由①知$$y=7-x$$,代人②式得$$3x+7-x=17$$.\n 即$$x=5$$,代入①式,得$$y=2$$,所以$$\\begin{cases} x=5 \\\\ y=2 \\end{cases}$$,\n 加减消元法:②-①得$$2$$$$x$$=10$$,即$$x$$=5$$,代入①式,得$$y=2$$.所以$$\\begin{cases} x=5 \\\\ y=2 \\end{cases}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "计算模块", "整数系数方程组", "方程基础"]} +{"_id": "ff8080814502fa2401450be8ff471bf3", "question": "解方程$$\\begin{cases} x+y=5 \\\\ x-y=1 \\end{cases}$$($$x,y$$为正整数).\n ", "answer": "$$\\begin{cases} x=3 \\\\ y=2 \\end{cases}$$.\n ", "Analysis": "方法一: $$(x+y)+(x-y)=5+1$$,$$2x=6$$,$$x=3$$\n $$\\begin{cases} x=3 \\\\ y=2 \\end{cases}$$\n 方法二:解代入消元法,由$$x+y=5$$得到$$x=5-y$$,代入方程$$x-y=1$$中,得到$$\\left( 5-y \\right)-y=1$$,整理得$$y=2$$,所以$$x=3$$,所以方程的解为$$\\begin{cases} x=3 \\\\ y=2 \\end{cases}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "计算模块", "整数系数方程组", "方程基础"]} +{"_id": "ff8080814502fa2401450be906581bf7", "question": "求$$2x+3y+7z=34$$的正整数解.\n ", "answer": "$$\\begin{cases} x=12 \\\\ y=1 \\\\ z=1 \\end{cases}\\begin{cases} x=9 \\\\ y=3 \\\\ z=1 \\end{cases}\\begin{cases} x=6 \\\\ y=5 \\\\ z=1 \\end{cases}\\begin{cases} x=3 \\\\ y=7 \\\\ z=1 \\end{cases}\\begin{cases} x=0 \\\\ y=9 \\\\ z=1 \\end{cases}$$$$\\begin{cases} x=10 \\\\ y=0 \\\\ z=2 \\end{cases}\\begin{cases} x=7 \\\\ y=2 \\\\ z=2 \\end{cases}\\begin{cases} x=4 \\\\ y=4 \\\\ z=2 \\end{cases}\\begin{cases} x=1 \\\\ y=6 \\\\ z=2 \\end{cases}\\begin{cases} x=5 \\\\ y=1 \\\\ z=3 \\end{cases}\\begin{cases} x=2 \\\\ y=3 \\\\ z=3 \\end{cases}\\begin{cases} x=3 \\\\ y=0 \\\\ z=4 \\end{cases}\\begin{cases} x=0 \\\\ y=2 \\\\ z=4 \\end{cases}$$\n ", "Analysis": "本题按照逻辑顺序思维,先确定$$z$$的值再讨论$$x$$与$$y$$的值.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计算模块", "不定方程组", "不定方程", "方程基础"]} +{"_id": "ff8080814502fa2401450be947a61c10", "question": "求不定方程$$2x+6y=9$$的整数解.\n", "answer": "无���数解\n", "Analysis": "因为$$2x+6y=2(x+3y)$$,所以,不论$$x$$和$$y$$取何整数,都有$$2|2x+6y$$,但$$2\\nmid 9$$,因此,不论$$x$$和$$y$$取什么整数,$$2x+6y$$都不可能等于$$9$$,即原方程无整数解.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计算模块", "加法不定方程", "不定方程", "方程基础"]} +{"_id": "ff8080814502fa2401450be96b051c20", "question": "解方程:$$(3x-0.5):(4x+3)=4:9$$.\n ", "answer": "$$x=1.5$$.\n ", "Analysis": "$$\\begin{eqnarray}9(3x-0.5)&=&4(4x+3)\\\\   27x-4.5&=&16x+12\\\\        11x&=&16.5\\\\          x&=&1.5.\\end{eqnarray}$$\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["解比例方程", "比和比例", "比例问题", "比例的性质"]} +{"_id": "ff8080814502fa2401450bebab4e1d11", "question": "$$100$$以内的自然数中.所有是$$3$$的倍数的数的平均数是 ___          ___ .\n ", "answer": "$$49.5$$", "Analysis": "$$100$$以内的自然数中是$$3$$的倍数的数有$$0$$,$$3$$,$$6$$,$$9$$,$$\\cdots$$$$99$$共$$33$$个,\n 他们的和是$$\\frac{\\left(0+99 \\right)\\times 34}{2}=17\\times 99=1683$$,\n 则他们的平均数为$$1683\\div34=49.5$$.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数列与数表", "公式类", "计算模块", "直接求平均数", "应用题模块", "等差数列求和", "等差数列", "平均数问题"]} +{"_id": "ff8080814518d524014526a6523e1927", "question": "已知正整数$$N$$的八进制表示为$$N={{(12345654321)}_{8}}$$,那么在十进制下,$$N$$除以$$7$$的余数与$$N$$除以$$9$$的余数之和是多少?\n ", "answer": "$$1$$\n", "Analysis": "与十进制相类似,有:$${{(12345654321)}_{8}}={{(111111)}_{8}}^{2}$$.\n 根据$$8$$进制的弃$$7$$法,$${{(111111)}_{8}}$$被$$7$$除的余数等于其各位数字之和,为$$6$$,而$${{6}^{2}}=36$$除以$$7$$的余数为$$1$$,\n 所以$${{(111111)}_{8}}$$的平方被$$7$$除余$$1$$,即$${{(12345654321)}_{8}}$$除以$$7$$的余数为$$1$$;\n 另外,$$9={{(11)}_{8}}$$,显然$${{(111111)}_{8}}$$能被$${{(11)}_{8}}$$整除,所以其平方也能被$${{(11)}_{8}}$$整除,\n 即$${{(12345654321)}_{8}}$$除以$$9$$的余数为$$0$$.\n 因此两个余数之和为$$1+0=1$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["位值原理与进制", "进制与余数问题", "进制的性质与应用", "数论模块"]} +{"_id": "ff8080814526d2f40145278cdd42035c", "question": "使得$${{10}^{n}}-1$$是$$63$$的倍数的最小正整数$$n$$是 ___          ___ .                   \n ", "answer": "$$n=6$$", "Analysis": "$$63=9\\times 7$$,$${{10}^{n}}-1$$肯定是$$9$$的倍数,所以只要考虑$$7$$的倍数就可以了.\n 考虑到$$111111$$是$$7$$的倍数,$${{10}^{6}}-1=999999$$,所以最小的$$n$$是$$6$$.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["因数与倍数基础", "数论模块", "因数与倍数"]} +{"_id": "ff8080814526d2f40145278cfbf40360", "question": "在$$865$$后面补上三个数字,组成一个六位数,使它能分别被$$3$$、$$4$$、$$5$$整除,且使这个数值尽可能的小.\n ", "answer": "这个六位数是$$865020$$.\n ", "Analysis": "方法一:\n 设补上数字后的六位数是$$\\overline{865abc}$$,因为这个六位数能分别被$$3$$、$$4$$、$$5$$整除,\n 所以它应满足以下三个条件:\n 第一:数字和$$(8+6+5+a+b+c)$$是$$3$$的倍数;\n 第二:末两位数字组成的两位数$$\\overline{bc}$$是$$4$$的倍数;\n 第三:末位数字$$c$$是$$0$$或$$5$$.\n 由以上条件,$$4$$| $$\\overline{bc}$$,且$$c$$只能取$$0$$或$$5$$,\n 又∵能被$$4$$整除的数的个位数不可能是$$5$$,\n ∴$$c$$只能取$$0$$,因而$$b$$只能取$$0$$,$$2$$,$$4$$,$$6$$,$$8$$中之一.\n 又∵$$3$$| $$\\overline{865ab0}$$,且$$(8+6+5)$$除以$$3$$余$$1$$,\n ∴$$a+b$$除以$$3$$余$$2$$,为满足题意“数值尽可能小”,只需取$$a=0$$,$$b=2$$.\n ∴要求的六位数是$$865020$$.\n 方法二:\n 利用试除法,由于要求最小数,用$$865000$$进行试除分别被$$3$$、$$4$$、$$5$$整除,就是被$$60$$整除,\n $$865000\\div 60=14416\\cdots 40$$,所以$$865000+20=865020$$能被$$60$$整除.\n ∴要求的六位数是$$865020$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整除特征", "复合数字的整除特征应用", "数论模块", "整除"]} +{"_id": "ff8080814526d2f401452794128603d4", "question": "在$$6$$进制中有三位数$$\\overline{abc}$$,化为$$9$$进制为$$\\overline{cba}$$,求这个三位数在十进制中为多少?\n ", "answer": "$$212$$.\n ", "Analysis": " $${{(\\overline{abc})}_{6}}=a\\times{{6}^{2}}+b\\times {{6}^{1}}+c\\times {{6}^{0}}=36a+6b+c$$;$${{(\\overline{cba})}_{9}}=c\\times{{9}^{2}}+b\\times {{9}^{1}}+a\\times {{9}^{0}}=81c+9b+a$$;\n 所以$$36a+6b+c=81c+9b+a$$;于是$$35a=80c+3b$$;\n 因为$$35a$$是$$5$$的倍数,$$80c$$也是$$5$$的倍数.所以$$3b$$也必须是$$5$$的倍数,\n 又$$(3$$,$$5)=1$$.所以,$$b=0$$或$$5$$.\n ①当$$b=0$$,则$$35a=80c$$;则$$7a=16c$$;$$(7,16)=1$$,并且$$a$$、$$c\\ne 0$$,所以$$a=16$$,$$c=7$$.但是在$$6$$,$$9$$进制,不可以有一个数字为$$16$$.\n ②当$$b=5$$,则$$35a=3\\times 5+80c$$;则$$7a=3+16c$$;$$\\bmod 7$$后,$$3+2c\\equiv 0$$.所以$$c=2$$或者$$2+7k$$$$(k$$为整数$$)$$.因为有$$6$$进制,所以不可能有$$9$$或者$$9$$以上的数,于是$$c=2$$;$$35a=15+80\\times 2$$,$$a=5$$ .所以$${{(abc)}_{6}}={{(552)}_{6}}=5\\times {{6}^{2}}+5\\times{{6}^{1}}+2\\times {{6}^{0}}=212$$.这个三位数在十进制中为$$212$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["位值原理与进制", "进制间的互化", "进制的性质与应用", "数论模块"]} +{"_id": "ff8080814526d2f401452794157f03d6", "question": "算式$$1543\\times 25=43214$$是几进制数的乘法?\n ", "answer": "$$8$$.\n ", "Analysis": "注意到尾数,在足够大的进位制中有乘积的个位数字为$$4\\times 5=20$$ ,但是现在为$$4$$,说明进走$$20-4=16$$,所以进位制为$$16$$的约数,可能为$$16$$、$$8$$、$$4$$或$$2$$.\n 因为原式中有数字$$5$$,所以不可能为$$4$$、$$2$$进位,而在十进制中有$$1534\\times 25=38350<43214$$,所以在原式中不到$$10$$就有进位,即进位制小于$$10$$,于是原式为$$8$$进制.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["位值原理与进制", "进制的性质与应用", "数论模块", "多进制的判断"]} +{"_id": "ff8080814526d2f40145279435b703de", "question": "某数在三进制中为$$12120120110110121121$$,则将其改写为九进制,其从左向右数第$$1$$位数字是几?\n ", "answer": "$$5$$.\n ", "Analysis": "由于$${{3}^{2}}=9$$,所以由三进制化为$$9$$进制需要取二合一.从后两个两个的取,取至最前边为$$12$$,用位值原理将其化为$$1\\times {{3}^{1}}+2\\times {{3}^{0}}=5$$,所以化为$$9$$进制数后第一位为$$5$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["位值原理与进制", "进制间的互化", "进制的性质与应用", "数论模块"]} +{"_id": "ff8080814526d2f4014527943c4a03e2_1", "question": "同学们请将下列各题化为十进制数,看谁算的又快又准.\n \n$${{(2001)}_{3}}$$.\n ", "answer": "$$55$$.\n ", "Analysis": "$${{(2001)}_{3}}=2\\times {{3}^{3}}+0\\times{{3}^{2}}+0\\times {{3}^{1}}+1\\times {{3}^{0}}=55$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "进制的性质与应用", "抽象概括", "逐步调整思想", "转化与化归的思想", "能力", "运算求解", "对应思想", "数论模块", "位值原理与进制", "进制间的互化"]} +{"_id": "ff8080814526d2f4014527943c4a03e2_2", "question": "同学们请将下列各题化为十进制数,看谁算的又快又准.\n \n$${{(2011)}_{4}}$$.\n ", "answer": "$$133$$.\n ", "Analysis": "$$(2011){}_{4}=2\\times {{4}^{3}}+0\\times{{4}^{2}}+1\\times {{4}^{1}}+1\\times {{4}^{0}}=133$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "进制的性质与应用", "抽象概括", "逐步调整思想", "转化与化归的思想", "能力", "运算求解", "对应思想", "数论模块", "位值原理与进制", "进制间的互化"]} +{"_id": "ff8080814526d2f4014527943c4a03e2_3", "question": "同学们请将下列各题化为十进制数,看谁算的又快又准.\n \n$${{(4203)}_{6}}$$.\n ", "answer": "$$939$$.\n ", "Analysis": "$${{(4203)}_{6}}=4\\times {{6}^{3}}+2\\times{{6}^{2}}+0\\times {{6}^{1}}+3\\times {{6}^{0}}=939$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "进制的性质与应用", "抽象概括", "逐步调整思想", "转化与化归的思想", "能力", "运算求解", "对应思想", "数论模块", "位值原理与进制", "进制间的互化"]} +{"_id": "ff8080814526d2f401452794ff0e0416", "question": "三个连续正整数,中间一个是完全平方数,将这样的三个连续正整数的积称为“美妙数”.问所有的小于$$2008$$的“美妙数”的最大公约数是多少?\n", "answer": "$$60$$.\n ", "Analysis": "①任何三个连续正整数,必有一个能为$$3$$整除.所以任何“美妙数”必有因子$$3$$.\n ②若三个连续正整数中间的数是偶数,它又是完全平方数,必定能为$$4$$整除;\n 若中间的数是奇数,则第一和第三个数是偶数,所以任何“美妙数”必有因子$$4$$.\n ③完全平方数的个位只能是$$1$$、$$4$$、$$5$$、$$6$$、$$9$$和$$0$$,\n 若其个位是$$5$$和$$0$$,则中间的数必能被$$5$$整除;\n 若其个位是$$1$$和$$6$$,则第一个数必能被$$5$$整除;\n 若其个位是$$4$$和$$9$$,则第三个数必能被$$5$$整除;\n 所以,任何“美妙数”必有因子$$5$$.\n ④上述说明“美妙数”都有因子$$3$$、$$4$$、和$$5$$,也就有因子$$60$$,\n 即所有的美妙数的最大公约数至少是$$60$$.\n $$60=3\\times4\\times5$$是一个“美妙数”,美妙数的最大公约至多是$$60$$.\n 所有的美妙数的最大公约数既不能大于$$60$$,又至少是$$60$$,只能是$$60$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["完全平方数", "平方数的综合应用", "数论模块"]} +{"_id": "ff8080814526d2f4014527951159041a", "question": "若一个自然数,它所有的真因子(即除了自身以外的因数)的和恰好等于它本身,这种数叫做完全数.例如:$$6$$的因数有$$1$$、$$2$$、$$3$$、$$6$$,它的真因子之和$$1+2+3=6$$,则$$6$$是完美数,第二个完美数是几?\n", "answer": "$$28$$.\n ", "Analysis": "$$28$$的因数有$$1$$、$$2$$、$$4$$、$$7$$、$$14$$,它的真因子之和$$1+2+4+7+14=28$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["因数个数定理", "因数和", "数论模块", "因数与倍数"]} +{"_id": "ff8080814526d2f401452c90b8b01d9d", "question": "将数字$$4$$,$$5$$,$$6$$,$$7$$,$$8$$,$$9$$各使用一次,组成一个被$$667$$整除的$$6$$位数,那么这个$$6$$位数除以$$667$$的结果是多少?\n ", "answer": "$$1434$$.\n ", "Analysis": "$$4$$,$$5$$,$$6$$,$$7$$,$$8$$,$$9$$各用一次后,各位数字之和为$$39$$,\n 即这个六位数应该为$$3$$的倍数,所以这个数应该是$$3 \\times 667 = 2001$$的倍数.\n 一个首位数字超过$$3$$的六位数除以$$2001$$得到的商应该是三位数.\n 而该三位数的商乘以$$2001$$后所得六位数(即原六位数)的末三位即为该商,\n 而前三位是该商的两倍,所以$$4$$,$$5$$,$$6$$,$$7$$,$$8$$,$$9$$这$$6$$个数字应该组成两个三位数,\n 其中一个三位数是另一个的$$2$$倍,所以两个三位数的首位数字,大者应至少是小者的两倍,\n 显然的较小的那个三位数的首位只能是$$4$$,较大的那个三位数的首位可能是$$8$$,也可能是$$9$$,\n 而较小的那个三位数的个位只能是$$8$$,才能使较大的那个三位数的个位数字能被取到,\n 进一步试验可得到这个六位数是$$956478$$,这个$$6$$位数除以$$667$$后的得数为$$1434$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整除特征", "数论模块", "整除", "整除初识"]} +{"_id": "ff8080814526d2f401452c90d37c1da3", "question": "$$\\overline {8ab8ab8ab8ab8ab} $$ 是$$77$$的倍数,则$$\\overline {ab} $$为 ___          ___ .\n", "answer": "$$47$$", "Analysis": "$$\\overline {8ab8ab8ab8ab8ab}     = \\overline {8ab}  \\times 1001001001001$$  ,\n $$1001001001001$$  既不是$$7$$的倍数,也不是$$11$$的倍数,\n 所以$$\\overline {8ab} $$ 是$$7$$和$$11$$的倍数,\n $$77 \\times 10 = 770$$  ,$$770 + 77 = 847$$ ,$$847 + 77 = 924$$  ,\n 所以$$\\overline {ab}  = 47$$ .\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整除特征", "复合数字的整除特征应用", "数论模块", "整除"]} +{"_id": "ff8080814526d2f401452c90e9d21dab", "question": "连续写出从$$1$$开始的自然数,写到$$2008$$时停止,得到一个多位数:\n $$1234567891011\\cdots20072008$$,\n 请说明:这个多位数除以$$3$$,得到的余数是几?为什么?\n ", "answer": "$$1$$.\n ", "Analysis": "因为连续$$3$$个自然数可以被$$3$$ 整除,而且最后一个自然数都是$$3$$的倍数,\n 因为$$2007$$ 是$$3$$的倍数,所以$$1234567891011 \\cdots  \\cdots 2007$$ 是$$3$$的倍数,\n 又因为$$1234567891011 \\cdots  \\cdots 20072008 = 1234567891011 \\cdots  \\cdots 20070000 + 2007 + 1$$,\n 所以$$1234567891011 \\cdots  \\cdots 20072008$$ 除以$$3$$ ,得到的余数是$$1$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["余数问题", "余数的性质", "余数性质综合", "数论模块"]} +{"_id": "ff8080814526d2f40145309113a92cc2", "question": "光的速度是每秒$$30$$万千米,太阳离地球$$1$$亿$$5$$千万千米.问:光从太阳到地球要用几分钟?(答案保留一位小数)\n ", "answer": "光从太阳到地球要用$$8.3$$分钟\n ", "Analysis": "$$150000000÷300000÷60=150÷3÷6=50÷6≈8.33≈8.3$$(分),\n 光从太阳到地球要用约$$8.3$$分钟.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "路程速度时间", "直线型行程问题"]} +{"_id": "ff808081454b256501454f5f2e390537_1", "question": "计算:\n \n$$6\\div 6\\frac{6}{7}+\\frac{1}{8}$$\n ", "answer": "$$1$$\n ", "Analysis": "原式$$=6\\div \\frac{48}{7}+\\frac{1}{8}=6\\times\\frac{7}{48}+\\frac{1}{8}=1$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "分数", "循环小数加减运算", "逐步调整思想", "转化与化归的思想", "分数四则混合运算", "计算模块", "能力", "运算求解", "分数运算", "循环小数", "小数"]} +{"_id": "ff808081454b256501454f5f2e390537_2", "question": "计算:\n \n$$0.1\\dot{6}+1.\\dot{3}+2.5$$\n ", "answer": "$$4$$\n ", "Analysis": "原式$$=\\frac{1}{6}+1\\frac{1}{3}+2\\frac{1}{2}=4$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "分数", "循环小数加减运算", "逐步调整思想", "转化与化归的思想", "分数四则混合运算", "计算模块", "能力", "运算求解", "分数运算", "循环小数", "小数"]} +{"_id": "ff808081458cf2a20145933b1a8c09f4_1", "question": "计算:\n \n$${{1}^{2}}+1\\times 2+{{2}^{2}}+2\\times3+{{3}^{2}}+\\cdots +{{9}^{2}}+9\\times 10+{{10}^{2}}$$\n ", "answer": "$$715$$\n ", "Analysis": "原式$$=({{1}^{2}}+{{2}^{2}}+\\ldots +{{10}^{2}})+(1\\times 2+2\\times3+\\ldots +9\\times 10)$$$$=10\\times 11\\times 21\\div 6+9\\times 10\\times11\\div 3=385+330=715$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "逻辑分析", "转化与化归的思想", "计算模块", "计算中的位值原理", "能力", "位值原理运用", "运算求解", "数论模块", "公式类运算", "位值原理与进制", "连续自然数平方和公式"]} +{"_id": "ff808081458cf2a20145933b1a8c09f4_2", "question": "计算:\n \n$$(201420132012-201220132014)\\div (20142013-20132014)$$\n ", "answer": "$$20002$$\n", "Analysis": "原式$$=(200000000-2)\\div (10000-1)$$$$=2\\times (10000+1)\\times(10000-1)\\div (10000-1)=20002$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "逻辑分析", "转化与化归的思想", "计算模块", "计算中的位值原理", "能力", "位值原理运用", "运算求解", "数论模块", "公式类运算", "位值原理与进制", "连续自然数平方和公式"]} +{"_id": "ff80808145ff6c8a01460ce5e1520fa6", "question": "在$$523$$后面写出三个数字,使所得的六位数被$$7$$、$$8$$、$$9$$整除.那么这三个数字的和是多少? \n ", "answer": "$$17$$或$$8$$\n ", "Analysis": "$$7$$、$$8$$、$$9$$的最小公倍数是$$504$$,所得六位数应被$$504$$整除.\n $$524000\\div504=1039\\cdots 344$$,所以所得六位数是$$524000-344=523656$$或$$523656-504=523152$$.\n 因此三个数字的和是$$17$$或$$8$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["特殊数字系列", "数论模块", "整除", "整除性质的应用"]} +{"_id": "ff80808146233fe1014627f5f1d90560", "question": "计算:$$2011-(9\\times 11\\times 11+9\\times 9\\times 11-9\\times 11)=$$_______.\n ", "answer": "$$130$$\n ", "Analysis": "原式$$=2011-9\\times 11\\times (11+9-1)=2011-1881=130$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整数乘法巧算之提取公因数(普通型)", "整数提取公因数", "计算模块", "整数"]} +{"_id": "ff8080814694a4fc014694fd4ed201ab_1", "question": "计算:\n \n$${{95}^{2}}-91\\times 99$$\n ", "answer": "$$16$$\n ", "Analysis": "原式$$={{95}^{2}}-(95-4)\\times(95+4)={{95}^{2}}-({{95}^{2}}-{{4}^{2}})=16$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "小数四则运算", "小数乘法巧算之提取公因数(普通型)", "平方差公式逆向应用", "思想", "逻辑分析", "转化与化归的思想", "计算模块", "能力", "运算求解", "平方差公式", "小数提取公因数", "公式类运算", "小数"]} +{"_id": "ff8080814694a4fc014694fd4ed201ab_2", "question": "计算:\n \n$$4.7\\times 8.4+9.4\\times 19+4.7\\times 3.6$$\n ", "answer": "$$235$$\n ", "Analysis": "原式$$=4.7\\times 8.4+4.7\\times 38+4.7\\times3.6=4.7\\times (8.4+38+3.6)=4.7\\times 50=235$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "小数四则运算", "小数乘法巧算之提取公因数(普通型)", "平方差公式逆向应用", "思想", "逻辑分析", "转化与化归的思想", "计算模块", "能力", "运算求解", "平方差公式", "小数提取公因数", "公式类运算", "小数"]} +{"_id": "ff80808146dc29ee0146e11d83c50a9a_1", "question": "计算:\n\n$$20.14\\times 47+201.4\\times 3.3+10.07\\times 40$$\n", "answer": "$$2014$$\n ", "Analysis": "原式$$=20.14\\times 47+20.14\\times 33+20.14\\times20$$\n\n$$=20.14\\times (47+33+20)$$\n\n$$=20.14\\times 100$$\n\n$$=2014$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "小数四则运算", "课内知识点", "两分数间接裂差", "运算求解", "裂项与通项归纳", "公式类运算", "七大能力", "逻辑分析", "转化与化归的思想", "整数系数方程组", "平方差公式正向应用", "多元一次方程组", "小数", "小数四则混合运算", "小数乘法巧算之提取公因数(普通型)", "分数裂项", "方程基础", "知识标签", "混合运算", "计算模块", "数学思想", "数与运算", "分数裂差", "平方差公式", "小数提取公因数", "方程思想", "学习能力"]} +{"_id": "ff80808146dc29ee0146e11d83c50a9a_2", "question": "计算:\n\n$${{1}^{2}}-{{2}^{2}}+{{3}^{2}}-{{4}^{2}}+{{5}^{2}}-{{6}^{2}}+{{7}^{2}}-{{8}^{2}}+{{9}^{2}}$$.\n", "answer": "$$45$$\n ", "Analysis": "原式$$=(9^{2}-{{8}^{2}})+({{7}^{2}}-{{6}^{2}})+({{5}^{2}}-{{4}^{2}})+({{3}^{2}}-{{2}^{2}})+{{1}^{2}}$$\n\n$$=(9+8)+(7+6)+(5+4)+(3+2)+1$$\n\n$$=45$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "小数四则运算", "课内知识点", "两分数间接裂差", "运算求解", "裂项与通项归纳", "公式类运算", "七大能力", "逻辑分析", "转化与化归的思想", "整数系数方程组", "平方差公式正向应用", "多元一次方程组", "小数", "小数四则混合运算", "小数乘法巧算之提取公因数(普通型)", "分数裂项", "方程基础", "知识标签", "混合运算", "计算模块", "数学思想", "数与运算", "分数裂差", "平方差公式", "小数提取公因数", "方程思想", "学习能力"]} +{"_id": "ff80808146dc29ee0146e11d83c50a9a_3", "question": "计算:\n\n$$\\frac{1}{2}-\\frac{5}{6}+\\frac{1}{12}+\\frac{1}{20}+\\frac{11}{30}-\\frac{13}{42}+\\frac{1}{7}$$.\n", "answer": "$$0$$\n ", "Analysis": "原式$$=\\frac{1}{2}-(\\frac{1}{2}+\\frac{1}{3})+(\\frac{1}{3}-\\frac{1}{4})+(\\frac{1}{4}-\\frac{1}{5})+(\\frac{1}{5}+\\frac{1}{6})-(\\frac{1}{6}+\\frac{1}{7})+\\frac{1}{7}$$\n\n$$=\\frac{1}{2}-\\frac{1}{2}+\\frac{1}{3}-\\frac{1}{3}-\\frac{1}{4}+\\frac{1}{4}-\\frac{1}{5}+\\frac{1}{5}+\\frac{1}{6}-\\frac{1}{6}-\\frac{1}{7}+\\frac{1}{7}$$\n\n$$=0$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "小数四则运算", "课内���识点", "两分数间接裂差", "运算求解", "裂项与通项归纳", "公式类运算", "七大能力", "逻辑分析", "转化与化归的思想", "整数系数方程组", "平方差公式正向应用", "多元一次方程组", "小数", "小数四则混合运算", "小数乘法巧算之提取公因数(普通型)", "分数裂项", "方程基础", "知识标签", "混合运算", "计算模块", "数学思想", "数与运算", "分数裂差", "平方差公式", "小数提取公因数", "方程思想", "学习能力"]} +{"_id": "ff80808146dc29ee0146e11d83c50a9a_4", "question": "计算:\n\n解方程组:$$\\begin{cases}\\dfrac{1}{2}x+y=4 \\\\ \\dfrac{2x-1}{3}=1-\\dfrac{3-y}{6} \\end{cases}$$\n", "answer": "$$\\begin{cases} x=2 \\\\y= 3 \\end{cases}$$\n", "Analysis": "化为整式方程$$\\begin{cases} x+2y=8 \\\\ 4x-2=6-(3-y) \\end{cases}$$,\n\n再化为最简整式方程:$$\\begin{cases} x+2y=8 \\\\ 4x-y=5 \\end{cases}$$;\n\n上式与下式的2倍相加,消去$$y$$,得到$$9x=18$$,解得$$x=2$$ ,\n\n带回原式得到$$\\begin{cases} x=2 \\\\ y=3 \\end{cases}$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "小数四则运算", "课内知识点", "两分数间接裂差", "运算求解", "裂项与通项归纳", "公式类运算", "七大能力", "逻辑分析", "转化与化归的思想", "整数系数方程组", "平方差公式正向应用", "多元一次方程组", "小数", "小数四则混合运算", "小数乘法巧算之提取公因数(普通型)", "分数裂项", "方程基础", "知识标签", "混合运算", "计算模块", "数学思想", "数与运算", "分数裂差", "平方差公式", "小数提取公因数", "方程思想", "学习能力"]} +{"_id": "ff80808146dc29ee0146e11d86240aa3", "question": "计算:$$\\left[ 2007-\\left( 8.5\\times8.5-1.5\\times 1.5 \\right)\\div 10 \\right]\\div 160-0.3=$$ ___          ___ .\n ", "answer": "$$12.2$$", "Analysis": "原式$$=\\left[ 2007-\\left( 8.5+1.5 \\right)\\times \\left( 8.5-1.5 \\right)\\div 10\\right]\\div 160-0.3$$\n\n$$=\\left[ 2007-10\\times \\left( 8.5-1.5\\right)\\div 10 \\right]\\div 160-0.3$$\n\n$$=\\left(2007-7\\right)\\div 160-0.3$$\n\n$$=12.5-0.3$$\n\n$$=12.2$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["小数四则运算", "平方差公式逆向应用", "计算模块", "平方差公式", "公式类运算", "小数"]} +{"_id": "ff80808146dc29ee0146e11dd2670aea", "question": "计算:$$11 \\times 19 + 12 \\times 18 + 13 \\times 17 + 14 \\times 16  $$.\n", "answer": "$$870$$.\n", "Analysis": "本题可以直接计算出各项乘积再求和,也可以采用平方差公式.\n 原式$$ = \\left( {{{15}^2} - {4^2}} \\right) + \\left( {{{15}^2} - {3^2}} \\right) + \\left( {{{15}^2} - {2^2}} \\right) + \\left( {{{15}^2} - {1^2}} \\right)$$\n $$ = {15^2} \\times 4 - \\left( {{1^2} + {2^2} + {3^2} + {4^2}} \\right)$$\n $$ = 900 - 30$$\n $$ = 870$$ .\n 其中$${1^2} + {2^2} + {3^2} + {4^2}$$可以直接计算,但如果项数较多,应采用公式\n $${1^2} + {2^2} +  \\cdots  + {n^2} = \\frac{1}{6}n\\left( {n + 1} \\right)\\left( {2n + 1} \\right)$$   进行计算.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["平方差公式逆向应用", "计算模块", "平方差公式", "公式类运算"]} +{"_id": "ff80808146dc29ee0146e12144330bf4", "question": "计算:$$25 \\times \\left( {\\frac{1}{{1 \\times 3}} + \\frac{1}{{3 \\times 5}} + \\frac{1}{{5 \\times 7}} +  \\cdots  + \\frac{1}{{23 \\times 25}}} \\right) = $$ ___          ___ .\n ", "answer": "$$12$$", "Analysis": "原式$$=25\\times \\frac{1}{2}\\times \\left( \\frac{1}{1}-\\frac{1}{3}+\\frac{1}{3}-\\frac{1}{5}+\\cdots +\\frac{1}{23}-\\frac{1}{25} \\right)$$\n\n$$ = 25 \\times \\frac{1}{2} \\times \\left( {1 - \\frac{1}{{25}}} \\right)$$\n\n$$ = \\frac{{25}}{2} \\times \\frac{{24}}{{25}}$$\n\n$$ = 12$$.\n\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计算模块", "分数裂差", "分数裂项", "两分数间接裂差", "裂项与通项归纳"]} +{"_id": "ff80808146dc2afe0146dc50b6840162", "question": "用$$1$$,$$9$$,$$8$$,$$8$$这四个数字能排成几个被$$11$$除余$$8$$的四位数? \n ", "answer": "$$4$$种可能的排法:$$1988$$,$$1889$$,$$8918$$,$$8819$$\n ", "Analysis": "方法一:现在要求被$$11$$除余$$8$$,我们可以这样考虑:这样的数加上$$3$$后,就能被$$11$$整除了.\n\n所以我们得到“一个数被$$11$$除余$$8$$”的判定法则:\n\n将偶位数字相加得一个和数��再将奇位数字相加再加$$3$$,得另一个和数,\n\n如果这两个和数之差能被$$11$$整除,那么这个数是被$$11$$除余$$8$$的数;否则就不是.\n\n要把$$1$$,$$9$$,$$8$$,$$8$$排成一个被$$11$$除余$$8$$的四位数,可以把这$$4$$个数分成两组,每组$$2$$个数字.\n\n其中一组作为千位和十位数,它们的和记作$$A$$;另外一组作为百位和个位数,它们之和加上$$3$$记作$$B$$.\n\n我们要适当分组,使得能被$$11$$整除.现在只有下面$$4$$种分组法:\n\n                    偶位             奇位\n\n$$(1)$$              $$1,8$$             $$9,8$$\n\n$$(2)$$              $$1,9$$             $$8,8$$\n\n$$(3)$$              $$9,8$$             $$1,8$$\n\n$$(4)$$              $$8,8$$             $$1,9$$\n\n经过验证,只有第$$⑴$$种分组法满足前面的要求:\n\n$$A=1+8=9$$,$$B=9+8+3=20$$,$$B-A=11$$能被$$11$$整除.\n\n其余三种分组都不满足要求.\n\n根据判定法则还可以知道,如果一个数被$$11$$除余$$8$$,那么在奇位的任意两个数字互换,\n\n或者在偶位的任意两个数字互换得到的新数被$$11$$除也余$$8$$.\n\n于是,上面第($$1$$)种分组中,$$1$$和$$8$$任一个可以作为千位数,$$9$$和$$8$$中任一个可以作为百位数.\n\n这样共有$$4$$种可能的排法:$$1988$$,$$1889$$,$$8918$$,$$8819$$.\n\n方法二:\n\n被$$11$$除的余数判定,奇位和减偶位和的差即是余数,减不开加$$11$$.\n\n$$(1)$$奇大于偶,和:$$1+9+8+8=26$$,差:$$8$$(奇比偶大$$8$$),偶:$$\\left( 26-8 \\right)\\div 2=9=1+8$$,所以$$1$$__$$8$$__,$$8$$__$$1$$__,共四个:$$1988$$,$$1889$$,$$8918$$,$$8819$$.\n\n$$(2)$$偶大于奇,和:$$1+9+8+8=26$$,差:$$3$$(偶比奇大$$3$$),偶:$$\\left( 26+3 \\right)\\div 2=14.5$$,所得数为小数,舍去.\n\n综合$$(1)、(2)$$可得共$$4$$种排法:$$1988$$,$$1889$$,$$8918$$,$$8819$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整除特征", "整除特征综合", "数论模块", "整除"]} +{"_id": "ff8080814767499401476ce5263f08b2", "question": "现有$$1$$克,$$2$$克,$$4$$克,$$8$$克,$$16$$克的砝码各$$1$$枚,在天平上能称多少种不同重量的物体?\n", "answer": "$$31$$种.\n ", "Analysis": "因为砝码的克数恰好是$$1$$,$$2$$,$$4$$,$$8$$,$$16$$,\n 而二进位制数从右往左数各位数字分别表示:$$1$$,$$2$$,$$2^2=4$$,$$2^3=8$$,$$2^4=16$$,\n 在砝码盘上放$$1$$克砝码认为是二进位制数第一位(从右数)是$$1$$,\n 放$$2$$克砝码认为是二进位制数第二位是$$1$$,$$\\cdots$$,\n 放$$16$$克砝码认为是二进位制数第五位是$$1$$,不放砝码就认为相应位数是零,\n 这样所表示的数中最小的是$$1$$,最大的是:\n $$(11111){{}_{2}}=1\\times{{2}^{4}}+1\\times {{2}^{3}}+1\\times {{2}^{2}}+1\\times{{2}^{1}}+1\\times {{2}^{0}}=16+8+4+2+1=(31){{}_{10}}$$,\n 这就是说$$1$$至$$31$$的每个整数(克)均能称出.\n 所以共可以称出$$31$$种不同重量的物体.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["位值原理与进制", "进制的性质与应用", "数论模块", "进制应用"]} +{"_id": "ff808081477bd84c0147a61e1ca4663a_1", "question": "解方程:\n \n$$4(2x-1)-3(x-2)=7$$\n ", "answer": "$$x=1$$\n ", "Analysis": "注意去第2个括号时要变号;原方程化为:$$8x-4-3x+6=7$$,即$$5x=5$$,解得$$x=1$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "整数系数方程", "整数简易方程", "分数、小数系数方程", "课内知识点", "计算模块", "运算求解", "简易方程(一元一次)", "一元一次方程", "分数简易方程", "式与方程", "解简易方程", "学习能力", "方程基础", "知识标签"]} +{"_id": "ff808081477bd84c0147a61e1ca4663a_2", "question": "解方程:\n \n$$\\frac{2x+5}{3}=\\frac{4x-7}{5}$$\n ", "answer": "$$x=23$$\n ", "Analysis": "通分,原方程化为:$$5(2x+5)=3(4x-7)$$,即$$10x+25=12x-21$$,即$$2x=46$$,解得$$x=23$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "整数系数方程", "整数简易方程", "分数、小数系数方程", "课内知识点", "计算模块", "运算求解", "简易方程(一元一��)", "一元一次方程", "分数简易方程", "式与方程", "解简易方程", "学习能力", "方程基础", "知识标签"]} +{"_id": "ff808081477bd88b01479c1df77a3809_1", "question": "计算:\n \n$$0.27\\times  103+0.19$$\n ", "answer": "$$28$$\n ", "Analysis": "原式$$=0.27\\times  100+(0.27\\times 3+0.19)=27+1=28$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "逐步调整思想", "转化与化归的思想", "计算模块", "小数构造提取", "能力", "运算求解", "小数乘法巧算之分配律", "小数分配律", "小数提取公因数", "小数", "小数利用积/商不变性质"]} +{"_id": "ff808081477bd88b01479c1df77a3809_2", "question": "计算:\n \n$$2013\\times  2.\\dot{3}+201\\frac{3}{10}\\div0.4-2013\\times  \\frac{1}{4}$$\n ", "answer": "$$4697$$\n ", "Analysis": "原式$$=2013\\times  \\frac{7}{3}+2013\\div4-2013\\div 4=2013\\times  \\frac{7}{3}=4697$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "逐步调整思想", "转化与化归的思想", "计算模块", "小数构造提取", "能力", "运算求解", "小数乘法巧算之分配律", "小数分配律", "小数提取公因数", "小数", "小数利用积/商不变性质"]} +{"_id": "ff808081485991fa0148628e1f7004fa_1", "question": "解方程:\n \n$$3\\left( 2x-1 \\right)+4=7$$\n ", "answer": "$$x=1$$\n ", "Analysis": "原方程化为$$6x-3+4=7$$,即$$6x=6$$,解得$$x=1$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "整数系数方程", "整数简易方程", "课内知识点", "计算模块", "运算求解", "简易方程(一元一次)", "一元一次方程", "式与方程", "解简易方程", "学习能力", "方程基础", "知识标签"]} +{"_id": "ff808081485991fa0148628e1f7004fa_2", "question": "解方程:\n \n$$5\\left( x-3\\right)-2\\left( x-2 \\right)=4$$\n ", "answer": "$$x=5$$\n ", "Analysis": "原方程化为$$5x-15-2x+4=4$$,即$$3x=15$$,解得$$x=5$$;要注意去第二个括号时要变号.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "整数系数方程", "整数简易方程", "课内知识点", "计算模块", "运算求解", "简易方程(一元一次)", "一元一次方程", "式与方程", "解简易方程", "学习能力", "方程基础", "知识标签"]} +{"_id": "ff808081488801c601488c35869f1537", "question": "$$\\frac{2}{1\\times (1+2)}+\\frac{3}{(1+2)\\times(1+2+3)}+\\cdots\\frac{100}{(1+2+\\cdots +99)(1+2+\\cdots +99+100)}$$\n ", "answer": "$$\\frac{5049}{5050}$$\n ", "Analysis": "原式$$=\\frac{2}{1\\times 3}+\\frac{3}{3\\times 6}+\\frac{4}{6\\times10}+\\cdots +\\frac{100}{4950\\times 5050}$$\n $$=1-\\frac{1}{3}+\\frac{1}{3}-\\frac{1}{6}+\\frac{1}{6}-\\frac{1}{10}+\\cdots+\\frac{1}{4950}-\\frac{1}{5050}$$\n $$=1-\\frac{1}{5050}$$\n $$=\\frac{5049}{5050}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计算模块", "分数裂差", "分数裂项", "两分数间接裂差", "裂项与通项归纳"]} +{"_id": "ff808081488801c601488c358937153f", "question": "$$1994\\frac{1}{1992}\\times \\frac{1992}{1993}$$\n ", "answer": "$$1993$$\n ", "Analysis": "原式$$=(1993+\\frac{1993}{1992})\\times \\frac{1992}{1993}$$\n $$=1993\\times \\frac{1992}{1993}+\\frac{1993}{1992}\\times\\frac{1992}{1993}$$\n $$=1992+1$$\n $$=1993$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分数", "计算模块", "分数巧算", "分数拆数法构造分配律", "乘法分配律"]} +{"_id": "ff80808148880257014888e00f641014_1", "question": "计算:\n \n$$999+37\\times  73$$\n ", "answer": "$$3700$$\n ", "Analysis": "原式$$=37\\times  27+37\\times  73=37\\times  \\left( 27+73 \\right)=37\\times  100=3700$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "整数提取公因数", "整数", "整数构造提取", "课内知识点", "计算模块", "数与运算", "运算求解", "运算律", "整数倍数关系", "提取公因数", "学习能力", "乘法运算律", "知识标签"]} +{"_id": "ff80808148880257014888e00f641014_2", "question": "计算:\n \n$$20\\times  44+13\\times  33-4\\times  22-6\\times  11$$\n ", "answer": "$$1155$$\n ", "Analysis": "原式$$=80\\times  11+39\\times  11-8\\times  11-6\\times  11=\\left( 80+39-8-6 \\right)\\times  11=105\\times  11=1155$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "整数提取公因数", "整数", "整数构造提取", "课内知识点", "计算模块", "数与运算", "运算求解", "运算律", "整数倍数关系", "提取公因数", "学习能力", "乘法运算律", "知识标签"]} +{"_id": "ff80808148880257014888e0100b1016_1", "question": "计算:\n \n$$\\left( 33-3 \\right)\\times  \\left(33+33 \\right)+33$$\n ", "answer": "$$2013$$\n ", "Analysis": "原式$$=30\\times  66+33=2013$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "整数", "混合运算", "逐步调整思想", "转化与化归的思想", "整数四则混合运算", "课内知识点", "计算模块", "数与运算", "运算求解", "对应思想", "四则混合运算", "数学思想", "学习能力", "知识标签"]} +{"_id": "ff80808148880257014888e0100b1016_2", "question": "计算:\n \n$$10\\times  8-9\\times  7+8\\times  6-7\\times  5+6\\times  4-5\\times  3+4\\times  2-3\\times  1$$\n ", "answer": "$$44$$\n ", "Analysis": "原式$$=80-63+48-35+24-15+8-3$$\n $$=\\left( 80+48+24+8 \\right)-\\left( 63+35+15+3\\right)$$\n $$=160-116=44$$\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "整数", "混合运算", "逐步调整思想", "转化与化归的思想", "整数四则混合运算", "课内知识点", "计算模块", "数与运算", "运算求解", "对应思想", "四则混合运算", "数学思想", "学习能力", "知识标签"]} +{"_id": "ff808081488cdfd40148982ffba33d29", "question": "在美洲的一个小镇中,对于$$200$$以下的数字读法都是采取$$20$$进制的.如果十进制中的$$147$$在$$20$$进制中的读音是“$$seyth~ha~seyth~ugens$$”,而十进制中的$$49$$在$$20$$进制中的读音是“$$naw~ha~dew~ugens$$”,那么$$20$$进制中读音是“$$dew~ha~naw~ugens$$”的数指的是十进制中的数 ___          ___ .\n", "answer": "$$182$$", "Analysis": "$$147$$在$$20$$进制中是$$77$$读音是”sveth ha seyth ugens”,\n\n$$49$$在$$20$$进制中是$$29$$读音是“naw ha dew ugens”,\n\n所以$$syeth$$ 代表的是$$7$$而$$ha$$ 和$$ugens$$ 则分别代表了第二位和末位,\n\n所以$$naw$$和$$dew$$分别代表了$$149$$.\n\n那么$$20$$进制中读音是“dew ha naw ugens”的数是$$20$$进制中的$$92$$($$2$$和$$9$$对换位置即可),\n\n所以十进制中的数是$$9\\times 20+2=182$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["位值原理与进制", "进制间的互化", "进制的性质与应用", "数论模块"]} +{"_id": "ff808081490d4b7b014912d3d7bc0389_1", "question": "计算及解方程\n \n$$3\\frac{3}{4}\\times 4.4+\\frac{3}{8}\\times 16+2\\div \\frac{4}{15}$$\n ", "answer": "$$30$$\n ", "Analysis": "$$3\\frac{3}{4}\\times 4.4+\\frac{3}{8}\\times 16+2\\div \\frac{4}{15}=\\frac{15}{4}\\times\\frac{32}{5}+6=24+6=30$$\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "分数", "整数", "课内知识点", "运算求解", "简易方程(一元一次)", "分数运算", "四则混合运算", "裂项与通项归纳", "七大能力", "逐步调整思想", "转化与化归的思想", "分数、小数系数方程", "式与方程", "分、小数四则混合运算", "整数四则混合运算", "分数裂项", "一元一次方程", "分数简易方程", "分小四则混合运算", "解简易方程", "方程基础", "知识标签", "混合运算", "计算模块", "两分数直接裂差", "数与运算", "分数裂差", "对应思想", "数学思想", "学习能力", "分数加减混合运算"]} +{"_id": "ff808081490d4b7b014912d3d7bc0389_2", "question": "计算及解方程\n \n$${{2}^{2}}+{{4}^{2}}+{{6}^{2}}+{{8}^{2}}+{{10}^{2}}+{{12}^{2}}+{{14}^{2}}+{{16}^{2}}$$\n ", "answer": "$$816$$\n ", "Analysis": "$${{2}^{2}}+{{4}^{2}}+{{6}^{2}}+{{8}^{2}}+{{10}^{2}}+{{12}^{2}}+{{14}^{2}}+{{16}^{2}}={{2}^{2}}\\times\\frac{1}{6}\\times 8\\times 9\\times 17=816$$\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "分数", "整数", "课内知识点", "运算求解", "简易方程(一元一次)", "分数运算", "四则混合运算", "裂项与通项归纳", "七大能力", "逐步调整思想", "转化与化归的思想", "分数、小数系数方程", "式与方程", "分、小数四则混合运算", "整数四则混合运算", "分数裂项", "一元一次方程", "分数简易方程", "分小四则混合运算", "解简易方程", "方程基础", "知识标签", "混合运算", "计算模块", "两分数直接裂差", "数与运算", "分数裂差", "对应思想", "数学思想", "学习能力", "分数加减混合运算"]} +{"_id": "ff808081490d4b7b014912d3d7bc0389_3", "question": "计算及解方程\n \n$$\\frac{1}{6}-\\frac{1}{12}+\\frac{9}{20}-\\frac{1}{30}$$\n ", "answer": "$$\\frac{1}{2}$$\n ", "Analysis": "原式$$=(\\frac{1}{2}-\\frac{1}{3})-(\\frac{1}{3}-\\frac{1}{4})+(\\frac{1}{4}+\\frac{1}{5})-(\\frac{1}{5}-\\frac{1}{6})=(\\frac{1}{2}+\\frac{1}{4}+\\frac{1}{4})-(\\frac{1}{3}+\\frac{1}{6}+\\frac{1}{6})=\\frac{1}{2}$$\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "分数", "整数", "课内知识点", "运算求解", "简易方程(一元一次)", "分数运算", "四则混合运算", "裂项与通项归纳", "七大能力", "逐步调整思想", "转化与化归的思想", "分数、小数系数方程", "式与方程", "分、小数四则混合运算", "整数四则混合运算", "分数裂项", "一元一次方程", "分数简易方程", "分小四则混合运算", "解简易方程", "方程基础", "知识标签", "混合运算", "计算模块", "两分数直接裂差", "数与运算", "分数裂差", "对应思想", "数学思想", "学习能力", "分数加减混合运算"]} +{"_id": "ff808081490d4b7b014912d3d7bc0389_4", "question": "计算及解方程\n \n$$\\frac{x+1}{2}-\\frac{29-x}{12}=1$$\n ", "answer": "$$x=5$$\n ", "Analysis": "$$\\frac{x+1}{2}-\\frac{29-x}{12}=1\\Rightarrow 6(x+1)-(29-x)=12\\Rightarrow7x=35\\Rightarrow x=5$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "分数", "整数", "课内知识点", "运算求解", "简易方程(一元一次)", "分数运算", "四则混合运算", "裂项与通项归纳", "七大能力", "逐步调整思想", "转化与化归的思想", "分数、小数系数方程", "式与方程", "分、小数四则混合运算", "整数四则混合运算", "分数裂项", "一元一次方程", "分数简易方程", "分小四则混合运算", "解简易方程", "方程基础", "知识标签", "混合运算", "计算模块", "两分数直接裂差", "数与运算", "分数裂差", "对应思想", "数学思想", "学习能力", "分数加减混合运算"]} +{"_id": "ff80808149848d890149883f72cc0699", "question": "$$\\frac{1}{2}+\\frac{1}{6}+\\frac{1}{12}+\\frac{1}{20}+\\frac{1}{30}+\\frac{1}{42}$$\n ", "answer": "$$\\frac{6}{7}$$\n ", "Analysis": "原式$$=1-\\frac{1}{2}+\\frac{1}{2}-\\frac{1}{3}+\\frac{1}{3}-\\frac{1}{4}+\\frac{1}{4}-\\frac{1}{5}+\\frac{1}{5}-\\frac{1}{6}+\\frac{1}{6}-\\frac{1}{7}=1-\\frac{1}{7}=\\frac{6}{7}$$\n \n$$\\frac{1}{2}+\\frac{1}{6}+\\frac{1}{12}+\\frac{1}{20}+\\frac{1}{30}+\\frac{1}{42}$$.\n\n$$=\\frac{1}{1\\times 2}+\\frac{1}{2\\times 3}+\\frac{1}{3\\times 4}+\\frac{1}{4\\times 5}+\\frac{1}{5\\times 6}+\\frac{1}{6\\times 7}$$\n\n$$=1-\\frac{1}{2}+\\frac{1}{2}-\\frac{1}{3}+\\frac{1}{3}-\\frac{1}{4}+\\frac{1}{4}-\\frac{1}{5}+\\frac{1}{5}-\\frac{1}{6}+\\frac{1}{6}-\\frac{1}{7}$$\n\n$$=1-\\frac{1}{7}$$\n\n$$=\\frac{6}{7}$$.\n\n故答案为:$$\\frac{6}{7}$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计算模块", "两分数直接裂差", "分数裂差", "分数裂项", "裂项与通项归纳"]} +{"_id": "ff80808149848e470149895bf50f0bdd", "question": "$$\\frac{7}{15}+\\frac{7}{12}+\\frac{8}{15}-\\frac{7}{12}$$\n ", "answer": "$$1$$\n ", "Analysis": "原式$$=\\frac{7}{15}+\\frac{8}{15}+\\frac{7}{12}-\\frac{7}{12}=1$$ .\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分数", "计算模块", "凑整", "分数巧算"]} +{"_id": "ff80808149848e470149895c5ba10c17", "question": "$$\\frac{3}{4}-(\\frac{1}{7}-\\frac{1}{4})$$\n ", "answer": "$$\\frac{6}{7}$$\n ", "Analysis": "$$\\frac{3}{4}-(\\frac{1}{7}-\\frac{1}{4})=\\frac{6}{7}$$\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分数", "计算模块", "凑整", "分数巧算"]} +{"_id": "ff80808149848e470149895c763f0c1e", "question": "$$\\frac{4}{5}\\times 2$$\n ", "answer": "$$\\frac{8}{5}$$\n ", "Analysis": "$$\\frac{4}{5}\\times 2=\\frac{8}{5}$$ .\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分数运算", "分数", "计算模块", "分数乘法运算"]} +{"_id": "ff80808149848e470149895c7f820c2c", "question": "$$\\frac{7}{20}\\times 2$$\n ", "answer": "$$\\frac{7}{10}$$\n ", "Analysis": "$$\\frac{7}{20}\\times 2=\\frac{7}{10}$$ .\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分数运算", "分数", "计算模块", "分数乘法运算"]} +{"_id": "ff80808149848e470149895c97480c38", "question": "$$\\frac{2}{45}\\times 10$$\n ", "answer": "$$\\frac{4}{9}$$\n ", "Analysis": "$$\\frac{2}{45}\\times 10=\\frac{4}{9}$$ .\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分数运算", "分数", "计算模块", "分数乘法运算"]} +{"_id": "ff80808149848e470149895cb8d40c52", "question": "$$\\frac{4}{9}\\times \\frac{27}{10}$$\n ", "answer": "$$\\frac{6}{5}$$\n ", "Analysis": "$$\\frac{4}{9}\\times \\frac{27}{10}=\\frac{6}{5}$$\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分数运算", "分数", "计算模块", "分数乘法运算"]} +{"_id": "ff80808149848e470149895cd9e30c66", "question": "$$\\frac{4}{25}\\times 100$$\n ", "answer": "$$16$$\n ", "Analysis": "$$\\frac{4}{25}\\times 100=16$$ .\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分数运算", "分数", "计算模块", "分数乘法运算"]} +{"_id": "ff80808149990d0a0149e5cef0a12b48", "question": "$$\\frac{1}{1\\times 2}+\\frac{1}{2\\times 3}+\\frac{1}{3\\times4}+\\cdots +\\frac{1}{2010\\times 2011}$$\n ", "answer": "$$\\frac{2010}{2011}$$\n ", "Analysis": "原式$$=1-\\frac{1}{2011}=\\frac{2010}{2011}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计算模块", "两分数直接裂差", "分数裂差", "分数裂项", "裂项与通项归纳"]} +{"_id": "ff80808149f0d67d0149f1944d610154", "question": "计算:$$37.9\\times 0.0038+1.21\\times 0.379+6.21\\times 0.159$$\n ", "answer": "$$1.59$$\n", "Analysis": "$$\\begin{eqnarray}&&37.9\\times0.0038+1.21\\times0.379+6.21\\times0.159\\\\ &=&0.379\\times0.38+1.21\\times0.379+6.21\\times0.159\\\\ &=&0.379\\times (0.38+1.21)+6.21\\times0.159\\\\ &=&0.379\\times1.59+6.21\\times0.159\\\\ &=&3.79\\times0.159+6.21\\times0.159\\\\ &=&(3.79+6.21)\\times0.159\\\\ &=&10\\times0.159\\\\ &=&1.59.\\\\\\end{eqnarray}$$\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["小数点的移动", "计算模块", "小数构造提取", "小数提取公因数", "小数"]} +{"_id": "ff8080814a053eee014a0b021cae0962", "question": "计算:$$1-\\frac{2}{3-\\frac{4}{5}}$$ \n ", "answer": "$$\\frac{1}{11}$$\n ", "Analysis": "原式$$=1-\\frac{2}{\\frac{11}{5}}=1-\\frac{10}{11}=\\frac{1}{11}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分数", "计算模块", "繁分数", "繁分数计算"]} +{"_id": "ff8080814a39799b014a39d5abff00a6", "question": "解方程:$$\\left\\{ \\begin{matrix}2a+b+c=9 \\\\ a+3b+c=10 \\\\ a+b+4c=9 \\\\\\end{matrix}\\right.$$\n ", "answer": "$$a=3$$,$$b=2$$,$$c=1$$\n ", "Analysis": "消元,易知$$a=3$$,$$b=2$$,$$c=1$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "计算模块", "整数系数方程组", "方程基础"]} +{"_id": "ff8080814502fa2401450be3476e182c", "question": "右图是一个分数等式:等式中的汉字代表数字$$1$$、$$2$$、$$3$$、$$4$$、$$5$$、$$6$$、$$7$$、$$8$$、$$9$$,不同的汉字代表不同的数字,如果“北”和“京”分别代表$$1$$和$$9$$,请写出“奥运会”所代表的所有的三位整数,并且说明理由.\n\n$$\\frac{北}{京} = \\frac{{奥运会}}{{梦想成真}}$$\n", "answer": "奥运会有$$836$$,$$647$$,$$638$$共$$3$$种取值.\n ", "Analysis": "① $$\\frac{1}{9} = \\frac{{奥运会}}{{梦想成真}}$$ ∴$$9\\times $$奥运会$$=$$梦想成真,∴梦想成真���$$9$$的倍数,\n\n于是:“梦”$$+$$“想”$$+$$“成”$$+$$“真”为$$9$$的倍数,\n\n而:“梦”$$+$$“想”$$+$$“成”$$+$$“真” 最大为:$$8+7+6+5=26$$,\n\n最小为:$$2+3+4+5=14$$;\n\n所以:“梦”$$+$$“想”$$+$$“成”$$+$$“真” 在$$14$$至$$26$$之间,且为$$9$$的倍数,\n\n推出:“梦”$$+$$“想”$$+$$“成”$$+$$“真”$$=18$$.\n\n②“奥”、“运”、“会”、“梦”、“想”、“成”、“真”分别代表$$2-8$$,\n\n所以:“奥”$$+$$ “运”$$+$$“会”$$=2+3+\\cdots+8-18=17$$,\n\n可以得出:“奥”、“运”、“会”必是下面三组中的一组:\n\n$$8$$、$$7$$、$$2$$;$$8$$、$$6$$、$$3$$; $$8$$、$$5$$、$$4$$; $$7$$、$$6$$、$$4$$.\n\n③分别讨论,看哪组满足题意:此事有两种讨论思路:\n\n(1)利用加减数字谜;奥运会$$\\times 9=$$梦想成真,\n\n∴ 0 - \n\n∵“奥”$$\\ne$$ “梦”,所以, “运”必定比“奥”小,\n\n(这样“运”$$-$$“奥”时需借位,这样才能保证“奥”$$\\ne$$“梦”)\n\n即奥运会这个三位数的十位比百位小.\n\nⅠ 若“奥”、“运”、“会”为$$8$$、$$7$$、$$2$$这一组,则 三位数“奥运会”可能为$$872$$,$$827$$,$$728$$.\n\n∵奥运会$$\\times 9=$$梦想成真\n\n若:$$872\\times9=7848$$“奥”、“真”重复      所以: 不行\n\n$$827\\times9=7843$$  “奥”、“想”重复      所以: 不行\n\n$$728\\times9=6552$$  “想”、“成”重复      所以: 不行\n\nⅡ、Ⅲ一样的思路试 其他三组经试验: 三位数“奥运会”可以为:$$836$$,$$647$$,$$638$$.\n\n(2)利用乘除数字谜\n\n根据所求,“奥”、“运”、“会”必是下面三组中的一组:\n\n$$8$$、$$7$$、$$2$$; $$ 8$$、$$6$$、$$3$$; $$8$$、$$5$$、$$4$$;  $$7$$、$$6$$、$$4$$.\n\n × 9 \n\n①当“奥”、“运”、“会”为$$8$$、$$7$$、$$2$$一组里的数时,观察尾数,可知会只能为$$7$$,\n\n则奥运会可以是$$287$$也可以是$$827$$,此时梦想成真应从$$3$$、$$4$$、$$5$$、$$6$$里选,$$287\\times9=2870-287$$,\n\n千位是$$2$$,没有满足这样的数;\n\n$$827\\times9=8270-827$$千位是$$7$$,也无这样的数;\n\n②当奥”、“运”、“会”为$$8$$、$$3$$、$$6$$一组里的数时,观察尾数,可知会只能为$$8$$,也可能为$$3$$,\n\n可能为$$6$$,分别讨论;\n\n当会为$$8$$时,奥运会$$=638$$或$$368$$,$$638\\times9=6380-638=5742$$,满足;$$368\\times9=3680-368=3314$$不符合;\n\n当会为$$6$$时,奥运会$$=386$$或$$836$$,$$386\\times9=3860-386=3474$$,不符合;$$836\\times9=8360-836=7524$$满足;\n\n当会为$$3$$时,奥运会$$=683$$或者$$863$$,$$683\\times9=6830-683$$,千位为$$6$$,不符合;$$863\\times9=8630-863=7767$$,不符合;\n\n其他同理,发现当奥运会$$=647$$也可.\n\n所以奥运会有$$836$$,$$647$$,$$638$$共$$3$$种取值.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数字谜", "图文加法竖式数字谜", "组合模块", "竖式数字谜"]} +{"_id": "ff8080814526d2f401452c9aacf11ea4", "question": "$$4$$名运动员参加一项比赛,赛前,甲说:“我肯定是最后一名.”乙说:“我不可能是第一名,也不可能是最后一名.”丙说:“我绝对不会得最后一名.”丁说:“我肯定得第一名.”赛后,发现他们$$4$$人的预测中只有一人是错误的.请问谁的预测是错误的?\n ", "answer": "丁的预测是错的.\n ", "Analysis": "假设甲的预测是错的,那么其他三人的预测都是对的,那么甲不是最后一名,乙和丙也不是最后一名,丁是第一名,这样的话没有人是最后一名,矛盾.所以甲的预测是对的,甲是最后一名,那么丙的预测也是对的.如果乙的预测是错的,那么乙是第一名,而丁的预测是对的,丁也是第一名,矛盾.所以乙的预测是对的,丁的预测是错的.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["真假话", "半真半假", "逻辑推理", "假设型逻辑推理", "组合模块"]} +{"_id": "ff8080814526d2f401452c9ac2671eae", "question": "有$$10$$个整数克的砝码(允许砝码重量相同),将其中一个或几个放在天平的右边,待称的物品放在天平的左边,能称出$$1$$,$$2$$,$$3$$,$$\\cdots$$,$$200$$的所有整数克的物品来;那么,这$$10$$个砝码中第二重的砝码最少是 ___          ___ 克.\n ", "answer": "$$18$$", "Analysis": "这$$10$$个整数克的砝码共重应该是$$200$$,这样,才能在最重的定下来后,第二重的尽量少.\n\n作为一般结论,如果要连续称出一些重量,只在天边的一边放砝码,另一边放重物,则砝码最少的情况应该结合二进制,即$$1$$,$$2$$,$$4$$,$$8$$,$$16$$,$$32$$,$$64$$,$$128$$.这种情况下,只需要$$7$$个砝码,就能至多称到$$128\\times2-1=255$$克重.\n\n而本题共有$$10$$个砝码,只需要调整一下这里的砝码:\n\n第一种方案:为了实现第二重最少,则可以让第一重尽量大,而且不止一个,\n\n这里的思路是:如果后面$$6$$个数中,有$$5$$个相同的最大,把前面所有$$5$$个数的和与之相等,$$200=6\\times33+2$$,即后面有$$5$$个$$33$$,前面则有$$1$$,$$2$$,$$4$$,$$8$$,$$18$$这种方案中,无法凑出$$16$$,$$17$$这两种重量.\n\n于是换一种思路,让最大数相同的只有$$4$$个,前面$$6$$个砝码看作一个.\n\n则最重的为$$40$$,这样,可以构造出$$1$$,$$2$$,$$4$$,$$8$$,$$12$$,$$13$$,$$40$$,$$40$$,$$40$$,$$40$$.\n\n不过,对于这种解法,与官方的推荐答案不符,原因在于,最重的有$$4$$个,次重的被看作“第五名”.在这里,“第五名”“第二重”之间是有一定的歧义的.所以,我们建议大家做这道题应用高级技巧“歧义解决”.即说清楚:\n\n如果只看重量,第一重(可以并列)与第二重,则第二重最少可以是$$13$$克.\n\n如果根据“名次”,第二名(可以并列)为第二重,则第二重最少可以是$$18$$克.\n\n这种情况的算理是:\n\n首先考虑$$1$$、$$2$$、$$4$$、$$8$$这四种砝码必须有,另外,对于第二重,至少要是$$16$$.\n\n这里除了第一重之外,$$16$$最多可以有$$5$$个砝码,即:\n\n$$1$$、$$2$$、$$4$$、$$8$$、$$16$$、$$16$$、$$16$$、$$16$$、$$16$$.\n\n要称$$200$$,第一重的要达到$$200-(1+2+4+8+16+16+16+16+16)=105$$\n\n则$$96-104$$的重量无法称出来.\n\n所以,把第二重的调整为$$17$$,即;\n\n$$1$$、$$2$$、$$4$$、$$8$$、$$17$$、$$17$$、$$17$$、$$17$$、$$17$$、$$100$$\n\n但$$16$$无法称出来,所以要调整出$$16$$,必会现$$18$$,(如果调整给$$100$$,即$$100$$变为$$101$$,则$$100$$无法称出来).所以,“最佳方案”是$$1$$、$$2$$、$$4$$、$$8$$、$$16$$、$$17$$、$$17$$、$$17$$、$$18$$、$$100$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 5, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["砝码问题", "组合模块", "智巧趣题", "数学趣题"]} +{"_id": "ff808081456450d60145647209790019_1", "question": "偶偶国的人都非常讨厌奇数,以至于连任何奇数数字都不想看见.所以平时交流的时候都尽量用☆代替奇数数字,例如:偶偶国的人书写“$$3\\times 4=12$$”,会写成“$$☆\\times 4=$$$$☆2$$”.\n \n请用偶偶国的方式计算:$$24\\times 48=$$ ___          ___ .\n ", "answer": "$$☆☆☆2$$", "Analysis": "$$24\\times 48=1152=☆☆☆2$$\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "普通型", "逻辑分析", "直接运算型", "计算模块", "枚举思想", "运算求解", "定义新运算", "对应思想", "数学思想", "学习能力", "知识标签"]} +{"_id": "ff808081456450d60145647209790019_2", "question": "偶偶国的人都非常讨厌奇数,以至于连任何奇数数字都不想看见.所以平时交流的时候都尽量用☆代替奇数数字,例如:偶偶国的人书写“$$3\\times 4=12$$”,会写成“$$☆\\times 4=$$$$☆2$$”.\n \n偶偶国表示一个两位数乘两位数的横式乘法算式,这个算式中(包含两个乘数与最后的乘积)最多能包含多少个☆?为什么?\n", "answer": "$$8$$\n ", "Analysis": "两位数乘两位数最多只能得四位数,所以最多$$8$$个☆;另一方面,$$33\\times 35=1155$$\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "普通型", "逻辑分析", "直接运算型", "计算模块", "枚举思想", "运算求解", "定义新运算", "对应思想", "数学思想", "学习能力", "知识标签"]} +{"_id": "ff80808145deb54e0145f4be6de42000", "question": "如果将四面颜色不同的小旗子挂在一根绳子上,组成一个信号,那么这四面小旗子可组成 ___          ___ 种不同的信号.\n ", "answer": "$$24$$种", "Analysis": "$$4\\times3\\times2\\times1=24$$.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "组合的基本应用", "组合"]} +{"_id": "ff8080814607f9ce014612763a781455", "question": "将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有 ___          ___ 种不同的放法.\n ", "answer": "$$10$$", "Analysis": "四盆黄花摆好后,剩下$$5$$个位子可插进红花,选三个位置将三盆红花插入,$$\\text{C}_{5}^{3}=\\frac{5\\times4\\times 3}{3\\times 2\\times 1}=10$$,所以有$$10$$种选择.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "组合的基本应用", "组合"]} +{"_id": "ff8080814694a4c301469d7b77c8267a", "question": "已知$$98$$个互不相同的质数$${{p}_{1}}$$,$${{p}_{2}}$$,$$\\cdots$$,$${{p}_{98}}$$,记$$N=p_{1}^{2}+p_{2}^{2}+\\cdots +p_{98}^{2}$$,问:$$N$$被$$3$$除的余数是多少?\n ", "answer": "$$1$$或$$2$$.\n ", "Analysis": "(1)如果这些质数中不含质数$$3$$,那么这些数平方被$$3$$除的余数就是$$1$$,所以$$N$$被$$3$$除的余数就是$$98$$被$$3$$除的余数,是$$2$$;\n\n(2)如果有$$3$$,那么这些数的平方除以$$3$$余数是$$1$$,所以$$N$$被$$3$$除的余数就是剩下$$97$$个数除以$$3$$的余数,是$$1$$.\n\n根据余数的可乘性:\n\n若一个数除以$$3$$余$$0$$,则其平方除以$$3$$也余$$0$$;\n\n若一个数除以$$3$$余$$1$$,则其平方除以$$3$$也余$$1$$;\n\n若一个数除以$$3$$余$$2$$,则其平方除以$$3$$余$$1$$;\n\n即一个平方数除以$$3$$的余数只可能是$$0$$或$$1$$.\n\n若则$$98$$个质数中不含质数$$3$$,则每个质数都不是$$3$$的倍数,那么每个质数的平方除以$$3$$均余$$1$$,根据余数的可加性,$$98$$除以$$3$$余$$2$$,则$$N$$除以$$3$$余$$2$$;若这$$98$$个质数中含有$$3$$,则$$97$$除以$$3$$余$$1$$,$$N$$除以$$3$$也余$$1$$.\n\n综上,$$N$$被$$3$$除的余数可能是$$1$$或$$2$$.\n\n\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["余数的可乘性", "余数问题", "余数的性质", "数论模块"]} +{"_id": "ff80808146dc2afe0146dc525bde0260", "question": "在某市举行的一次乒乓球邀请赛上,有$$3$$名专业选手与$$3$$名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有$$10$$分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加$$2$$分,每胜业余选手一场加$$1$$分;专业选手每负一场扣$$2$$分,业余选手每负一场扣$$1$$分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?\n ", "answer": "胜$$3$$场\n ", "Analysis": "当一位业余选手胜$$2$$场时,如果只胜了另两位业余选手,那么他得$$10+2-3=9($$分$$)$$.此时,如果专业选手间的比赛均为一胜一负,而专业选手与业余选手比赛全胜,那么每位专业选手的得分都是$$10+2-2+3=13($$分$$)$$.所以,一位业余选手胜$$2$$场,不能确保他的得分比某位专业选手高.\n 当一位业余选手胜$$3$$场时,得分最少时是胜两位业余选手,胜一位专业选手,得$$10+2+2-2=12($$分$$)$$.此时,三位专业选手最多共得$$30+0+4=34($$分$$)$$,其中专业选手之间的三场比赛共得$$0$$分,专业选手与业余选手的比赛最多共得$$4$$分.由三个人得$$34$$分,$$34 \\div 3 = 11\\frac{{1}}{{3}}$$,推知,必有人得分不超过$$11$$分.\n 也就是说,一位业余选手胜$$3$$场,能确保他的得分比某位专业选手高.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组合模块", "单循环赛", "体育比赛", "逻辑推理"]} +{"_id": "ff80808146ec21070146f5ec192605c8", "question": "把$$20$$个苹果分给$$3$$个小朋友,每人最少分$$3$$个,可以有多少种不同的分法?\n ", "answer": " $$78$$\n ", "Analysis": "先给每人$$2$$个,还有$$14$$个苹果,每人至少分一个,$$13$$个空插$$2$$个板,有$$\\text{C}_{13}^{2}=78$$种分法.\n \n也可以按分苹果最多的人分的个数分类枚举.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["至少多个", "计数模块", "插板法", "组合", "排列组合"]} +{"_id": "ff808081472482f50147325d995b0ac6_2", "question": "对于$$155$$个装有红、黄、蓝三种颜色球的盒子,有三种分类方法:对于每种颜色,将该颜色的球数目相同的盒子归为一类.若从$$1$$到$$30$$之间所有的自然数都是某种分类中的一类的盒子数,那么,\n \n说明,可以找到三个盒子,其中至少有两种颜色的球,它们的数目分别相同.\n ", "answer": "(1)第一问:\n 现在我们来看原题,共有$$155$$个盒子,而每一种分类的个数正好占据了$$1$$至$$30$$中的每一个自然数,我们先看看各种分类情况中球个数没有重复的情况,这时正好使用了$$1+2+3+4+\\cdots +29+30=465$$个盒子,这里$$465$$正好是$$155$$的$$3$$倍,说明不可能出现分类情况中球个数重复的情况,即$$1$$至$$30$$每个数只出现$$1$$次,故分类的类数应该与$$1$$至$$30$$中自然数个数相同,故分为$$30$$类;\n (2)第二问:\n 首先理解问题,至少能找到$$3$$个盒子,它们中的两种颜色比如红和蓝的个数都相同,例如盒子一有$$2$$红$$2$$黄$$3$$蓝,盒子二有$$2$$红$$3$$黄$$3$$蓝,盒子三有$$2$$红$$7$$黄$$3$$蓝,由于三个盒子中红色和蓝色球数相同,故这三个盒子即为满足的题意的三个盒子;\n 接下来我们来试图说明题目所要证明的结论,首先我们可以知道一定有某种分类方式,有$$30$$个盒子属于这种分类,不妨将其设为$$a$$颜色中的某种分类(即这$$30$$个盒子中$$a$$颜色球的个数相同).现在我们的思路是在这$$30$$个盒子中再找到$$3$$个第二种颜色球个数相同的盒子.除去以上说的$$1$$种分类外,还剩下$$29$$种分类,可以得出剩下两种颜色中必有一种颜色的分类种数少于$$15$$种,否则总分类种数会超过$$30$$种,而与第一问结论矛盾.不妨设$$b$$颜色的分类种数少于$$15$$种,最多$$14$$种,那么我们可以看到,在前面提到的$$a$$颜色中的某种分类里,有$$30$$个盒子中$$a$$颜色球个数相同,而这$$30$$个盒子中$$b$$颜色的个数种类只有$$14$$种,根据抽屉原理,说明至少有$$3$$个盒子中$$b$$颜色球的个数相同,则这$$3$$个盒子中$$a$$颜色球的个数相同,$$b$$颜色球的个数也相同,即说明题目结论成立.\n ", "Analysis": "方法一:(1)第一问:\n 现在我们来看原题,共有$$155$$个盒子,而每一种分类的个数正好占据了$$1$$至$$30$$中的每一个自然数,我们先看看各种分类情况中球个数没有重复的情况,这时正好使用了$$1+2+3+4+\\cdots +29+30=465$$个盒子,这里$$465$$正好是$$155$$的$$3$$倍,说明不可能出现分类情况中球个数重复的情况,即$$1$$至$$30$$每个数只出现$$1$$次,故分类的类数应该与$$1$$至$$30$$中自然数个数相同,故分为$$30$$类;\n (2)第二问:\n 首先理解问题,至少能找到$$3$$个盒子,它们中的两种颜色比如红和蓝的个数都相同,例如盒子一有$$2$$红$$2$$黄$$3$$蓝,盒子二有$$2$$红$$3$$黄$$3$$蓝,盒子三有$$2$$红$$7$$黄$$3$$蓝,由于三个盒子中红色和蓝色球数相同,故这三个盒子即为满足的题意的三个盒子;\n 接下来我们来试图说明题目所要证明的结论,首先我们可以知道一定有某种分类方式,有$$30$$个盒子属于这种分类,不妨将其设为$$a$$颜色中的某种分类(即这$$30$$个盒子中$$a$$颜色球的个数相同).现在我们的思路是在这$$30$$个盒子中再找到$$3$$个第二种颜色球个数相同的盒子.除去以上说的$$1$$种分类外,还剩下$$29$$种分类,可以得出剩下两种颜色中必有一种颜色的分类种数少于$$15$$种,否则总分类种数会超过$$30$$种,而与第一问结论矛盾.不妨设$$b$$颜色的分类种数少于$$15$$种,最多$$14$$种,那么我们可以看到,在前面提到的$$a$$颜色中的某种分类里,有$$30$$个盒子中$$a$$颜色球个数相同,而这$$30$$个盒子中$$b$$颜色的个数种类只有$$14$$种,根据抽屉原理,说明至少有$$3$$个盒子中$$b$$颜色球的个数相同,则这$$3$$个盒子中$$a$$颜色球的个数相同,$$b$$颜色球的个数也相同,即说明题目结论成立.\n 方法二:不妨设$${{a}_{1}}=30$$,记这$$30$$个盒子的类为$$A$$类.因为$$i+j+k=30$$,必有$$j\\leqslant 14$$或$$k\\leqslant 14$$,不妨设$$j\\leqslant 14$$.$$A$$类的$$30$$个盒子分到这不超过$$14$$个类中去,必有一类至少有三个盒子,这三个盒子里的红球数相同并且黄球数也相同.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "逻辑分析", "转化与化归的思想", "抽屉原理", "构造型抽屉原理", "能力", "整体思想", "构造与论证", "组合模块"]} +{"_id": "ff808081472482f5014732d55cba0cd7", "question": "北京某水族馆饲养鲨鱼,偶数颗牙齿的鲨鱼总说实话,奇数颗牙齿的鲨鱼总说谎话.一天,绿鲨鱼、蓝鲨鱼、紫鲨鱼、白鲨鱼在一起聊天.\n 绿鲨鱼对蓝鲨鱼说:“我有$$8$$颗牙齿,而你只有$$6$$颗牙齿.”\n 蓝鲨鱼对绿鲨鱼说:“我才有$$8$$颗牙齿,而你只有$$7$$颗牙齿.”\n 紫鲨鱼说:“蓝鲨鱼确实有$$8$$颗牙齿,而我整整有$$9$$颗牙齿呀!”\n 白鲨鱼说:“你们都没有$$8$$颗牙齿,只有我有$$8$$颗牙齿!”\n 小朋友们,水族馆里有 ___          ___ 只鲨鱼有$$8$$颗牙齿.\n ", "answer": "$$1$$", "Analysis": "紫鲨鱼说它有$$9$$颗牙,若是实话,则它有奇数颗牙,应说谎话,矛盾,所以紫鲨鱼说的是谎话,它有奇数颗牙,且蓝鲨鱼没有$$8$$颗牙;蓝鲨鱼说它有$$8$$颗牙,所以是谎话,因此蓝鲨鱼有奇数颗牙;而绿鲨鱼说蓝鲨鱼有$$6$$颗牙,显然是谎话,因此绿鲨鱼也没有$$8$$颗牙;综上,白鲨鱼说的是对的,它有$$8$$颗牙.因此只有$$1$$只鲨鱼有$$8$$颗牙.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["真假话", "逻辑推理", "找矛盾", "假设型逻辑推理", "组合模块"]} +{"_id": "ff80808147248448014724de3ba1014a", "question": "记一百个自然数$$x$$,$$x+1$$,$$x+2$$,$$\\cdots$$,$$x+99$$的和为$$a$$,如果$$a$$的数字和等于$$50$$,则$$x$$最小为多少?\n ", "answer": "$$99950$$ .\n", "Analysis": "根据等差数列求和公式,这一百个数的和为$$100x+4950$$,要让这个数的各位数字和为$$50$$且数字最小,要让各位数字尽量大,数位尽量少;由于这个数的末两位是$$5$$和$$0$$,则当前面再有$$4$$个$$9$$的时候位数最少且数字和达到$$50$$.故这个和为$$9999950$$是最好的,则$$100x=9999950-4950=9995000$$,故$$x=99950$$为最小情况.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数列与数表", "等差数列求和", "计算模块", "等差数列"]} +{"_id": "ff80808147248448014724de3c1b014c", "question": "请写出所有满足下面三个条件的正整数$$a$$和$$b$$:1)$$a\\leqslant b$$;2)$$a+b$$是个三位数,且三个数字从小到大排列等差;3)$$a\\times b$$是一个五位数,且五个数字相同.\n ", "answer": "$$41$$和$$271$$;$$164$$和$$271$$;$$82$$和$$542$$;$$123$$和$$813$$\n ", "Analysis": "此题重点是分解质因数$$111111=41\\times 271$$,只要知道这一点,剩下的就很简单了.\n\n$$11111=41\\times 271$$,$$41+271=312$$,符合题意;\n\n$$22222=2\\times 41\\times 271$$,$$82+271=353$$,舍去;$$41+542=583$$,舍去;\n\n$$33333=3\\times 41\\times 271$$,$$123+271=394$$,舍去;$$41+813=854$$,舍去;\n\n$$44444={{2}^{2}}\\times 41\\times 271$$,$$164+271=435$$,符合题意;$$82+542=624$$,符合题意;\n\n$$55555=5\\times 41\\times 271$$,$$205+271=476$$,舍去;\n\n$$66666=2\\times 3\\times 41\\times 271$$,$$82+813=895$$,舍去;$$123+542=665$$,舍去;$$246+271=517$$,舍去;\n\n$$77777=7\\times 41\\times 271$$,$$287+271=558$$,舍去;\n\n$$88888={{2}^{3}}\\times 41\\times 271$$,$$164+542=706$$,舍去;$$328+271=599$$,舍去;\n\n$$99999={{3}^{2}}\\times 41\\times 271$$,$$123+813=936$$,符合题意;$$369+271=640$$,舍去.\n\n综上,共四组解,$$41$$和$$271$$;$$164$$和$$271$$;$$82$$和$$542$$;$$123$$和$$813$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分解质因数(式)", "数论模块", "分解质因数"]} +{"_id": "ff80808147248448014724de3c97014e", "question": "已知$$100$$个互不相同的质数$${{p}_{1}}$$,$${{p}_{2}}$$,$${{p}_{3}}$$,$$\\cdots{{p}_{100}}$$,记$$N={{p}_{1}}^{2}+{{p}_{2}}^{2}+\\cdots +{{p}_{100}}^{2}$$,问:$$N$$被$$3$$除的余数是多少?\n ", "answer": "$$0$$或$$1$$\n ", "Analysis": "质数中除$$3$$之外,其它的数都可以表示成$$3k+1$$,$$3k+2$$的形式,$${{(3k+1)}^{2}}=9{{k}^{2}}+6k+1=3(3{{k}^{2}}+2k)+1$$,即除以$$3$$余$$1$$,\n $${{(3k+2)}^{2}}=9{{k}^{2}}+6k+4=3(3{{k}^{2}}+2k+1)+1$$,即除以$$3$$余$$1$$,\n 故当这$$100$$个质数中有$$3$$时,$$N\\equiv 1\\times 99+0\\equiv 0(\\bmod 3)$$;\n 当这$$100$$个质数中没有$$3$$时,$$N\\equiv 1\\times 100\\equiv 1(\\bmod 3)$$;\n 即余数有可能为$$0$$,有可能为$$1$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["完全平方数", "平方数的余数特征", "平方数除以3的余数", "数论模块"]} +{"_id": "ff808081477bd84c01479ef8b7824020_1", "question": "已知:$$S\\left( a \\right)$$表示的各位数字之和,如果$$a$$是一个四位数,且满足$$S\\left( a \\right)+S\\left( 2a \\right)=S\\left( 4a \\right)$$.回答下列问题:\n \n $$a$$的最小值是 ___          ___ .\n ", "answer": "$$1017$$", "Analysis": "设$$a$$的数字和是$$m$$,$$2a$$的数字和$$2m-9x$$(假定进了$$x$$位),$$4a$$的数字和$$4m-9y$$(假定进了$$y$$位),根据题意得:$$m+2m-9x=4m-9y$$,移项化简得:$$m=9(y-x)$$.$$m$$是$$9$$的倍数.\n 求$$a$$的最小值,数字和最小是$$9$$,此时$$y-x=1$$.$$\\left\\{ \\begin{matrix}& x=1 \\\\ & y=2 \\\\\\end{matrix} \\right.$$,$$\\left\\{ \\begin{matrix}&x=2\\\\ & y=3 \\\\\\end{matrix} \\right.$$($$2\\times 9-9\\times 2=0$$,排除).\n $$2a$$进一次位:若$$a=1008$$(数字和是$$9$$),$$2a=2016$$(数字和是$$9$$),$$4a=4032$$(数字和是$$9$$),不满足.若$$a=1017$$(数字和是$$9$$),$$2a=2034$$(数字和是$$9$$),$$4a=4068$$(数字和是$$18$$),满足.\n $$a$$的最小值是$$1017$$.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 5, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "逐步调整思想", "转化与化归的思想", "方程思想", "位值原理与进制", "运算求解", "位值原理运用", "数论模块", "数学思想", "学习能力", "位值原理的综合应用", "知识标签"]} +{"_id": "ff808081477bd84c01479ef8b7824020_2", "question": "已知:$$S\\left( a \\right)$$表示的各位数字之和,如果$$a$$是一个四位数,且满足$$S\\left( a \\right)+S\\left( 2a \\right)=S\\left( 4a \\right)$$.回答下列问题:\n \n$$a$$的最大值是多少?(请写出具体解题过程)\n ", "answer": "$$7200$$\n ", "Analysis": "求$$a$$的最大值,\n $$a$$的数字和是$$9$$:$$a$$)$$a=9000$$,$$2a=18000$$,$$4a=36000$$,不满足.\n $$b$$) $$a=8100$$,$$2a=16200$$,$$4a=32400$$,不满足;类似$$8010$$、$$8001$$不满足.\n $$c$$) $$a=7200$$,$$2a=14400$$,$$4a=28800$$,满足.\n $$a$$的数字和是$$18$$:$$y-x=2$$,此时$$\\left\\{ \\begin{matrix}x=0\\\\ y=2 \\\\\\end{matrix} \\right.$$,$$18\\div 4=4\\cdots 2$$,至少有一个数字大于$$5$$,$$5$$的二倍进位,$$2a$$一定进位,矛盾.\n 若$$\\left\\{ \\begin{matrix}x=1 \\\\ y=3 \\\\\\end{matrix} \\right.$$,$$4m-9y=4\\times18-9\\times 3=45$$,而$$4a$$若是四位数,四位数的数字和最大是$$36$$;若是五位数,万位最大是$$3$$,数字和最大是:$$3+9+9+9+9=39$$,不能达到$$45$$,矛盾.\n $$a$$的数字和是$$27$$,$$4a$$的数字和$$4\\times27-9y=108-9y$$,$$y$$最大是$$4$$,矛盾.\n 所以$$a$$的最大值是$$7200$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 5, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "逐步调整思想", "转化与化归的思想", "方程思想", "位值原理与进制", "运算求解", "位值原理运用", "数论模块", "数学思想", "学习能力", "位值原理的综合应用", "知识标签"]} +{"_id": "ff80808148880257014888a8a9920595", "question": "$$189$$米长的钢筋要剪���$$4$$米或$$7$$米两种尺寸,如何剪法最省材料?\n ", "answer": "有七种最优剪法.\n ", "Analysis": "显然无残料的剪法是最优方案.于是考虑二元一次不定方程的整数解问题.\n 解:设$$4$$米长的剪$$x$$根,$$7$$米长的剪$$y$$根,依题意列方程$$4x+7y=189$$.\n 根据倍数分析法可知$$7|x$$(即$$x$$是$$7$$的倍数).令$$x_1=0$$,则$$7y=189$$,解出$$y_1=27$$;\n $$x_2=7$$,\n 则$$7y=161$$,解出$$y_2=23$$;\n $$x_3=14$$,\n 则$$7y=133$$,解出$$y_3=19$$;\n $$x_4=21$$,\n 则$$7y=105$$,解出$$y_4=15$$;\n $$x_5=28$$,\n 则$$7y=77$$,解出$$y_5=11$$;\n $$x_6=35$$,\n 则$$7y=49$$,解出$$y_6=7$$;\n $$x7=42$$,\n 则$$7y=21$$,解出$$y_7=3$$.因此,有七种剪法都是最省材料的.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "不定方程解应用题", "列方程解应用题"]} +{"_id": "ff80808148880257014888a986bb0645", "question": "理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要$$10$$、$$12$$、$$15$$、$$20$$和$$24$$分钟,怎样安排他们理发的顺序,才能使这五人理发和等候所用时间的总和最少?最少时间为多少?\n ", "answer": "理发顺序:甲:$$10$$,$$15$$,$$24$$,乙:$$12$$,$$20$$.构造方式不唯一\n\n最少时间为$$128$$分.\n", "Analysis": "一人理发时,其他人需等待,为使总的等待时间尽量短,应让理发所需时间少的人先理.甲先给需$$10$$分钟的人理发,然后$$15$$分钟的,最后$$24$$分钟的;乙先给需$$12$$分钟的人理发,然后$$20$$分钟的,甲给需$$10$$分钟的人理发时,有$$2$$人等待,占用三人的时间和为($$10 \\times 3$$)分;然后,甲给需$$15$$分钟的人理发,有$$1$$人等待,占用两人的时间和为($$15 \\times 2$$)分;最后,甲给需$$24$$分钟的人理发,无人等待.甲理发的三个人,共用($$10 \\times 3 + 15 \\times 2 + 24$$)分,乙理发的两个人,共用($$12 \\times 2 + 20$$)分.总的占用时间为$$(10 \\times 3 + 15 \\times 2 + 24)+( 12 \\times 2 + 20)= 128$$(分).\n\n甲:$$10$$,$$15$$,$$24$$\n\n乙:$$12$$,$$20$$\n\n总时间为:$$(24+20)\\times 1+(12+15)\\times 2+10\\times 3=44+54+30=128$$(分).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["解决问题策略", "优化", "数学广角", "多个人做一件事的时间优化"]} +{"_id": "ff80808148880257014888a98a28064e_1", "question": "车间里有五台车床同时出现故障,已知第一台到第五台修复时间依次为$$18$$,$$30$$,$$17$$,$$25$$,$$20$$分钟,每台车床停产一分钟造成经济损失$$5$$元.现有两名工作效率相同的修理工,\n \n怎样安排才能使得经济损失最少?\n ", "answer": "一人修$$17$$、$$20$$、$$30$$,另一人修$$18$$、$$25$$;最少的经济损失为$$910$$元.\n", "Analysis": "一人修$$17$$、$$20$$、$$30$$,另一人修$$18$$、$$25$$;最少的经济损失为:$$5 \\times (17 \\times 3 + 20 \\times 2 + 30 + 18 \\times 2 + 25)= 910$$(元).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "逐步调整思想", "简单时间统筹问题", "统筹规划", "构造模型", "能力", "时间总和问题", "模型思想", "操作与策略", "组合模块"]} +{"_id": "ff80808148880257014888a98a28064e_2", "question": "车间里有五台车床同时出现故障,已知第一台到第五台修复时间依次为$$18$$,$$30$$,$$17$$,$$25$$,$$20$$分钟,每台车床停产一分钟造成经济损失$$5$$元.现有两名工作效率相同的修理工,\n \n怎样安排才能使从开始维修到维修结束历时最短?\n ", "answer": "因为$$(18 + 30 + 17 + 25 + 20 )\\div 2 = 55$$(分),经过组合,一人修需$$18$$,$$17$$和$$20$$分钟的三台,另一人修需$$30$$和$$25$$分钟的两台,修复时间最短,为$$55$$分钟.\n ", "Analysis": "因为$$(18 + 30 + 17 + 25 + 20 )\\div 2 = 55$$(分),经过组合,一人修需$$18$$,$$17$$和$$20$$分钟的三台,另一人修需$$30$$和$$25$$分钟的两台,修复时间最短,为$$55$$分钟.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "逐步调整思想", "简单时间统筹问题", "统筹规划", "构造模型", "能力", "时间总和问题", "模型思想", "操作与策略", "组合模块"]} +{"_id": "ff80808148880257014888a997f10659", "question": "\n用$$10$$尺长的竹竿做原材料,来截取$$3$$尺、$$4$$尺长的甲、乙两种短竹竿各$$100$$根,至少要用去原材料几根?怎么截法最合算?\n", "answer": "$$75$$根.\n ", "Analysis": "分析 不难想到有三种截法省料:\n 截法$$1$$:截成$$3$$尺、$$3$$尺、$$4$$尺三段,无残料;\n 截法$$2$$:截成$$3$$尺、$$3$$尺、$$3$$尺三段,残料$$1$$尺;\n 截法$$3$$:截成$$4$$尺、$$4$$尺两段,残料$$2$$尺.\n 由于截法$$1$$最理想(无残料),因此应该充分应用截法$$1$$.考虑用原材料$$50$$根,可以截成$$100$$根$$3$$尺长的短竹竿,而$$4$$尺长的仅有$$50$$根,还差$$50$$根.于是再应用截法$$3$$,截原材料$$25$$根,可以得到$$4$$尺长的短竹竿$$50$$根,留下残料$$2×25=50$$(尺).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["操作问题", "组合模块", "数字操作", "操作与策略"]} +{"_id": "ff8080814a85cc99014a86a668b603eb", "question": "计算:$$\\frac{({{2}^{2}}+{{4}^{2}}+{{6}^{2}}+\\cdots +{{100}^{2}})-({{1}^{2}}+{{3}^{2}}+{{5}^{2}}+\\cdots+{{99}^{2}})}{1+2+3+\\cdots +9+10+9+8+\\cdots +3+2+1}$$\n ", "answer": "$$50.5$$\n ", "Analysis": "原式$$=\\frac{1+2+\\cdots +100}{{{10}^{2}}}=\\frac{5050}{100}=50.5$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数列与数表", "计算模块", "等差数列求和", "等差数列", "公式类运算", "连续自然数平方和公式"]} +{"_id": "ff80808148880257014888a9e3cc06c3", "question": " $$1998$$名运动员的号码依次为$$1$$至$$1998$$的自然数.现在要从中选出若干名运动员参加仪仗队,使得剩下的运动员中没有一个人的号码等于另外两人的号码的乘积.那么,选为仪仗队的运动员最少有多少人?\n \n ", "answer": "$$43$$\n ", "Analysis": "我们很自然的想到把用得比较多的乘数去掉,因为它们参与的乘式比较多,把它们去掉有助于使剩下的构不成乘式,比较小的数肯定是用得最多的,因为它们的倍数最多,所以考虑先把它们去掉,但关键是除到何处?\n 考虑到$$44$$的平方为$$1936$$,所以去到$$44$$就够了,因为如果剩下的构成了乘式,那么乘式中最小的数一定小于等于$$44$$,所以可以保证剩下的构不成乘式.因为对结果没有影响,所以可以将$$1$$保留,于是去掉$$2$$,$$3$$,$$4$$,$$\\cdots$$,$$44$$这$$43$$个数.\n 但是,是不是去掉$$43$$个数为最小的方法呢?构造$$2\\times97$$,$$3\\times96$$,$$4\\times95$$,$$\\cdots$$,$$44\\times45$$,发现这$$43$$组数全不相同而且结果都比$$1998$$小,所以要去掉这些乘式就至少要去掉$$43$$个数,所以$$43$$为最小值,即为所求.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["完全平方数", "平方数的综合应用", "数论模块"]} +{"_id": "ff80808148880257014888a9f44706ce", "question": " 小牛对小猴说:“对一个自然数$$n$$进行系列变换:当$$n$$是奇数时,则加上$$2007$$;当$$n$$是偶数时,则除以$$2$$.现在对$$2004$$连续做这种变换,变换中终于出现了数$$2008$$.”小猴说:“你骗人!不可能出现$$2008$$.”请问:小牛和小猴谁说得对呢?为什么?\n \n ", "answer": "小猴.\n ", "Analysis": "试着按照规则进行变换,得到的结果依次如下:$$2004$$,$$1002$$,$$501$$,$$2508$$,$$1254$$,$$627$$,$$2634$$,$$1317$$,$$3324$$,$$1662$$,$$831$$,$$2838$$,$$\\cdots$$\n 从中发现不了什么规律,所以应该从另外的角度进行分析.观察可知$$2004$$和$$2007$$都是$$3$$的倍数,那么不论变换多少次,得到的数也还是$$3$$的倍数.而$$2008$$不是$$3$$的倍数,所以不可能出现$$2008$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数字排列规律", "找规律", "数学广角"]} +{"_id": "ff808081488cdfd40148982a67d13abc", "question": "$$10$$只无差别的橘子放到$$3$$个不同的盘子里,允许有的盘子空着.请问一共有多少种不同的放法?\n ", "answer": " $$66$$\n ", "Analysis": "把$$10$$只无差别的橘子放到$$3$$个不同的盘子里,允许有的盘子空着,然后在每个盘子里再另加一个橘子,这就变成了把$$13$$只无差别的橘子放到$$3$$个不同的盘子里,不允许任何一个盘子空着.反过来也是一样,把$$13$$只橘子放到$$3$$个盘子里,不允许任何��个盘子空着,再从每一个盘子中取出一个橘子,这就变回题目中的放法.所以把$$10$$只无差别的橘子放到$$3$$个不同的盘子里且允许有的盘子空着的放法数目,和把$$13$$只无差别的橘子放到$$3$$个不同的盘子里且不允许任何一个盘子空着的放法数目相同.\n 我们现在来计算把$$13$$只无差别的橘子放到$$3$$个不同的盘子里且不允许任何一个盘子空着的放法数目.这时我们用隔板地方法,把这$$13$$只橘子排成一列,则这$$13$$只橘子之间有$$12$$个空隙.我们只要选定这$$12$$个空隙中的$$2$$个空隙,再这两个空隙中分别放一块隔板,这样就分成了$$3$$组,就相当于把这$$13$$只橘子分成了$$3$$堆,如下图.所以只要求出从$$12$$个空隙中选出$$2$$个空隙有多少种方法就可以了.\n $$\\text{C}_{12}^{2}=12\\times 11\\div 2=66$$,所以题目中所求的不同的放法有$$66$$种.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "排列组合综合"]} +{"_id": "ff808081488cdfd40148982a6ffd3abe", "question": "小红有$$10$$块糖,每天至少吃$$1$$块,$$7$$天吃完,她共有多少种不同的吃法?\n ", "answer": " $$84$$\n ", "Analysis": "分三种情况来考虑:\n ⑴当小红最多一天吃$$4$$块时,其余各每天吃$$1$$块,吃$$4$$块的这天可以是这七天里的任何一天,有$$7$$种吃法;\n ⑵当小红最多一天吃$$3$$块时,必有一天吃$$2$$块,其余五天每天吃$$1$$块,先选吃$$3$$块的那天,有$$7$$种选择,再选吃$$2$$块的那天,有$$6$$种选择,由乘法原理,有$$7\\times 6=42$$种吃法;\n ⑶当小红最多一天吃$$2$$块时,必有三天每天吃$$2$$块,其四天每天吃$$1$$块,从$$7$$天中选$$3$$天,有$$\\text{C}_{7}^{3}=\\frac{7\\times6\\times 5}{3\\times 2\\times 1}=35$$(种)吃法.\n 根据加法原理,小红一共有$$7+42+35=84$$(种)不同的吃法.\n 另外还可以用挡板法来解这道题,$$10$$块糖有$$9$$个空,选$$6$$个空放挡板,有$$\\text{C}_{9}^{6}=\\text{C}_{9}^{3}=84$$(种)不同的吃法.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "排列组合综合"]} +{"_id": "ff808081488cdfd40148982a70a83ac0", "question": "有$$10$$粒糖,分三天吃完,每天至少吃一粒,共有多少种不同的吃法?\n ", "answer": " $$36$$\n ", "Analysis": "如图:○○|○○○○|○○○○,将$$10$$粒糖如下图所示排成一排,这样每两颗之间共有$$9$$个空,从头开始吃,若相邻两块糖是分在两天吃的,就在其间画一条竖线隔开表示之前的糖和之后的糖不是在同一天吃掉的,九个空中画两条竖线,一共有$$9\\times 8\\div 2=36$$种方法.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "排列的基本应用", "排列"]} +{"_id": "ff808081488cdfd40148982a85f13ad7", "question": "停车站划出一排$$12$$个停车位置,今有$$8$$辆不同的车需要停放,若要求剩余的$$4$$个空车位连在一起,一共有多少种不同的停车方案?\n ", "answer": " $$362880$$\n ", "Analysis": "把$$4$$个空车位看成一个整体,与$$8$$辆车一块进行排列,这样相当于$$9$$个元素的全排列,所以共有$$\\text{A}_{9}^{9}=362880$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "排列的基本应用", "排列"]} +{"_id": "ff808081488cdfd40148982a86993ad9", "question": "$$4$$男$$2$$女$$6$$个人站成一排合影留念,要求$$2$$个女的紧挨着有多少种不同的排法?\n ", "answer": " $$240$$\n ", "Analysis": "分为三步:\n 第一步:$$4$$个男得先排,一共有$$4\\times3\\times 2\\times 1=24$$种不同的排法;\n 第二步:$$2$$个女的排次序一共有$$2$$种方法;\n 第三步:将排完次序的两名女生插到排完次序的男生中间,一共有$$5$$个位置可插.\n 根据乘法原理,一共有$$24\\times 2\\times 5=240$$种排法.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["排队问题", "计数模块", "加乘原理"]} +{"_id": "ff808081488cdfd40148982a87443adb_1", "question": "$$4$$个男生$$2$$个女生$$6$$人站成一排合影留念,\n\n有多少种排法?\n ", "answer": "$$720$$\n ", "Analysis": " $$4$$男$$2$$女$$6$$人站成一排相当于$$6$$个人站成一排的方法,可以分为六步来进行,第一步,确定第一个位置的人,有$$6$$种选择;第二步,确定第二个位置的人,有$$5$$种选择;第三步,排列第三个位置的人,有$$4$$种选择,依此类推,第六步,最后一个位置只有一种选择.根据乘法原理,一共有$$6\\times5\\times 4\\times 3\\times 2\\times 1=720$$种排法.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "抽象概括", "计数模块", "能力", "对应思想", "排队问题", "加乘原理"]} +{"_id": "ff808081488cdfd40148982a87443adb_2", "question": "$$4$$个男生$$2$$个女生$$6$$人站成一排合影留念,\n\n如果要求$$2$$个女生紧挨着排在正中间有多少种不同的排法?\n ", "answer": "$$48$$\n ", "Analysis": "根据题意分为两步来排列.第一步,先排$$4$$个男生,一共有$$4\\times 3\\times 2\\times 1=24$$种不同的排法;第二步,将$$2$$个女生安排完次序后再插到中间一共有$$2$$种方法.根据乘法原理,一共有$$24\\times 2=48$$种排法.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "抽象概括", "计数模块", "能力", "对应思想", "排队问题", "加乘原理"]} +{"_id": "ff808081488cdfd40148982aaa183af2", "question": " $$5$$个同学排成一行照相,其中甲在乙右侧的排法共有_______种.\n \n ", "answer": " $$60$$种\n ", "Analysis": "$$5$$个人全排列有$$5!=120$$种,其中甲在乙右侧应该正好占一半,也就是$$60$$种\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "排列的基本应用", "排列"]} +{"_id": "ff808081488cdfd40148982aaada3af4", "question": "将$$A$$、$$B$$、$$C$$、$$D$$、$$E$$、$$F$$、$$G$$七位同学在操场排成一列,其中学生$$B$$与$$C$$必须相邻.请问共有多少种不同的排列方法?\n ", "answer": " $$1440$$\n ", "Analysis": "(法$$1$$)七人排成一列,其中$$B$$要与$$C$$相邻,分两种情况进行考虑.\n 若$$B$$站在两端,$$B$$有两种选择,$$C$$只有一种选择,另五人的排列共有$$\\text{A}_{5}^{5}$$种,所以这种情况有$$2\\times1\\times\\text{A}_{5}^{5}=240$$种不同的站法.若$$B$$站在中间,$$B$$有五种选择,$$B$$无论在中间何处,$$C$$都有两种选择.另五人的排列共有$$\\text{A}_{5}^{5}$$种,所以这种情况共有$$5\\times2\\times \\text{A}_{5}^{5}=1200$$种不同的站法.\n 所以共有$$240+1200=1440$$种不同的站法.\n (法$$2$$)由于$$B$$与$$C$$必须相邻,可以把$$B$$与$$C$$当作一个整体来考虑,这样相当于$$6$$个元素的全排列,另外注意$$B$$、$$C$$内部有$$2$$种不同的站法,\n 所以共有$$2\\times \\text{A}_{6}^{6}=1440$$种不同的站法.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "排列综合", "排列"]} +{"_id": "ff8080814941611b01494b333a951152_1", "question": "如果一个数能被它前两位数字按序组成的两位数整除,则称这个数为“好数”.例如:$$120$$的前两位数字按序组成的两位数是$$12$$,$$120$$能被$$12$$整除,所以$$120$$是“好数”.请问:\n \n四位数中,最小的“好数”是多少?\n ", "answer": "$$1000$$\n ", "Analysis": "极端分析,$$1000$$能被$$10$$整除.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "逻辑分析", "逐步调整思想", "转化与化归的思想", "位值原理与进制", "位值原理运用", "运算求解", "数据处理", "数论模块", "数学思想", "学习能力", "位值原理的综合应用", "知识标签"]} +{"_id": "ff8080814941611b01494b333a951152_2", "question": "如果一个数能被它前两位数字按序组成的两位数整除,则称这个数为“好数”.例如:$$120$$的前两位数字按序组成的两位数是$$12$$,$$120$$能被$$12$$整除,所以$$120$$是“好数”.请问:\n \n若存在连续$$98$$个自然数都不是“好数”,那么这$$98$$个数中,最小的那个数最小可能是多少?\n ", "answer": "$$9901$$\n ", "Analysis": "注意到$$\\overline{xy0}$$、$$\\overline{xy00}$$都是好数,所以这连续$$98$$个数至少是$$4$$位数,由于连续$$n$$个自然数中必然有一个数能被$$n$$整��,所以这些数的前两位不能是$$10$$~$$98$$,所以最小的情况只可能是$$9901$$~$$9998$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "逻辑分析", "逐步调整思想", "转化与化归的思想", "位值原理与进制", "位值原理运用", "运算求解", "数据处理", "数论模块", "数学思想", "学习能力", "位值原理的综合应用", "知识标签"]} +{"_id": "ff8080814502fa24014507b68bfb0bae", "question": "某工人与老板签订了一份$$30$$天的劳务合同:工作一天可得报酬$$48$$元,休息一天则要从所得报酬中扣掉$$12$$元,该工人合同到期后并没有拿到报酬,则他最多工作了 ___          ___ 天.\n ", "answer": "$$6$$", "Analysis": "方法一:\n 假设他没有休息他会得$$30\\times 48=1440$$(元),休息一天会少$$48+12=60$$(元),\n 所以他休息了$$1440\\div60=24$$(天),他工作了$$30-24=6$$(天).\n 方法二:工作一天休息$$4$$天刚好抵消,那么最后没拿到钱,他只工作了$$30\\div(4+1)=6$$(天).\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["鸡兔同笼问题", "应用题模块", "假设法解鸡兔同笼", "基本型", "变型题"]} +{"_id": "ff8080814502fa240145080be2f50ef5", "question": "有一块$$1200$$平方米的牧场,每天都有一些草在匀速生长,这块牧场可供$$10$$头牛吃$$20$$天,或可供$$15$$头牛吃$$10$$天,另有一块$$3600$$平方米的牧场,每平方米的草量及生长量都与第一块牧场相同,问这片牧场可供$$75$$头牛吃多少天?\n ", "answer": "$$5$$天.\n", "Analysis": "设$$1$$头牛$$1$$天的吃草量为“$$1$$”,摘录条件,将它们转化为如下形式方便分析\n\n$$10$$头牛    $$20$$天  $$10\\times20=200$$ :原有草量$$+20$$天生长的草量\n\n$$15$$头牛    $$10$$天   $$15\\times10=150$$ :原有草量$$+10$$天生长的草量\n\n从上易发现:$$1200$$平方米牧场上$$20-10=10$$天生长草量$$=200-150=50$$,\n\n即$$1$$天生长草量$$=50\\div10=5$$;\n\n那么$$1200$$平方米牧场上原有草量:$$200-5\\times20=100$$或$$150-5\\times10=100$$.\n\n则$$3600$$平方米的牧场$$1$$天生长草量$$=5\\times(3600\\div1200)=15$$;\n\n原有草量:$$100\\times(3600\\div1200)=300$$.\n\n$$75$$头牛里,若有$$15$$头牛去吃每天生长的草,剩下$$60$$头牛需要$$300\\div60=5$$(天)可将原有草吃完,即它可供$$75$$头牛吃$$5$$天.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "多块草地的牛吃草", "牛吃草问题", "牛吃草转化型"]} +{"_id": "ff8080814502fa2401450be8c5f61bd9", "question": "$$\\begin{cases} 20\\%x+8\\%y=300\\times 15\\% \\\\ x+y=300 \\end{cases}$$\n ", "answer": "$$\\begin{cases} x=175 \\\\ y=125 \\end{cases}$$\n ", "Analysis": "先整理,再利用带入或消元法解题.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "分、小数系数方程组", "计算模块", "方程基础"]} +{"_id": "ff8080814502fa2401450be8c9ac1bdb", "question": "解方程组$$\\begin{cases} 3x-y=7 \\\\ 5x+2y=8 \\end{cases}$$($$x,y$$为整数)\n", "answer": "$$\\begin{cases} x=2 \\\\ y=-1 \\end{cases}$$\n ", "Analysis": "将第一个式子扩大$$2$$倍和二式相减得$$2(3x-y)+(5x+2y)=2\\times 5-12$$,去括号整理$$11x=22$$解得$$x=2$$,所以方程的解为$$\\begin{cases} x=2 \\\\ y=-1 \\end{cases}$$\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "计算模块", "整数系数方程组", "方程基础"]} +{"_id": "ff8080814502fa2401450be90e1e1bfb", "question": "解不定方程:$$2x+9y=40$$.(其中$$x$$、$$y$$均为正整数)\n", "answer": "$$\\begin{cases} x=11 \\\\ y=2 \\end{cases},\\begin{cases} x=2 \\\\ y=4 \\end{cases}$$\n", "Analysis": "$$2x$$是偶数,要想和为$$40$$(偶数),$$9y$$也为偶数,即$$y$$为偶数.也可以化简方程$$2x+9y=40$$,$$x=\\frac{40-9x}{2}=20-5y+\\frac{y}{2}$$知道$$y$$为偶数,所以方程解为:$$\\begin{cases} x=11 \\\\ y=2 \\end{cases}\\begin{cases} x=2 \\\\ y=4 \\end{cases}$$\n\n$$2x$$是偶数,和为$$40$$(也是偶数),所以$$9y$$一定也为偶数,即$$y$$为偶数,$$y$$从$$2$$取起,$$\\begin{cases}x=11 \\\\ y=2 \\\\\\end{cases}$$,$$\\begin{cases}x=2 \\\\ y=4 \\\\\\end{cases}$$;\n\n观���结果,当$$y$$ 增大时,$$x$$在减小,$$y$$增大的数恰好是$$x$$的系数,$$x$$减小的是$$y$$的系数,所以当求多值时,求出最小的一组解后,用规律写出剩下的解,注意检验. 所以方程解为:$$\\begin{cases}x=11 \\\\ y=2 \\\\\\end{cases}$$,$$\\begin{cases}x=2 \\\\ y=4 \\\\\\end{cases}$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计算模块", "加法不定方程", "不定方程", "方程基础"]} +{"_id": "ff8080814502fa2401450be9124c1bfd", "question": "解不定方程$$\\begin{cases} 5x+3y+\\frac { 1 }{ 3 } z=100 \\\\ x+y+z=100 \\end{cases}$$  $$($$其中$$x$$、$$y$$、$$z$$均为正整数$$)$$\n ", "answer": "$$\\begin{cases} x=4 \\\\ y=18 \\\\ z=78 \\end{cases}\\begin{cases} x=8 \\\\ y=11 \\\\ z=81 \\end{cases}\\begin{cases} x=12 \\\\ y=4 \\\\ z=84 \\end{cases}$$\n ", "Analysis": "据等式的性质将第一个方程整理得$$\\begin{cases} 15x+9y+z=300 \\\\ x+y+z=100 \\end{cases}$$,根据消元思想与第二个式子相减得$$14x+8y=200$$,根据等式的性质两边同时除以$$2$$得:$$7x+4y=100$$,根据等式性质$$4y$$为$$4$$的倍数,$$100$$为$$4$$的倍数,所以$$7y$$为$$4$$的倍数,所以$$y$$为$$4$$的倍数试值如下$$\\begin{cases} x=4 \\\\ y=18 \\\\ z=78 \\end{cases}\\begin{cases} x=8 \\\\ y=11 \\\\ z=81 \\end{cases}\\begin{cases} x=12 \\\\ y=4 \\\\ z=84 \\end{cases}$$\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计算模块", "不定方程组", "不定方程", "方程基础"]} +{"_id": "ff8080814502fa2401450be9249e1bff", "question": "解方程$$\\begin{cases} 1800a+1200b+800c=16000 \\\\ a+b+c=15 \\end{cases}$$  (  其中$$a$$、$$b$$、$$c$$均为正整数)\n ", "answer": "$$\\begin{cases} a=2 \\\\ b=5 \\\\ c=8 \\end{cases}$$\n ", "Analysis": "根据等式的性质将第一个方程整理得$$\\begin{cases} 9a+6b+4c=80 \\\\ a+b+c=15 \\end{cases}$$,\n\n根据消元的思想将第二个式子扩大$$4$$倍相减后为:\n\n$$(9a+6b+4c)-4(a+b+c)=80-4\\times 15$$,\n\n整理后得$$5a+2b=20$$,\n\n根据等式性质,$$2b$$为偶数,$$20$$为偶数,所以$$5a$$为偶数,所以$$a$$为偶数,\n\n当$$a=2$$时,$$5\\times 2+2b=20$$,$$b=5$$,所以$$c=8$$,\n\n当$$a=4$$时,$$5\\times4+2b=20$$,$$b=5$$,所以无解.\n\n所以方程解为\n\n$$\\begin{cases} a=2 \\\\ b=5 \\\\ c=8 \\end{cases}$$\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计算模块", "不定方程组", "不定方程", "方程基础"]} +{"_id": "ff8080814502fa2401450be930761c06", "question": "求方程$$3x+5y=31$$的整数解.\n", "answer": "$$\\begin{cases} x=7 \\\\ y=2 \\end{cases}\\begin{cases} x=2 \\\\ y=5 \\end{cases}$$\n ", "Analysis": "方法一:利用欧拉分离法,由原方程,得$$ x=\\frac{31-5y}{3}$$,即  $$x=10-2y+\\frac{1+y}{3}$$,要使方程有整数解$$\\frac{1+y}{3}$$必须为整数.\n 取$$y=2$$,得$$x=10-2y+\\frac{1+y}{3}=10-4+1=7$$,故$$x=7$$,$$y=2$$\n 当$$y=5$$,得$$x=10-2y+\\frac{1+y}{3}=10-10+2=2$$,故$$x=2$$,$$y=5$$\n 当$$y=8$$,得$$x=10-2y+\\frac{1+y}{3}=10-16+3$$,无解\n 所以方程的解为:$$\\begin{cases} x=7 \\\\ y=2 \\end{cases}\\begin{cases} x=2 \\\\ y=5 \\end{cases}$$\n 方法二:利用余数的性质\n $$3x$$是$$3$$的倍数,和$$31$$除以$$3$$余$$1$$,所以$$5y$$除以$$3$$余$$1$$($$2y$$除以$$3$$余$$1$$),根据这个情况用余数的和与乘积性质进行判定为:\n 取$$y=1$$,$$2y=2$$,$$2\\div3=0\\cdots2$$(舍)\n $$ y=2$$,$$2y=4$$,$$4\\div3=1\\cdots1$$(符合题意)\n $$ y=3$$,$$2y=6$$,$$6\\div3=2$$(舍)\n $$y=4$$,$$2y=8$$,$$8\\div3=2\\cdots2$$(舍)\n $$y=5$$,$$2y=10$$,$$10\\div3=3\\cdots1$$(符合题意)\n $$y=6$$,$$2y=12$$,$$12\\div3=4$$(舍)\n 当$$y$$>$$6$$时,结果超过$$31$$,不符合题意.\n 所以方程的解为:$$\\begin{cases} x=7 \\\\ y=2 \\end{cases}\\begin{cases} x=2 \\\\ y=5 \\end{cases}$$\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计算模块", "加法不定方程", "不定方程", "方程基础"]} +{"_id": "ff8080814502fa2401450be93a561c0a", "question": "\n求$$7x+19y=213$$的正整数解.\n\n", "answer": "$$\\begin{cases} x=25 \\\\ y=2 \\end{cases}\\begin{cases} x=6 \\\\ y=9 \\end{cases}$$\n ", "Analysis": "按照顺序逻辑讨论,从$$y$$值讨论,由$$y=1$$开始,当$$y=2$$时,$$x=25$$,当$$y=9$$时,$$x=6$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计算模块", "加法不定方程", "不定方程", "方程基础"]} +{"_id": "ff8080814502fa2401450be93bce1c0c", "question": "求方程$$3x+5y=12$$的整数解.\n ", "answer": "$$\\begin{cases} x=4 \\\\ y=0 \\end{cases}$$\n ", "Analysis": "由$$3x+5y=12$$,$$3x$$是$$3$$的倍数,要想和为$$12$$($$3$$的倍数),$$5y$$也为$$3$$的倍数,所以$$y$$为$$3$$的倍数即可,所以$$y$$的取值为$$0$$、$$3$$、$$6$$、$$9$$、$$12$$$$\\cdots$$\n $$y=0$$时,$$12-5y=12$$,$$x=4$$,\n $$x=3$$时,$$12-5y=12-15$$,无解\n 所以方程的解为:$$\\begin{cases} x=4 \\\\ y=0 \\end{cases}$$\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计算模块", "加法不定方程", "不定方程", "方程基础"]} +{"_id": "ff8080814502fa2401450be941ca1c0e", "question": "求方程$$4x+10y=34$$的正整数解.\n ", "answer": "$$\\begin{cases} x=1 \\\\ y=3 \\end{cases}\\begin{cases} x=6 \\\\ y=1 \\end{cases}$$\n ", "Analysis": "因为$$4$$与$$10$$的最大公约数为$$2$$,而$$2$$|34$$,两边约去$$2$$后,得 2x+5y=17$$,$$5y$$的个位是$$0$$或$$5$$两种情况,$$2x$$是偶数,要想和为$$17$$,$$5y$$的个位只能是$$5$$,$$y$$为奇数即可;$$2x$$的个位为$$2$$,所以$$x$$的取值为$$1$$、$$6$$、$$11$$、$$16$$$$\\cdots$$\n $$x=1$$时,$$17-2x=15$$,$$y=3$$,\n $$x=6$$时,$$17-2x= 5$$,$$y=1$$,\n $$x=11$$时,$$17-2x=17-22$$,无解\n 所以方程有两组整数解为:\n $$\\begin{cases} x=1 \\\\ y=3 \\end{cases}\\begin{cases} x=6 \\\\ y=1 \\end{cases}$$\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计算模块", "加法不定方程", "不定方程", "方程基础"]} +{"_id": "ff8080814502fa2401450beb25b71cd7", "question": "某车间原有工人不少于$$63$$人,在$$1$$月底以前的某一天调进了若干工人,以后,每天都新调人$$1$$人进车间工作.现知该车间$$1$$月份每人每天生产一件产品.共生产$$1994$$件.试问:$$1$$月几日开始调进工人?共调进了多少工人?\n ", "answer": "调人$$2$$天,$$1$$月$$30$$日开始调入,共调进$$21$$人;调人$$4$$天,$$1$$月$$28$$日开始调入,共调进$$4$$人.\n", "Analysis": "$$1$$月份共有$$31$$天,所以这个车间的原有工人至少生产出了$$63\\times31=1953$$件,或增加$$31$$的倍数,\n 但因不超过$$1994$$件,所以工厂的原有工人生产了$$1953$$或$$1984$$件.\n 所以,后来调进的工人生产了$$1994—1953=41$$件,或$$1994—1984=10$$件产品.\n 易知后来调进的工人生产的产品总数是若干个连续的自然数的和,\n 自然数的个数即是调入的天数$$n$$,连续的自然数中最小的那个数即是第一次调入的工人数.\n 有$$41=1\\times41$$,所以奇约数只有$$1$$和$$41$$,\n 这样的数只有一种表达为若干个连续自然数和的形式,$$41=20+21$$.\n 所以调入的次数$$n=2$$,第一次调入的人数$$x=20$$,共调进人数$$x+n-1=20+2-1=21$$人:\n $$10=2\\times5$$,所以奇约数只有$$1$$和$$5$$,\n 这样的数只有一种表达为若干个连续自然数和的形式,$$10=1+2+3+4$$.\n 所以调入的次数$$n=4$$,第一次调入的人数$$x=1$$,共调进人数$$x+n-1=1+4-1=4$$人.\n 所以为:调人$$2$$天,$$1$$月$$30$$日开始调入,共调进$$21$$人;调人$$4$$天,$$1$$月$$28$$日开始调入,共调进$$4$$人.\n \n因为原有工人不少于$$63$$人,并且$$1994=63\\times 31+41$$,$$1994=64\\times 31+10$$,$$1994  <  65\\times 31$$,\n\n所以,这个车间原有工人不多于$$64$$人,即这个车间原有工人$$63$$人或$$64$$人.\n\n这个车间原有工人$$1$$月份完成产品是$$63\\times 31=1953$$或$$64\\times 31=1984$$(件).\n\n于是可知,余下的$$41$$件或$$10$$件产品应该表示为连续自然数之和.\n\n据已知,不能是$$1$$月$$31$$日调进工人,设第一天调进$$x$$名工人,共调入$$n$$天,那么显然$$2\\leqslant n\\leqslant 8$$.\n\n事实上,九个连续自然数之和最小为$$1+2+3+4+5+6+7+8+9=45>41$$.\n\n经检验,当$$n=2$$时$$x=20$$,并且有:$$20+21=41$$;\n\n当$$n=4$$时$$x=1$$,并且有:$$1+2+3+4=10$$.\n\n答:从$$1$$月$$30$$日开始调进工人,共调进工人$$21$$名;或者从$$1$$月$$28$$日开始调进工人,共调进工人$$4$$人.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 5, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "等差数列实际应用"]} +{"_id": "ff8080814502fa2401450beb776f1cff", "question": "某年$$4$$月所有星期六的日期数之和是$$54$$,这年$$4$$月的第一个星期六的日期数是 ___          ___ .\n ", "answer": "$$3$$", "Analysis": "第一个星期六的日期是$$x$$号,则$$4x+(7+14+21)=54$$,解得$$x=3$$.\n 所以这年$$4$$月的第一个星期六的日期是$$3$$号.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["以其他形式运用方程解应用题", "列方程解应用题", "应用题"]} +{"_id": "ff8080814518d52401451bd9e5eb0708", "question": "假设五家共用一井取水,甲用绳$$2$$根不够,差乙家绳子$$1$$根;乙用绳$$3$$根不够,差丙家绳子$$1$$根;丙用绳子$$4$$根不够.差丁家绳子$$1$$根;丁用绳子$$5$$根不够,差戊家绳子$$1$$根;戊用绳$$6$$根不够,差甲家绳子$$1$$根.如果各得所差的绳子$$1$$根,都能到达井深.问井深,绳长各是多少?(井深为小于$$1000$$的整数)\n ", "answer": "井深$$721$$,甲家绳长$$265$$,乙家绳长$$191$$,丙家绳长$$148$$,丁家绳长$$129$$,戊家绳长$$76$$.\n ", "Analysis": "依次设甲、乙、丙、丁、戊家绳长为$$A$$、$$B$$、$$C$$、$$D$$、$$E$$,井深$$k$$,则可列出方程组如下:\n $$\\left\\{ \\begin{align}& 2A+B=k \\\\ & 3B+C=k \\\\ & 4C+D=k\\\\ & 5D+E=k \\\\ & 6E+A=k \\\\ \\end{align} \\right.$$\n 这个方程组不是二元一次方程组,但是解方程组的思想方法与二元一次方程组相同,依次迭代$$B=k-2A$$,$$C=k-3B=6A-2k$$,$$D=k-4C=9k-24A$$,$$E=k-5D=120A-44k$$,\n 代入最后一个式子,$$6\\times \\left( 120A-44k \\right)+A=k$$,即$$721A=265k$$,所以$$A=265$$,$$k=721$$.\n 于是,$$B=191$$,$$C=148$$,$$D=129$$,$$E=76$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数多元一次方程组解应用题"]} +{"_id": "ff8080814518d5240145201f831d0aa0", "question": "一群小朋友去春游,男孩戴小黄帽,女孩戴小红帽.在每个男孩看来,黄帽子比红帽子多$$5$$顶;在每个女孩看来,黄帽子是红帽子的$$2$$倍.问:男孩、女孩各有多少人?\n ", "answer": "男孩有$$14$$人,女孩有$$8$$人.\n ", "Analysis": "设男孩有$$x$$人,女孩有$$y$$人.根据条件可列方程:$$\\left\\{ \\begin{align}& (x-1)-y=5 \\\\ & x=2(y-1) \\\\ \\end{align}\\right.$$由第一条方程可以得到$$x=6+y$$,代入第二条方程得到$$6+y=2(y-1)$$.解得$$y=8$$,再代入第一条方程.方程解得$$\\left\\{ \\begin{align}& x=14 \\\\ & y=8 \\\\ \\end{align}\\right.$$.所以男孩有$$14$$人,女孩有$$8$$人.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数二元一次方程组解应用题"]} +{"_id": "ff8080814518d5240145201f7c0b0a9e", "question": "甲、乙两种商品的原来价格比是$$7:3$$.如果它们的价格各自上涨$$70$$元,它们的价格比变为$$7:4$$.求甲乙两种商品的原价各是多少元?\n ", "answer": "原来两种商品的价格各是为$$210$$元,$$90$$元.\n ", "Analysis": "方法$$1$$:设甲乙两种商品原来价格分别为$$7x$$元,$$3x$$元,根据涨价后价格比为$$7:4$$,\n 列方程得$$(7x+70):(3x+70)=7:4$$,\n 解得$$x=30$$,\n 原来两种商品的原价各是$$7\\times 30=210$$元,$$3\\times 30=90$$元.\n 方法$$2$$:设甲乙两种商品原价各是$$x$$元,$$y$$元,\n 依题意列方程组得$$\\left\\{\\begin{matrix} \\frac{x}{y}=\\frac73 \\\\ \\frac{x+70}{y+70}=\\frac{7}{4}\\end{matrix}\\right.$$,\n 解得$$\\left\\{ \\begin{matrix} x=210 \\\\ y=90 \\\\ \\end{matrix}\\right.$$,\n 甲乙两种商品原价各是$$210$$元,$$90$$元.\n 方法$$3$$:由于原来两种商品相差$$7-3=4$$份,涨价后相差$$7-4=3$$份,\n 由于涨价钱数相同,所以应涨$$[3,4]=12$$份,\n 所以原来两种商品的价格比$$7\\times 3:3\\times 3=21:9$$,涨价后价格比$$7\\times4:4\\times 4=28:16$$,\n 所以价格涨了$$7$$份,恰是$$70$$元,\n 所以$$1$$份是$$10$$元,\n 所以原来两种商品的价格各是为$$210$$元,$$90$$元.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数二元一次方程组解应用题"]} +{"_id": "ff8080814518d5240145201f88100aa2", "question": "某班有$$45$$名同学,其中有$$6$$名男生和女生的$$\\frac{1}{7}$$参加了数学竞赛,剩下的男女生人数正好相等.问:这个班有多少名男生?\n ", "answer": "这个班有$$24$$名男生.\n ", "Analysis": "设有$$x$$名男生和$$y$$名女生,那么根据题目条件有两条等量关系:一是原来男女生人数和为$$45$$人,二是剩下的男女生人数相等,由此可列得方程组:\n $$\\left\\{ \\begin{align}& x+y=45 \\\\ & x-6=y\\left(1-\\frac{1}{7} \\right) \\\\ \\end{align} \\right.$$\n 该方程组解得$$\\left\\{ \\begin{align}& x=24 \\\\ & y=21 \\\\ \\end{align}\\right.$$,所以这个班有$$24$$名男生.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数二元一次方程组解应用题"]} +{"_id": "ff8080814518d524014520209cdc0ab0", "question": "五年级一班共有$$36$$人,每人参加一个兴趣小组,共有$$A$$、$$B$$、$$C$$、$$D$$、$$E$$五个小组.若参加$$A$$组的有$$15$$人,参加$$B$$组的人数仅次于$$A$$组,参加$$C$$组、$$D$$组的人数相同,参加$$E$$组的人数最少,只有$$4$$人.那么,参加$$B$$组的有 ___          ___ 人.\n ", "answer": "$$7$$", "Analysis": "设参加$$B$$组的有$$x$$人,参加$$C$$组、$$D$$组的有$$y$$人,则$$x\\geqslant y\\geqslant4$$,\n 由题知$$15+x+2y+4=36$$,整理得$$x+2y=17$$;\n 由于$$y>4$$,若$$y=5$$,得$$x=7$$,满足题意;若$$y\\geqslant 6$$,则$$x\\leqslant 5$$,与$$x>y$$矛盾;\n 所以只有$$x=7$$,$$y=5$$符合条件,故参加$$B$$组的有$$7$$人.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "不定方程解应用题", "列方程解应用题"]} +{"_id": "ff8080814518d5240145202566560ae5", "question": "某场足球赛赛前售出甲、乙、丙三类门票共$$400$$张,甲类票每张$$50$$元,乙类票每张$$40$$元,丙类票每张$$30$$元,共收入$$15500$$元,其中乙类、丙类门票张数相同.则甲类、乙类、丙类门票分别售出多少张?\n ", "answer": "甲门票售出$$100$$张,乙和丙售出$$150$$张.\n ", "Analysis": "鸡兔同笼问题,乙类、丙类门票张数相同,则可以看成价格为$$35$$元每张的同一类门票.\n 容易得到甲类门票售出$$400-\\left( 50\\times 400-15500 \\right)\\div\\left( 50-35 \\right)=100$$张,\n 乙类、丙类各售出$$(400 -100)\\div2=150$$张.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["鸡兔同笼问题", "应用题模块", "假设法解鸡兔同笼", "基本型", "变型题"]} +{"_id": "ff8080814518d5240145202644710ae8", "question": "加工某种零件,甲$$3$$分钟加工$$1$$个,乙$$3.5$$分钟加工$$1$$个,丙$$4$$分钟加工$$1$$个.现在三人在同样的时间内一共加工$$3650$$个零件.问:甲、乙、丙三人各加工多少个零件?\n", "answer": "$$1400$$,$$1200$$,$$1050$$.\n", "Analysis": "根据题意可知,\n\n甲、乙、丙的工作效率之比为$$\\frac{1}{3}:\\frac{1}{3.5}:\\frac{1}{4}=28:24:21$$,\n\n那么在相同的时间内,三人完成的工作量之比也是$$28:24:21$$,\n\n所以甲加工了$$3650\\times \\frac{28}{28+24+21}=1400$$个零件,\n\n乙加工了$$3650\\times \\frac{24}{28+24+21}=1200$$个零件,\n\n丙加工了$$3650\\times \\frac{21}{28+24+21}=1050$$个零件.\n\n答:甲加工了$$1400$$个零件;乙加工了$$1200$$个零件;丙加工了$$1050$$个零件.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["比例应用题", "按比分配问题", "应用题", "综合与实践"]} +{"_id": "ff8080814518d524014520265c3a0aec", "question": "一堆围棋子有黑白两种颜色,拿走$$15$$枚白棋子后,黑子与白子的个数之比为$$2:1$$;再拿走$$45$$枚黑棋子后,黑子与白子的个数比为$$1:5$$,求开始时黑棋子与白棋子各有多少枚?\n ", "answer": "黑棋有$$50$$枚;白棋有$$40$$枚.\n", "Analysis": "第二次拿走$$45$$枚黑棋,黑子与白子的个数之比由$$2:1\\left( { = 10:5} \\right)$$变为$$1:5$$,而其中白棋的数目是不变的,所以黑棋由原来的$$10$$份变成现在的$$1$$份,减少了$$9$$份,这样原来黑棋的个数为$$45 \\div 9 \\times 10 = 50$$$$($$枚$$)$$,白棋的个数为$$45 \\div 9 \\times 5 + 15 = 40$$$$($$枚$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "按比分配", "比例应用题"]} +{"_id": "ff8080814518d524014526a65a261929", "question": "将$$1$$,$$2$$,$$3$$,$$\\cdots$$,$$30$$从左往右依次排列成一个$$51$$位数,这个数被$$11$$除的余数是多少?\n ", "answer": "$$8$$\n ", "Analysis": "$$1,2,3,\\cdots,30$$这$$30$$个数从左往右依次排列成一个$$51$$位数为:$$123456\\cdots910\\cdots15\\cdots2021\\cdots25\\cdots2930$$\n 记个位为第$$l$$位,十位为第$$2$$位,那么:它的奇数位数字和为:$$0+9+8+7+6+\\cdots+1+9+8+7+6+\\cdots+1+9+7+5+3+1=115$$:\n 它的偶数位数字和为:$$3+\\underbrace {2 + 2 + 2 + \\cdots + 2}_{10}+\\underbrace {1 + 1 + 1 + \\cdots + 1}_{10}+8+6+4+2=53$$;它的奇数位数字和与偶数位数字和的差为$$115—53$$:$$62$$.而$$62$$除以$$11$$的余数为$$7$$.所以将原来的那个$$51$$位数增大$$4$$所得到的数$$123456\\cdots910\\cdots15\\cdots192021\\cdots25\\cdots$$$$2934$$就是$$11$$倍数,则将$$123456\\cdots910\\cdots15\\cdots192021\\cdots25\\cdots$$$$2934$$减去$$4$$所得到数除以$$11$$的余数为$$7$$.即这个$$51$$位数除以$$11$$的余数是$$7$$.如果记个位为第$$1$$位,十位为第$$2$$位,那么一个数除以$$11$$的余数为其奇数位数字和$$A$$减去偶数位数字和$$B$$的差$$A-B=C$$,再用$$C$$除以$$1l$$所得的余数即是原来那个数的余数.$$($$如果减不开可将偶数位数字和$$B$$减去奇数位数字和$$A$$,求得$$B-A=C$$,再求出$$C$$除以$$11$$的余数$$D$$,然后将$$11-D$$即为原来那个数除以$$11$$的余数$$)$$.如:$$123456$$的奇数位数字和为$$6+4+2=12$$,偶数位数字和为$$5+3+1=9$$,奇数位数字和与偶数位数字和的差为$$12-9=3$$,所以$$123456$$除以$$11$$的余数为$$3$$.又如:$$654321$$的奇数位数字和为$$1+3+5=9$$,偶数位数字和为$$2+4+6=12$$,奇数位数字和减不开偶数位数字和,那么先将$$12-9=3$$,显然$$3$$除以$$11$$的余数为$$3$$,然后再用$$11-3=8$$,这个$$8$$即为$$654321$$除以$$11$$的余数.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整除特征", "整除特征综合", "数论模块", "整除"]} +{"_id": "ff8080814518d524014526a68c4a192b", "question": "今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物最少几何?\n ", "answer": "$$23$$ .\n", "Analysis": "此数除以$$3$$余$$2$$,除以$$5$$余$$3$$,除以$$7$$余$$2$$,满足条件最小数是$$23$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["余数问题", "逐级满足法", "中国剩余定理", "数论模块"]} +{"_id": "ff8080814518d524014526a68ce3192d", "question": "求满足下列条件的最小自然数:用$$3$$除余$$2$$,用$$7$$除余$$4$$,用$$11$$除余$$1$$.\n ", "answer": "$$221$$ .\n", "Analysis": "我们从被$$11$$除余$$1$$的数中寻找答案.$$1$$,$$12$$,$$23$$,$$34$$,$$45$$,$$56$$,$$67$$,$$78$$,$$89$$,$$100$$,$$133$$,$$144$$,$$155$$,$$166$$,$$177$$,$$188$$,$$199$$,$$210$$,$$232$$,$$243$$,$$\\cdots1(\\text{mod}3)$$;$$1(\\text{mod}7)$$,不符合$$12≡0(\\text{mod}3)$$,$$12≡5(\\text{mod}7)$$不符合;$$23≡2(\\text{mod}3)$$,$$23≡2(\\text{mod}7)$$不符合$$34≡1(\\text{mod}3)$$,$$34≡6(\\text{mod}7)$$不符合;$$45≡0(\\text{mod}3)$$,$$45≡3(\\text{mod}7)$$不符合$$56≡2(\\text{mod}3)$$,$$56≡0(\\text{mod}7)$$不符合;$$67≡1(\\text{mod}3)$$, $$67≡4(\\text{mod}7)$$不符合$$\\cdots199≡1(\\text{mod}3)$$,$$199≡3(\\text{mod}7)$$不符合;$$210≡0(\\text{mod}3)$$,$$210≡0(\\text{mod}7)$$不符合$$221≡2(\\text{mod}3)$$,$$221≡4(\\text{mod}7)$$符合;因此符合条件的数是$$221$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["余数问题", "逐级满足法", "中国剩余定理", "数论模块"]} +{"_id": "ff8080814518d524014526a6ce4c1935", "question": "有$$5000$$多根牙签,可按$$6$$种规格分成小包.如果$$10$$根一包,那么最后还剩$$9$$根.如果$$9$$根一包,那么最后还剩$$8$$根.第三、四、五、六种的规格是,分别以$$8,7,6,5$$根为一包,那么最后也分别剩$$7,6,5,4$$根.原来一共有牙签多少根?\n ", "answer": "$$5039$$ .\n", "Analysis": "设这包牙签有$$n$$根,那么加上$$1$$根后为$$n+1$$根此时有$$n+1$$根牙签即可以分成$$10$$根一包,又可以分成$$9$$根一包,还可以分成$$8$$、$$7$$、$$6$$、$$5$$根一包.所以,$$n+1$$是$$10$$、$$9$$、$$8$$、$$7$$、$$6$$、$$5$$的倍数,即它们��公倍数.\n [$$10$$,$$9$$,$$8$$,$$7$$,$$6$$,$$5$$]$$=2^3\\times3^2\\times5\\times7=2520$$,即$$n+1$$是$$2520$$的倍数,在满足题下只能是$$2520\\times2=5040$$,所以$$n=5039$$.即原来一共有牙签$$5039$$根.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "盈盈问题", "盈亏问题", "盈亏基本类型"]} +{"_id": "ff8080814518d524014526a6d8ec1937", "question": "有两个数字,甲:除以$$5$$余$$3$$,除以$$6$$余$$4$$,除以$$7$$余$$1$$:乙:除以$$5$$余$$3$$,除以$$6$$余$$4$$,除以$$7$$余$$1$$,除以$$15$$余?,当\"?\"取几的时候乙数是存在的,说明理由.\n ", "answer": "$$13$$\n ", "Analysis": "我们不难知道:满足除以$$5$$余$$3$$,除以$$6$$余$$4$$,除以$$7$$余$$1$$的最小数字是$$148$$,那么对于乙,我们接下来要满足除以$$15$$余?\n 即$$148+$$[$$5$$,$$6$$,$$7$$]$$ \\times$$?\n 显然,[$$5$$,$$6$$,$$7$$]一定是$$15$$的倍数.\n 所以根据两个数和的余数,同余于余数的和.乙只能和$$148\\div15$$有相同的余数.余数是$$13$$.所以\"?\"是$$13$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["余数问题", "余数的性质", "数论模块", "余数的可加性"]} +{"_id": "ff8080814518d524014526a6dafd1939", "question": "有一个数,除以$$3$$余$$2$$,除以$$4$$余$$1$$,问这个数除以$$12$$余几?\n ", "answer": "$$5$$ .\n", "Analysis": "方法一:除以$$3$$余$$2$$的数有:$$2$$,$$5$$,$$8$$,$$11$$,$$14$$,$$17$$,$$20$$,$$23$$,$$\\cdots$$;\n 它们除以$$12$$的余数是:$$2$$,$$5$$,$$8$$,$$11$$,$$2$$,$$5$$,$$8$$,$$11$$,$$\\cdots$$;\n 除以$$4$$余$$1$$的数有:$$1$$,$$5$$,$$9$$,$$13$$,$$17$$,$$21$$,$$25$$,$$29$$,$$\\cdots$$;\n 它们除以$$12$$的余数是:$$1$$,$$5$$,$$9$$,$$1$$,$$5$$,$$9$$,$$\\cdots$$;\n 一个数除以$$12$$的余数是唯一的.上面两行余数中,只有$$5$$是共同的,因此这个数除以$$12$$的余数是$$5$$.\n 方法二:一个数,除以$$3$$余$$2$$,除以$$4$$余$$1$$,可以理解为除以$$3$$余$$3+2$$,除以$$4$$余$$4+1$$,所以这个数减去$$5$$后,既能被$$3$$整除,又能被$$4$$整除,设这个数为$$a$$,则$$a=12m+5$$,$$(m$$为自然数$$)$$所以这个数除以$$12$$余$$5$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["余数问题", "余数的性质", "数论模块", "余数的可加性"]} +{"_id": "ff8080814518d524014526a707eb193d", "question": "“民间流传着一则故事——‘韩信点兵’.秦朝末年,楚汉相争.一次,韩信将$$1500$$名将士与楚王大将李锋交战.苦战一场,楚军不敌,败退回营,汉军也死伤四五百人.忽有后军来报,说有楚军骑兵追来,韩信便急速点兵迎敌.他命令士兵$$3$$人一排,结果多出$$2$$名;接着命令士兵$$5$$人一排,结果多出$$3$$名;他又命令士兵$$7$$人一排,结果又多出$$2$$名.韩信马上向将士们宣布:我军有$$1073$$名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人.”根据故事中的条件,你能算出韩信有多少将士么?\n ", "answer": "$$1073$$ .\n", "Analysis": "也就是说:一个自然数在$$1000$$和$$1100$$之间,除以$$3$$余$$2$$,除以$$5$$余$$3$$,除以$$7$$余$$2$$,求符合条件的数.\n 方法一:先列出除以$$3$$余$$2$$的数:$$2$$,$$5$$,$$8$$,$$11$$,$$14$$,$$17$$,$$20$$,$$23$$,$$26$$,$$\\cdots$$;\n 再列出除以$$5$$余$$3$$的数:$$3$$,$$8$$,$$13$$,$$18$$,$$23$$,$$28$$,$$\\cdots$$.\n 这两列数中,首先出现的公共数是$$8$$. $$3$$与$$5$$的最小公倍数是$$15$$.两个条件合并成一个就是$$8+15\\times$$整数,列出这一串数是$$8$$,$$23$$,$$38$$,$$\\cdots$$,再列出除以$$7$$余$$2$$的数$$2$$,$$9$$,$$16$$,$$23$$,$$30$$,$$\\cdots$$,就得出符合题目条件的最小数是$$23$$.而[$$3$$,$$5$$,$$7$$]$$=105$$,我们就把题目转化为:求$$1000$$~$$1100$$之间被$$105$$除余$$23$$的数.韩信有$$105 \\times 10 + 23 = 1073$$(个)将士.\n 方法二:我们先找出被$$3$$除余$$2$$的数:$$2$$,$$5$$,$$8$$,$$11$$,$$14$$,$$17$$,$$20$$,$$23$$,$$26$$,$$29$$,$$32$$,$$35$$,$$38$$,$$41$$,$$44\\cdots$$;\n 被$$5$$除余$$3$$的数:$$3$$,$$8$$,$$13$$,$$18$$,$$23$$,$$28$$,$$33$$,$$38$$,$$43$$,$$48$$,$$53$$,$$58\\cdots$$;\n 被$$7$$除余$$2$$的数:$$2$$,$$9$$,$$16$$,$$23$$,$$32$$,$$37$$,$$44$$,$$51\\cdots$$.\n 三个条件都符合的最小的数是$$23$$,以后的是一次加上$$3$$,$$5$$,$$7$$的公倍数,直到加到$$1000$$和$$1100$$之间.结果是$$23 + 105 \\times 10 = 1073$$.具体到实际的做题过程中时,从较大的除数开始做会方便一些.\n 方法三:利用程大位的解法,将题目转化为:求$$233$$加上$$105$$的倍数在$$1000$$~$$1100$$之间的数.通过尝试可以求出这个数是$$233 + 105 \\times 8 = 1073$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["余数问题", "逐级满足法", "中国剩余定理", "数论模块"]} +{"_id": "ff8080814518d524014526a70d14193f", "question": "数$$119$$很奇特:当被$$2$$除时,余数为$$1$$;当被$$3$$除时,余数为$$2$$;当被$$4$$除时,余数为$$3$$;当被$$5$$除时,余数为$$4$$;当被$$6$$除时,余数为$$5$$.问:具有这种性质的三位数还有几个?\n ", "answer": "$$14$$ .\n", "Analysis": "[$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,$$6$$]$$=60$$.三位数中$$60$$的倍数$$15$$个.所以,除了$$119$$外,还有$$15-1=14$$(个).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["余数问题", "中国剩余定理", "数论模块", "差同类韩信点兵"]} +{"_id": "ff8080814518d524014526a710fe1941", "question": "一个自然数被$$7$$,$$8$$,$$9$$除的余数分别是$$1$$,$$2$$,$$3$$,并且三个商数的和是$$570$$,求这个自然数.\n ", "answer": "$$1506$$\n ", "Analysis": "这个数被$$7$$,$$8$$,$$9$$除的余数分别是$$1$$,$$2$$,$$3$$,所以这个数加上$$6$$后能被$$7$$,$$8$$,$$9$$整除,而$$\\left[ {7,8,9} \\right] = 504$$,所以这个数加上$$6$$后是$$504$$的倍数.由于这个数被$$7$$,$$8$$,$$9$$除的三个商数的和是$$570$$,那么这个数加上$$6$$后能被$$7$$,$$8$$,$$9$$除的三个商数的和是$$570 + 1 + 1 + 1 = 573$$,而$$504 \\div 9 + 504 \\div 8 + 504 \\div 7 = 7 \\times 8 + 7 \\times 9 + 8 \\times 9 = 191$$,$$573 \\div 191 = 3$$,所以这个数加上$$6$$等于$$504$$的$$3$$倍,这个数是$$504 \\times 3 - 6 = 1506$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["差同类韩信点兵", "余数问题", "除法中四量关系", "数论模块", "余数问题带余除法", "中国剩余定理"]} +{"_id": "ff8080814518d524014526a7602d194c", "question": "有$$2$$个三位数相乘的积是一个五位数,积的后四位是$$7037$$,第一个数各位的数字之和是$$16$$,第二个数的各位数字之和是$$8$$,求两个三位数的和.\n", "answer": "$$402$$ .\n", "Analysis": "本题条件仅给出了两个乘数的数字之和,同时发现乘积的一部分已经给出,即乘积的一部分数字之和已经给出,我们可以采用弃九法原理的倒推来构造出原三位数.因为这是一个一定正确的算式,所以一定可以满足弃九法的条件,两个三位数除以$$9$$的余数分别为$$7$$和$$8$$,所以等式一边除以$$9$$的余数为$$2$$,那么$$\\square$$$$7037$$除以$$9$$的余数也必须为$$2$$,$$\\square$$只能是$$3$$.将$$37037$$分解质因数发现仅有一种情况可以满足是两个三位数的乘积,\n\n即$$37037 = 37 \\times 1001 = 143 \\times 259$$\n\n所以两个三位数是$$143$$和$$259$$,那么两个三位数的和是$$402$$ .\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["余数问题", "弃九法", "数论模块"]} +{"_id": "ff808081451d64f90145254d774109a6", "question": "有一类各位数字各不相同的五位数$$M$$,它的千位数字比左右两个数字大,十位数字也比左右两位数字大.另有一类各位数字各不相同的五位数$$W$$,它的千位数字比左右两个数字小,十位数字也比左右两位数字小.请问符合要求的数$$M$$与$$W$$,哪一类的个数多?多多少?\n ", "answer": "$$W$$多,多$$630$$个 .\n", "Analysis": "$$M$$与$$W$$都是五位数,都有千位和十位与其它数位的大小关系,所以两类数有一定的对应关系.比如有一个符合要求的五位数$$M=\\overline{ABCDE}$$($$A$$不为$$0)$$,那么就有一个与之相反并对应的五位数$$\\overline{(9-A)(9-B)(9-C)(9-D)(9-E)}$$必属于$$4$$类,比如$$13254$$为$$M$$类,则与之对应的$$86754$$为$$W$$类.\n\n所以对于$$M$$类的每一个数,$$n-1$$类都有一个数与之对应.但是两类数的个数不是一样多,因为$$M$$类中$$0$$不能做首位,而$$W$$类中$$9$$可以做首位.所以$$W$$类的数比$$M$$类的数要多,多的就���就是首位为$$\\underbrace{{{a}_{n-1}}+{{a}_{n}}=3\\times 3\\times \\ldots \\times3}_{(n-1)3}={{3}^{n-1}}$$的符合要求的数.\n\n计算首位为$${{a}_{1}}=0$$的$$W$$类的数的个数,首先要确定另外四个数,因为要求各不相同,从除$$9$$外的其它$$9$$个数字中选出$$4$$个,有$$C_{9}^{4}=126$$种选法.\n\n对于每一种选法选出来的$$4$$个数,假设其大小关系为$$5$$,由于其中最小的数只能在千位和十位上,最大的数只能在百位和个位上,所以符合要求的数有$$60$$类:①千位、十位排$${{A}_{1}}$$、$${{A}_{2}}$$,有两种方法,百位、十位排$${{A}_{3}}$$、$${{A}_{4}}$$,也有两种方法,故此时共有$$3$$种;②千位、十位排$$0$$、$${{A}_{3}}$$,只能是千位$${{A}_{3}}$$,百位$${{A}_{4}}$$,十位$$3$$,个位$$6$$,只有$$3$$种方法.\n\n根据乘法原理,首位为$$9$$的$$W$$类的数有$$126\\times \\left( 4+1 \\right)=630$$(个).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 5, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["位值原理运用", "位值原理与进制", "位值原理的综合应用", "数论模块"]} +{"_id": "ff8080814526d2f401452793d28003be", "question": "如果只许在天平的一边放砝码,要称量$$100$$克以内的各种整数克数,至少需要多少个砝码?\n ", "answer": "至少需要七种质量的砝码.\n", "Analysis": "只能放天平的一边,需要称出$$100$$以内的整数克数,需要$$1$$、$$2$$、$$4$$、$$8$$、$$16$$、$$32$$、$$64$$克的砝码,共$$7$$个.(不唯一,$$64$$克的砝码换成$$37\\sim 63$$均可)\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["砝码问题", "组合模块", "智巧趣题", "数学趣题"]} +{"_id": "ff8080814526d2f401452793fa5303c8", "question": "计算$$({{3}^{2003}}-1)$$除以$$26$$的余数.\n ", "answer": "$$8$$ .\n", "Analysis": "题中有$$3$$的次幂,令人联想到将题中的数转化成$$3$$进制下的数再进行计算.\n $${{3}^{2003}}-1={\\left(1\\underbrace{000\\cdots\\times0}_{2003个0}\\right)_{3}}-{{(1)}_{3}}={\\left(\\underbrace{222\\cdots 2}_{2003个2}\\right)_{3}}$$,而$$26={{(222)}_{3}}$$,\n 所以,$$({{3}^{2003}}-1)\\div 26={\\left(\\underbrace{222\\cdots2}_{2003个2}\\right)_{3}}\\div {{(222)}_{3}}$$.\n 由于$${{(222)}_{3}}$$整除$${{(222)}_{3}}$$,$$2003\\div 3=667\\cdots 2$$,所以$${\\left(\\underbrace{222\\cdots2}_{2003个2}\\right)_{3}}\\div {{(222)}_{3}}$$余$${{(22)}_{3}}=8$$.\n 所以$$({{3}^{2003}}-1)$$除以$$26$$的余数为$$8$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["位值原理与进制", "进制与余数问题", "进制的性质与应用", "数论模块"]} +{"_id": "ff8080814526d2f401452793ff2803ca", "question": "小马虎将一些零件装箱,每个零件$$10$$克,装了$$10$$箱,结果发现,混进了几箱次品进去,每个次品零件$$9$$克,但从外观上看不出来,聪明的你能只称量一次就能把所有的次品零件都找出来么?\n ", "answer": "解决这个问题有一个巧妙的方法.将$$10$$箱钢珠分别编为$$1$$~$$10$$号,然后从$$1$$号箱中取$$1$$个钢珠,从$$2$$号箱中取$$2$$个钢珠,从$$3$$号箱中取$$4$$个钢珠,从$$4$$号箱中取$$8$$个钢珠$$\\cdots$$从$$10$$号箱中取$$512$$个钢珠,共取出$$1+2+4+8+\\cdots+512=1023$$个钢珠,将这些钢珠放到天平上称,本来应重$$10230$$克,如果轻了$$n(1\\leqslant{n}\\leqslant10)$$克,就看$$n$$是由$$1$$,$$2$$,$$4$$,$$8$$,$$16$$,$$\\cdots$$$$512$$中的那些数字组成,则数字对应的那些号箱就是次品.在这个方法中,第$$10$$号箱也可不取,这样共取出$$511$$个钢珠,如果重$$500$$克,那么$$1$$,$$2$$,$$4$$号箱是次品.\n ", "Analysis": "不同的进制数与十进制数的对应关系,即:每个十进制数都能表示成一个相应的二进制数,反之,也是.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["操作问题", "操作与策略", "称重找假物", "组合模块", "已知轻重"]} +{"_id": "ff8080814526d2f4014527940f9503d2", "question": "在$$7$$进制中有三位数$$\\overline{abc}$$,化为$$9$$进制为$$\\overline{cba}$$,求这个三位数在十进制中为多少?\n ", "answer": "$$248$$ .\n", "Analysis": "首先还原为十进制:\n\n$${{(\\overline{abc})}_{7}}=a\\times{{7}^{2}}+b\\times {{7}^{1}}+c\\times {{7}^{0}}=49a+7b+c$$;$${{(\\overline{cba})}_{9}}=c\\times{{9}^{2}}+b\\times {{9}^{1}}+a\\times {{9}^{0}}=81c+9b+a$$.\n\n于是$$49a+7b+c=81c+9b+a$$;得到$$48a=80c+2b$$,即$$24a=40c+b$$.\n\n因为$$24a$$是$$8$$的倍数,$$40c$$也是$$8$$的倍数,所以$$b$$也应该是$$8$$的倍数,于是$$b=0$$或$$8$$.\n\n但是在$$7$$进制下,不可能有$$8$$这个数字.于是$$b=0$$,$$24a=40c$$,则$$3a=5c$$.\n\n所以$$a$$为$$5$$的倍数,$$c$$为$$3$$的倍数.\n\n所以,$$a=0$$或$$5$$,但是,首位不可以是$$0$$,于是$$a=5$$,$$c=3$$;\n\n所以$${{(\\overline{abc})}_{7}}={{(503)}_{7}}=5\\times 49+3=248$$ .\n\n于是,这个三位数在十进制中为$$248$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["位值原理与进制", "进制间的互化", "进制的性质与应用", "数论模块"]} +{"_id": "ff8080814526d2f4014527941a4403d8", "question": "在几进制中有$$125\\times 125=16234$$?\n ", "answer": "$$7$$ .\n", "Analysis": "注意$${{(125)}_{10}}\\times {{(125)}_{10}}={{(15625)}_{10}}$$ ,因为$$15625<16324$$,所以一定是不到$$10$$就已经进位,才能得到$$16324$$,所以$$n<10$$.\n 再注意尾数分析,$${{(5)}_{10}}\\times {{(5)}_{10}}={{(25)}_{10}}$$,而$$16324$$的末位为$$4$$,于是$$25-4=21$$进到上一位.\n 所以说进位制$$n$$为$$21$$的约数,又小于$$10$$,也就是可能为$$7$$或$$3$$.\n 因为出现了$$6$$,所以$$n$$只能是$$7$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["位值原理与进制", "进制的性质与应用", "数论模块", "多进制的判断"]} +{"_id": "ff8080814526d2f40145279442f403e4_1", "question": "同学们请将下面各题化为十进制数,看谁算的又快又准.\n \n$${{(11010101)}_{2}}$$\n ", "answer": "$$213$$\n ", "Analysis": "$${{(11010101)}_{2}}=1\\times{{2}^{7}}+1\\times {{2}^{6}}+0\\times {{2}^{5}}+1\\times {{2}^{4}}+0\\times{{2}^{3}}+1\\times {{2}^{2}}+0\\times {{2}^{1}}+1\\times{{2}^{0}}$$$$=128+64+16+4+1=213$$ .\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "进制的性质与应用", "抽象概括", "逐步调整思想", "转化与化归的思想", "能力", "运算求解", "对应思想", "数论模块", "位值原理与进制", "进制间的互化"]} +{"_id": "ff8080814526d2f40145279442f403e4_2", "question": "同学们请将下面各题化为十进制数,看谁算的又快又准.\n \n$${{(4203)}_{5}}$$\n ", "answer": "$$553$$\n ", "Analysis": "$${{(4203)}_{5}}=4\\times{{5}^{3}}+2\\times {{5}^{2}}+0\\times {{5}^{1}}+3\\times{{5}^{0}}=500+50+3=553$$ .\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "进制的性质与应用", "抽象概括", "逐步调整思想", "转化与化归的思想", "能力", "运算求解", "对应思想", "数论模块", "位值原理与进制", "进制间的互化"]} +{"_id": "ff8080814526d2f40145279442f403e4_3", "question": "同学们请将下面各题化为十进制数,看谁算的又快又准.\n \n$${{(7236)}_{8}}$$\n ", "answer": "$$3742$$\n ", "Analysis": "$${{(7236)}_{8}}=7\\times{{8}^{3}}+2\\times {{8}^{2}}+3\\times {{8}^{1}}+6\\times{{8}^{0}}=3584+128+24+6=3742$$ .\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "进制的性质与应用", "抽象概括", "逐步调整思想", "转化与化归的思想", "能力", "运算求解", "对应思想", "数论模块", "位值原理与进制", "进制间的互化"]} +{"_id": "ff8080814526d2f4014527946a9803ed", "question": "求满足下列条件的最小自然数:用$$3$$除余$$1$$,用$$5$$除余$$2$$,用$$7$$除余$$2$$.\n ", "answer": "$$37$$ .\n", "Analysis": "我们首先列举出被$$5$$除余$$2$$,被$$7$$除余$$2$$的数,$$2$$,$$37$$,$$72$$,$$107$$,$$142$$,$$177$$,$$212$$,$$247$$,从以上数中寻找最小的被$$3$$除余$$1$$的数$$2(\\bmod3)$$,$$37≡(\\bmod3)$$、因此符合条件的最小的数是$$37$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["除法中四量关系", "余数问题", "数论模块", "余数问题带余除法"]} +{"_id": "ff8080814526d2f4014527946de303ef", "question": "求满足下列条件的最小自然数:用$$3$$除余$$1$$,用$$5$$除余$$1$$,用$$7$$除余$$1$$.\n ", "answer": "$$106$$ .\n", "Analysis": "该数减去$$1$$以后,是$$3$$,$$5$$和$$7$$的最小公倍数$$105$$,所以该数的是$$105+1=106$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["余数问题", "中国剩余定理", "数论模块", "同余类韩信点兵"]} +{"_id": "ff8080814526d2f401452794724d03f1", "question": " 求$$\\underbrace {{200720072007}\\cdots{2007}}_{{2007}}$$除以$$9$$、$$99$$、$$999$$的余数分别是多少?\n \n ", "answer": "$$0$$,$$36$$,$$0$$ .\n", "Analysis": "$$9$$:  $$\\underbrace {{200720072007}\\cdots{2007}}_{{2007}}$$除以$$9$$的余数是$$0$$,\n $$99$$:能被$$9$$整除,被$$11$$除余$$3$$的数最小是$$36$$,所以$$\\underbrace {200720072007\\cdots2007}_{2007}$$除以$$99$$余$$36$$\n $$200720072007$$能被$$27$$、$$37$$整除.$$999=27\\times37 $$ 所以$$\\underbrace {200720072007\\cdots2007}_{2007}$$除以$$999$$的余数是$$0$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["余数问题", "余数特征", "数论模块", "余数问题带余除法"]} +{"_id": "ff8080814526d2f401452794749c03f3", "question": "有连续的三个自然数$$a$$、$$a + 1$$、$$a + 2$$,它们恰好分别是$$9$$、$$8$$、$$7$$的倍数,求这三个自然数中最小的数至少是多少?\n ", "answer": "$$495$$\n ", "Analysis": "由$$a + 1$$是$$8$$的倍数,得到$$a$$被$$8$$除余$$7$$,由$$a + 2$$是$$7$$的倍数,得到$$a$$被$$7$$除余$$5$$,现在相当于一个数$$a$$除以$$9$$余$$0$$,除以$$8$$余$$7$$,除以$$7$$余$$5$$.运用中国剩余定理求$$a$$ $$($$用逐步满足的方法也可以$$)$$\n\n\n\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\n
\n\t\t\t$$7$$和$$8$$的公倍数\n\n\t\t\t$$7$$和$$9$$的公倍数\n\n\t\t\t$$8$$和$$9$$的公倍数\n
\n\t\t\t$$56$$\n\n\t\t\t$$63$$\n\n\t\t\t$$75$$\n
\n\t\t\t$$112$$\n\n\t\t\t$$126$$\n\n\t\t\t$$144$$\n
\n\t\t\t$$168$$\n\n\t\t\t$$189$$\n\n\t\t\t$$216$$\n
\n\t\t\t$$224$$\n\n\t\t\t$$252$$\n\n\t\t\t$$288$$\n
\n\t\t\t$$280$$\n\n\t\t\t$$315$$\n 
 \n\t\t\t$$378$$\n 
 \n\t\t\t$$441$$\n 
\n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t$$\\cdots \\cdots $$\n
\n$$7$$和$$8$$的公倍数中除以$$9$$余$$1$$的最小为$$280$$;$$7$$和$$9$$的公倍数中除以$$8$$余$$1$$的最小是$$441$$;$$8$$和$$9$$的公倍数中除以$$7$$余$$1$$的最小是$$288$$,根据中国剩余定理,\n\n$$280 \\times 0 + 441 \\times 7 + 288 \\times 5 = 4527$$符合各个余数条件,但$$4527$$不是最小的,还需要减去$$7$$、$$8$$、$$9$$的公倍数,可知$$4527 - \\left( {7 \\times 8 \\times 9} \\right) \\times 8 = 495$$是满足各个余数条件的最小值,所以$$a$$至少是$$495$$.\n\n仔细观察,可知由于$$a$$、$$a + 1$$、$$a + 2$$恰好分别是$$9$$、$$8$$、$$7$$的倍数,那么$$a + 9$$、$$a + 1 + 8$$、$$a + 2 + 7$$也分别是$$9$$、$$8$$、$$7$$的倍数,即$$a + 9$$是$$9$$、$$8$$、$$7$$的公倍数,那么$$a + 9$$的最小值是$$9 \\times 8 \\times 7 = 504$$,即$$a$$至少是$$504 - 9 = 495$$.\n\n由$$a+1$$是$$8$$的倍数,得到$$a$$被$$8$$除余$$7$$,由$$a+2$$是$$7$$的倍数,得到$$a$$被$$7$$除余$$5$$,现在相当于一个数$$a$$除以$$9$$余$$0$$,除以$$8$$���$$7$$,除以$$7$$余$$5$$.运用中国剩余定理或逐级满足求$$a$$即可.最小为$$495$$.\n\n故答案为:$$495$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["余数问题", "逐级满足法", "中国剩余定理", "数论模块"]} +{"_id": "ff8080814526d2f401452794c59b0406", "question": "求满足下列条件的最小自然数:用$$3$$除余$$2$$,用$$5$$除余$$1$$,用$$7$$除余$$1$$.\n ", "answer": "$$71$$ .\n", "Analysis": "该数减去$$1$$以后是$$5$$和$$7$$的公倍数.因此我们可以以$$5$$和$$7$$的公倍数中去寻找答案.下面列举一些同时被$$5$$除余$$1$$,被$$7$$除余$$1$$的数,即$$1$$,$$36$$,$$71$$,$$106$$,$$141$$,$$176$$,$$211$$,$$246$$,$$\\cdots$$从以上数中寻找最小的被$$3$$除余$$2$$的数,$$36≡0(\\bmod3)$$,$$71≡2(\\bmod3)$$,符合条件的最小的数是$$71$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["余数问题", "逐级满足法", "中国剩余定理", "数论模块"]} +{"_id": "ff8080814526d2f401452794ef95040e", "question": "连续写出从$$1$$开始的自然数,写到$$2009$$时停止,得到一个多位数:$$1234567891011 \\cdots 19992000$$,请说明:这个多位数除以$$3$$,得到的余数是几?为什么?\n ", "answer": "$$0$$\n ", "Analysis": "因为连续$$3$$个自然数可以被$$3$$整除,而且最后一个自然数都是$$3$$的倍数,因为$$1998$$是$$3$$的倍数,所以$$1234567891011 \\cdots 1998$$是$$3$$的倍数,又因为$$1234567891011 \\cdots 19992000 = 1234567891011 \\cdots 199800000000 + 1998 + 1 + 1998 + 2$$,所以$$1234567891011 \\cdots 19992000$$除以$$3$$,得到的余数是$$0$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整除特征", "和系整除特征应用", "数论模块", "整除"]} +{"_id": "ff8080814526d2f401452794f49c0410", "question": "将$$1$$至$$2008$$这$$2008$$个自然数,按从小到大的次序依次写出,得一个多位数:$$12345678910111213\\cdots20072008$$,试求这个多位数除以$$9$$的余数.\n ", "answer": "$$1$$ .\n", "Analysis": "以$$19992000$$这个八位数为例,它被$$9$$除的余数等于$$\\left( {1 + 9 + 9 + 9 + 2 + 0 + 0 + 0} \\right)$$被$$9$$除的余数,但是由于$$1999$$与$$\\left( {1 + 9 + 9 + 9} \\right)$$被$$9$$除的余数相同,$$2000$$与$$\\left( {2 + 0 + 0 + 0} \\right)$$被$$9$$除的余数相同,所以$$19992000$$就与$$\\left( {1999 + 2000} \\right)$$被$$9$$除的余数相同.由此可得,从$$1$$开始的自然数$$12345678910111213\\cdots20072008$$被$$9$$除的余数与前$$2008$$个自然数之和除以$$9$$的余数相同.根据等差数列求和公式,这个和为:$$\\frac{{\\left( {1 + 2008} \\right) \\times 2008}}{2} = 2017036$$,它被$$9$$除的余数为$$1$$.另外还可以利用连续$$9$$个自然数之和必能被$$9$$整除这个性质,将原多位数分成$$123456789$$,$$101112131415161718$$,$$\\cdots$$,$$199920002001200220032004200520062007$$,$$2008$$等数,可见它被$$9$$除的余数与$$2008$$被$$9$$除的余数相同.因此,此数被$$9$$除的余数为$$1$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整除特征", "和系整除特征应用", "数论模块", "整除"]} +{"_id": "ff8080814526d2f40145307bcb452c00", "question": "—辆汽车的速度是每小时$$50$$千米,现有一块每$$5$$小时慢$$2$$分的表,若用该表计时,测得这辆汽车的时速是多少?$$($$得数保留一位小数$$)$$\n ", "answer": "$$50.3$$千米.\n", "Analysis": "正常表走$$5$$小时,慢表只走了:$$5\\times 60-2=298$$(分钟),因此,用慢表测速度,这辆汽车的速度是:$$50~\\times 5\\div \\frac{298}{60}\\approx 50.3$$(千米/小时).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "怪钟问题", "时钟问题"]} +{"_id": "ff8080814502fa24014507b662ee0b9a", "question": "过年的时候,球球给客人倒啤酒,一瓶啤酒可以倒满$$4$$杯,球球倒酒的时候总是每杯中有半杯泡沫,啤酒倒成泡沫的体积会涨成原来的$$3$$倍,那么球球倒啤酒时,一瓶酒可以倒(   )杯.\n", "answer": "B", "Analysis": "根据题意可知,$$1$$份的啤酒可以变成$$3$$份的泡沫.球球倒的啤酒一半是泡沫,那么我们可以把球球倒的每杯酒分成$$6$$份,那么每倒一杯酒只有$$4$$份.而一瓶啤酒可以倒$$4$$杯共有$$4\\times6=24$$份.球球倒的每杯酒为$$4$$份,她共可以倒的杯数为:$$24\\div4=6$$.\n ", "options": "A:$$5$$\n\nB:$$6$$\n\nC:$$7$$\n\nD:$$8$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "认识单位1", "分百应用题"]} +{"_id": "ff8080814502fa2401450bc9eefe16a2", "question": "若$$a = \\underbrace {1515 \\cdots 15}_{1004个15} \\times \\underbrace {333 \\cdots 3}_{2008个3}$$,则整数$$a$$的所有数位上的数字和等于(       ).\n ", "answer": "B", "Analysis": "$${a = \\underbrace {1515 \\cdots 15}_{1004 个 15}  \\times  \\underbrace {333 \\cdots 3}_{2008个3}}$$\n\n$${ = \\underbrace {505050 \\cdots 5}_{1004个 5 和 1003 个0}\\times   \\underbrace {999 \\cdots 9}_{2008个9}}$$\n\n$${ = \\underbrace {505050 \\cdots 5}_{1004个 5 和 1003 个0}\\times  (1 \\underbrace {0000 \\cdots 0}_{2008个0} - 1})$$\n\n$${ = \\underbrace {505050 \\cdots 50}_{1004个50} \\underbrace {0000 \\cdots 0}_{2007个0}   - \\underbrace {505050 \\cdots 5}_{1004个 5 和 1003 个0}}$$\n\n$${ = \\underbrace {505050 \\cdots 50}_{1003个50}\\underbrace {494949 \\cdots 49}_{1004个49}{5}}$$\n\n所以整数$$a$$的所有数位上的数字和$$ = 1003 \\times 5 + 1004 \\times 4 + 9 + 5 = 18072$$ .\n", "options": "A:$$18063$$\n\nB:$$18072$$\n\nC:$$18079$$\n\nD:$$18054$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整数", "计算模块", "整数分配律", "整数乘法巧算之分配律", "整数拆数法构造分配律"]} +{"_id": "ff8080814518d524014519096ede031e", "question": "动物园的饲养员把一堆桃子分给若干只猴子,如果每只猴子分$$6$$个,剩$$57$$个桃子;如果每只猴子分$$9$$个,就有$$5$$只猴子一个也分不到,还有一只猴子只分到$$3$$个.那么,有(     )个桃子.\n ", "answer": "C", "Analysis": "每只猴子多分了$$3$$个,分了$$5\\times 9+(9-3)+57=108$$ (个),那么共$$108\\div 3=36$$(只)猴子.共$$36\\times6+57=273$$(个)桃子.\n", "options": "A:$$216$$\n\nB:$$324$$\n \nC:$$273$$\n \nD:$$301$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "对象转化为物品", "盈亏问题", "盈亏转化题型"]} +{"_id": "ff8080814518d52401451925eda00502", "question": "老师把某两位数的六个不同因数分别告诉了$$A\\sim F$$六个聪明诚实的同学.\n $$A$$和$$B$$同时说:我知道这个数是多少了.\n $$C$$和$$D$$同时说:听了他们的话,我也知道这个数是多少了.\n $$E$$:听了他们的话,我知道我的数一定比$$F$$的大.\n $$F$$:我拿的数的大小在$$C$$和$$D$$之间. 那么六个人拿的数之和是(       ).\n ", "answer": "A", "Analysis": "(1)这个数的因数个数肯定不低于$$6$$个(假定这个数为$$N$$,且拿到的$$6$$个数从大到小分别是$$ABCDEF$$ )\n\n(2)有两个人同时第一时间知道结果,这说明以下几个问题:\n\n第一种情况:有一个人知道了最后的结果,这个结果是怎么知道的呢?很简单,他拿到的因数在$$50\\sim 99$$之间(也就是说$$A$$ 的$$2$$倍是$$3$$位数,所以$$A$$其实就是$$N$$)\n\n第二种情况:有一个人拿到的不是最后结果,但是具备以下条件:\n\n这个数的约数少于$$6$$个,比如:有人拿到$$36$$,单他不能断定$$N$$究竟是$$36$$还是$$72$$.\n\n这个数小于$$50$$,不然这个数就只能也是$$N$$了.\n\n这个数大于$$33$$,比如:有人拿到$$29$$,那么他不能断定$$N$$ 是$$58$$还是$$87$$;(这里有个特例是$$27$$,因为$$27\\times 2=54$$,因数个数不少于$$6$$个;$$27\\times 3=81$$,因数个数少于$$6$$个,所以如果拿到$$27$$可以判断$$N$$只能为$$54$$)\n\n这个数还不能是是质数,不然不存在含有这个因数的两位数.\n\n最关键的是,这两人的数是$$2$$倍关系\n\n但是上述内容并不完全正确,需要注意还有一些“奇葩”数:$$17$$、$$19$$、$$23$$也能顺利通过第一轮.\n\n因此,这两个人拿到的数有如下可能:\n\n($$54$$,$$27$$)($$68$$,$$34$$)($$70$$,$$35$$)($$76$$,$$38$$)($$78$$,$$39$$)($$92$$,$$46$$)($$98$$,$$49$$)\n\n(3)为了对比清晰,我们再来把上面所有的情况的因数都列举出来:\n\n($$54$$,$$27$$,$$18$$,$$9$$,$$6$$,$$3$$,$$2$$,$$1$$)\n\n($$68$$,$$34$$,$$17$$,$$4$$,$$2$$,$$1$$)($$\\times$$)\n\n($$70$$,$$35$$,$$14$$,$$10$$,$$7$$,$$5$$,$$2$$,$$1$$)\n\n($$76$$,$$38$$,$$19$$,$$4$$,$$2$$,$$1$$)($$\\times$$)\n\n($$78$$,$$39$$,$$26$$,$$13$$,$$6$$,$$3$$,$$2$$,$$1$$)\n\n($$92$$,$$46$$,$$23$$,$$4$$,$$2$$,$$1$$)($$\\times$$)\n\n($$98$$,$$49$$,$$14$$,$$7$$,$$2$$,$$1$$)\n\n对于第一轮通过的数,我们用红色标注,所以$$N$$不能是$$68$$、$$76$$、$$92$$中的任意一个.\n\n之后在考虑第二轮需要通过的两个数.\n\n用紫色标注的$$6$$、$$3$$、$$2$$、$$1$$,因为重复使用,如果出现了也不能判断$$N$$是多少,所以不能作为第二轮通过的数.\n\n用绿色标注的$$14$$和$$7$$也不能作为第二轮通过的数,这样$$N$$也不是$$98$$.\n\n那么通过第二轮的数只有黑色的数.\n\n所以$$N$$ 只能是$$54$$、$$70$$、$$78$$中的一个.\n\n我们再来观察可能满足$$E$$和$$F$$所说的内容:\n\n($$54$$,$$27$$,$$18$$,$$9$$,$$6$$,$$3$$,$$2$$,$$1$$)\n\n($$70$$,$$35$$,$$14$$,$$10$$,$$7$$,$$5$$,$$2$$,$$1$$)\n\n($$78$$,$$39$$,$$26$$,$$13$$,$$6$$,$$3$$,$$2$$,$$1$$)\n\n因为$$F$$说他的数在$$C$$和$$D$$之间,我们发现上面的数据只有当$$N=70$$的时候,$$F=7$$,在$$CD$$$$(10$$和$$5)$$之间,是唯一满足条件的一种情况.\n\n又因为$$E$$ 确定自己比$$F$$的大,那么他拿到的数一定是该组中剩余数里最大的.所以$$E$$拿到的是$$14$$($$N=70$$ ).\n\n所以$$N=70$$,六个人拿的数之和为:$$70+35+14+10+7+5=141$$.\n", "options": "A:$$141$$\n\nB:$$152$$\n\nC:$$171$$\n\nD:$$175$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["答案(数字)正误问题", "组合模块", "假设型逻辑推理", "逻辑推理"]} +{"_id": "ff8080814518d52401451b56a194069d", "question": "甲、乙两人玩拿火柴棍游戏,桌上共有$$10$$根火柴棍,谁取走最后一根谁胜.甲每次可以取走$$1$$根、$$3$$根或$$4$$根(只能取恰好的数量,如果最后剩$$2$$根火柴棍,甲只能取$$1$$根),乙每次可以取$$1$$根或$$2$$根.如果甲先取,那么甲为了取胜,第一次应(      ).\n ", "answer": "D", "Analysis": "无论甲怎么走,乙只要让最后火柴棒剩两根,甲这时只能取$$1$$根,乙胜.在这之前只要保证火柴剩下$$5$$根,甲取$$1$$根,则乙取$$2$$根,剩$$2$$根,乙胜;或者甲取$$3$$根,乙取$$2$$根,乙胜;或者甲取$$4$$根,乙取$$1$$根,乙胜.所以甲无论怎么取都无法获胜.\n ", "options": "A:取$$1$$根\n \nB:取$$3$$根\n \nC: 取$$4$$根\n \nD:无论怎么取都无法获胜\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["游戏策略", "抢占制胜点", "取火柴棒类游戏", "操作与策略", "组合模块"]} +{"_id": "ff8080814518d5240145201b60020a7d", "question": "找出规律,将你认为合适的数填入(      ),$$2$$、$$4$$、$$3$$、$$9$$、$$4$$、$$16$$、$$5$$、  (          )、  (         )、$$36$$、 $$7$$、$$\\cdots$$那么正确的数是(       ).\n ", "answer": "C", "Analysis": "$$2$$、$${ 2 }^{ 2 }$$、$$3$$、$${ 3 }^{ 2 }$$、$$4$$、$${ 4 }^{ 2 }$$、$$5$$、($${5 }^{ 2 }$$)、($$6$$ )、$${ 6 }^{ 2 }$$、$$7$$$$\\cdots$$.\n ", "options": "A:$$18$$、$$6$$\n \nB:$$22$$、$$6$$\n \nC:$$25$$、$$6$$\n \nD:$$25$$、$$26$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数列规律", "智巧趣题", "找规律", "综合与实践"]} +{"_id": "ff8080814694a4c30146bcbefb8d5714", "question": "在$$10\\square10\\square10\\square10\\square10$$的四个$$\\square$$中填入“$$+$$”“$$-$$”“$$\\times$$”“$$\\div$$”运算符号各一个,所成的算式最大值是(       ).\n ", "answer": "B", "Analysis": "最大值为$$109$$,$$10\\times 10+10-10\\div 10=109$$.\n ", "options": "A:$$104$$\n \nB:$$109$$\n \nC:$$114$$\n \nD:$$119$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数字谜", "横式数字谜", "组合模块", "横式数字谜的最值"]} +{"_id": "ff80808146ec1d88014701e886711545", "question": "小虎在$$19\\times 19$$的围棋盘的格点上摆棋子,先摆成了一个长方形的实心点阵.然后再加上$$45$$枚棋子,就正好摆成一边不变的较大的长方形的实心点阵.那么小虎最多用了(       )枚棋子.\n ", "answer": "A", "Analysis": "$$45=3\\times 3\\times 5$$,它小于$$19$$的最大约数为$$15$$,所以不变的边长应为$$15$$,另一边最长为$$19$$,所以小虎最多用了$$15\\times19=285$$(枚)棋子.\n", "options": "A:$$285$$\n \nB:$$171$$\n \nC:$$95$$\n \nD:$$57$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "实心方阵", "实心方阵的增减", "方阵问题"]} +{"_id": "ff80808147248448014724de1b6f0135", "question": "一个四位数,各位数字互不相同,所有数字之和等于$$6$$,并且这个数是$$11$$的倍数,则满足这种要求的四位数共有(       )个.\n ", "answer": "A", "Analysis": "四位数,各位数字互不相同,所有数字之和等于$$6$$,所以,组成四位数的四个数字分别为$$0$$、$$1$$、$$2$$、$$3$$,这个数是$$11$$的倍数,则奇数位上的数字和等于偶数位上的数字和,等于$$3$$.符合条件的四位数有$$3102$$、$$3201$$、$$1320$$、$$1023$$、$$2310$$、$$2013$$,共$$6$$个.\n ", "options": "A:$$6$$\n \nB:$$7$$\n \nC:$$8$$\n \nD:$$9$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["枚举法综合", "计数模块", "有序枚举", "枚举法"]} +{"_id": "ff8080814724846801472db5f45807cf", "question": "$$2012.25\\times 2013.75-2010.25\\times 2015.75=$$(   ).\n", "answer": "C", "Analysis": "方法一:公式法,$${{a}^{2}}-{{b}^{2}}=(a-b)(a+b)$$\n 原式$$=$$$$(2013-0.75)(2013+0.75)-(2013-2.75)(2013+2.75)$$\n $$=[{{(2013)}^{2}}-{{(0.75)}^{2}}]-[{{(2013)}^{2}}-{{(2.75)}^{2}}]$$\n $$={{(2013)}^{2}}-{{(0.75)}^{2}}-[{{(2013)}^{2}}+{{(2.75)}^{2}}$$\n $$={{(2.75)}^{2}}-{{(0.75)}^{2}}$$\n $$=(2.75-0.75)(2.75+0.75)$$\n $$=2\\times 3.5=7$$\n 方法二:换元法\n 令$$a=2013.75$$,$$b=2010.75$$\n 原式$$=$$$$(b+2)\\times a-b\\times (a+2)$$=$$(ab+2a)-(ab+2b)$$=$$2a-2b$$\n $$=2(a-b)=2\\times (2013.75-2010.25)=2\\times3.5=7$$.\n ", "options": "A:$$5$$\n\nB:$$6$$\n\nC:$$7$$\n\nD:$$8$$\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["小数四则混合运算", "混合运算", "数与运算"]} +{"_id": "ff8080814724846801472db5f62907d6", "question": "$$45$$与$$40$$的积的数字和是(   ).\n ", "answer": "A", "Analysis": "$$45\\times 40=45\\times 2\\times 20=1800$$,数字和$$1+8+0+0=9$$.\n ", "options": "A:$$9$$\n \nB:$$11$$\n \nC:$$13$$\n \nD:$$15$$\n ", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整数", "计算模块", "多位数计算", "多位数的运算和数字和相关", "求计算结果的数字和"]} +{"_id": "ff8080814502fa2401450be88ed31bc7", "question": "$$\\begin{cases} 60\\times 4y-60x=z \\\\ 20\\times 8y-20x=z \\\\ 3ty-tx=z \\end{cases}$$\n ", "answer": "$$t=120$$\n ", "Analysis": "主要目的为求$$t$$,消掉其他未知数即可.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程组", "计算模块", "整数系数方程组", "方程基础"]} +{"_id": "ff8080814526d2f40145278d1747036c", "question": "从$$1$$开始的前$$2005$$个整数的和是 ___          ___ 数$$($$填:“奇”或“偶”).\n ", "answer": "奇", "Analysis": "$$1+2+3+\\cdots+2004+2005=(1+2005)\\times2005\\div2=1003\\times2005$$是奇数.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数列与数表", "等差数列求和", "计算模块", "等差数列"]} +{"_id": "ff80808149848da401498917dc5709e0", "question": "解方程:$$25-2(5x-4)=5(x+4)+2$$\n ", "answer": "$$\\frac{11}{15}$$\n ", "Analysis": "$$25-10x+8=5x+20+2$$$$\\Rightarrow 33-10x=5x+22\\Rightarrow11=15x\\Rightarrow x=\\frac{11}{15}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["一元一次方程", "计算模块", "整数系数方程", "方程基础"]} +{"_id": "ff8080814502fa2401450775a7d30a9c", "question": "开学前,宁宁拿着妈妈给的$$30$$元钱去买笔,文具店里的圆珠笔每支$$4$$元,铅笔每支$$3$$元.宁宁买完两种笔后把钱花完.请问:她一共买了几支笔?\n ", "answer": "宁宁共买了$$9$$支笔或$$8$$支笔.\n ", "Analysis": " $$($$法一$$)$$由于题中圆珠笔与铅笔的数量都不知道,但总费用已知,所以可以根据不定方程分析两种笔的数量,进而得解.设她买了$$x$$支圆珠笔,$$y$$支铅笔,由题意列方程:$$4x+3y=30$$,所以$$3y=30-4x$$,$$y=10-\\frac{4x}{3}$$因为$$xy$$均为整数,所以$$x$$应该能被$$3$$整除,又因为$$1\\leqslant{x}\\leqslant 7$$,所以$$x=3$$或$$6$$,当$$x=3$$时,$$y=6$$,$$x+y=9$$,当$$x=6$$时,$$y=2$$,$$x+y=8$$,宁宁共买了$$9$$支��或$$8$$支笔.\n $$($$法二$$)$$换个角考虑:将“一支圆珠笔和一支铅笔”看成一对,分析宁宁可能买了几对笔,不妨设为$$m$$对,余下的一定是圆珠笔与铅笔中的唯一一种.一对笔的售价为“$$4+3=7$$元,由题意可知,$$1\\leqslant {m}\\leqslant 4$$,又$$m$$为整数\n 当$$m=1$$时,余款为$$30-7=23$$,不能被$$3$$或$$4$$整除,这种情况不可能;\n 当$$m=2$$时,余款为$$30-2\\times 7=16$$,能被$$4$$整除,也就是说配对后,余下$$4$$支圆珠笔.此时,宁宁买了$$6$$支圆珠笔,$$2$$支铅笔,共$$8$$支笔.\n 当$$m=3$$时,余款为$$30-3\\times 7=9$$,能被$$3$$整除,也就是说配对后,余下$$3$$支圆珠笔.此时,宁宁买了$$3$$支圆珠笔,$$6$$支铅笔,共$$9$$支笔.\n 当$$m=4$$时,余款为$$30-4\\times 7=2$$,不能被$$3$$或$$4$$整除,这种情况不可能,由上面的分析可知,宁宁共买了$$9$$支笔或$$8$$支笔.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数多元一次方程组解应用题"]} +{"_id": "ff8080814518d5240145201f94bb0aa4", "question": "小明从自己家到奶奶家时,前一半路程步行,后一半路程乘车;他从奶奶家回家时,前$$\\frac{1}{3}$$时间乘车,后$$\\frac{2}{3}$$时间步行.结果去奶奶家的时间比回家所用的时间多$$2$$小时.已知小明步行每小时行$$5$$千米,乘车每小时行$$15$$千米,那么小明从自己家到奶奶家的路程是多少千米?\n ", "answer": "小明从自己家到奶奶家的路程是$$150$$千米.\n ", "Analysis": "设小明家到奶奶家的路程为$$x$$千米,而小明从奶奶家返回家里所需要的时间是$$y$$小时,那么根据题意有:\n $$\\left\\{ \\begin{align}&\\frac{\\frac{1}{2}x}{5}+\\frac{\\frac{1}{2}x}{15}=y+2\\\\ & x=\\frac{1}{3}y\\times15+\\frac{2}{3}y\\times 5 \\\\ \\end{align} \\right.$$,解得: $$\\left\\{\\begin{align}& x=150 \\\\ & y=18 \\\\ \\end{align} \\right.$$\n 小明从自己家到奶奶家的路程是$$150$$千米.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "分数系数方程(组)解题"]} +{"_id": "ff8080814526d2f40145307bdb302c06", "question": "有一个时钟,它每小时慢$$25$$秒,今年$$3$$月$$21$$日中午十二点它的指示正确.请问:这个时钟下一次指示正确的时间是几月几日几点钟?\n ", "answer": "$$6$$月$$1$$日中午$$12$$点.\n ", "Analysis": "当这个时钟慢$$12$$个小时的时候,它又指示准确的时间,\n 慢$$12$$个小时需$$\\frac{{60 \\times 60 \\times 12}}{{25}}$$$$=12\\times12\\times12($$小时$$)$$\n 相当于:$$\\frac{{12 \\times 12 \\times 12}}{{24}}$$=72(天)\n 注意$$3$$月份有$$31$$天,$$4$$月份有$$30$$天,$$5$$月份有$$31$$天,到$$6$$月$$1$$日中午,恰好是$$72$$天,\n 下一次指示正确时间是$$6$$月$$1$$日中午$$12$$点.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "坏钟问题", "时钟问题"]} +{"_id": "ff8080814526d2f40145307bf0922c0e", "question": "小春有一块手表,这块表每小时比标准时间慢$$2$$分钟.某天晚上$$9$$点整,小春将手表对准,到第二天上午手表上显示的时间是$$7$$点$$38$$分的时候,标准时间是 ___          ___ 点.\n", "answer": "$$8$$", "Analysis": "从晚上$$9$$点到第二天$$7$$:$$38$$,分针一共划过$$60\\times10+38=638$$(格),\n\n而这块表每小时比标准时间慢$$2$$分钟,即每转$$58$$格,标准钟转$$60$$格,\n\n所以标准钟分针转了$$638\\div58\\times60=660$$(格),所以此时是$$8$$点.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "怪钟问题", "时钟问题"]} +{"_id": "ff8080814526d2f40145363197613ef0", "question": "马路上有编号为$$1$$,$$2$$,$$3$$,$$\\cdots$$,$$10$$的十盏路灯,为节约用电又能看清路面,可以把其中的三盏灯关掉,但又不能同时关掉相邻的两盏,在两端的灯也不能关掉的情况下,求满足条件的关灯方法有多少种?\n", "answer": "$$20$$\n ", "Analysis": "$$10$$盏灯关掉$$3$$盏,实际上还亮$$7$$盏灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在$$7$$盏亮着的路灯之间的$$6$$个空档中放入$$3$$盏熄灭的灯,有$$\\text{C}_{6}^{3}=20$$��种)方法.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "组合综合", "组合"]} +{"_id": "ff8080814526d2f401453631fcfa3ef5", "question": "$$8$$人围圆桌聚餐,甲、乙两人必须相邻,而乙、丙两人不得相邻,有几种坐法?\n ", "answer": "$$1200$$\n ", "Analysis": "【方法一】\n\n固定甲的位置,乙可在甲的两旁,$$2$$种情况.乙的另一边不为丙,有$$5$$种情况.余下$$5$$人全排列,$$A_{5}^{5}=120$$种情况.共有$$2\\times 5\\times 120=1200$$种坐法.\n\n【方法二】$$n$$人的环状排列与线状排列的不同之处在于:$${{a}_{1}}{{a}_{2}}{{a}_{3}}\\cdots{{a}_{n}}$$、$${{a}_{2}}{{a}_{3}}\\cdots {{a}_{n}}{{a}_{1}}$$、$${{a}_{3}}{{a}_{4}}\\cdots{{a}_{n}}{{a}_{1}}{{a}_{2}}$$、$$\\cdots$$、$${{a}_{n}}{{a}_{1}}\\cdots {{a}_{n-1}}$$在线状排列里是$$n$$个不同的排列,而在环状排列中是相同的排列.所以,$$n$$个不同的元素的环状排列数为$$\\frac{\\text{A}_{n}^{n}}{n}=\\text{A}_{n-1}^{n-1}$$.\n\n甲、乙两人必须相邻,可把他们看作是$$1$$人(当然,他们之间还有顺序),总排列数为$$\\text{A}_{2}^{2}\\text{A}_{6}^{6}$$.从中扣除甲、乙相邻且乙、丙也相邻(注意,这和甲、乙、丙三人相邻是不同的.如甲在乙、丙之间合于后者,但不合于前者)的情况$$\\text{A}_{2}^{2}\\text{A}_{5}^{5}$$种.所以,符合题意的排法有$$\\text{A}_{2}^{2}\\text{A}_{6}^{6}-\\text{A}_{2}^{2}\\text{A}_{5}^{5}=1200$$(种).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "排列综合", "排列"]} +{"_id": "ff8080814526d2f4014536336fb33f01", "question": "一堆苹果共有$$8$$个,如果规定每次取$$1$$~$$3$$个,那么取完这堆苹果共有多少种不同取法?\n ", "answer": "$$81$$\n ", "Analysis": "类比思想,把$$8$$个苹果分别放在$$8$$级台阶上,每迈一个台阶相当于取一个苹果.则取$$1$$个苹果有$$1$$种方法,取$$2$$个苹果有$$2$$种方法,取$$3$$个苹果有$$4$$种取法,以后取任意个苹果的种数等于取到前三个苹果所有情况之和;以此类推,参照上题列表如下:\n\n\n\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\n
\n\t\t\t苹果数\n\n\t\t\t$$1$$个\n\n\t\t\t$$2$$个\n\n\t\t\t$$3$$个\n\n\t\t\t$$4$$个\n\n\t\t\t$$5$$个\n\n\t\t\t$$6$$个\n\n\t\t\t$$7$$个\n\n\t\t\t$$8$$个\n
\n\t\t\t取法数\n\n\t\t\t$$1$$种\n\n\t\t\t$$2$$种\n\n\t\t\t$$4$$种\n\n\t\t\t$$7$$种\n\n\t\t\t$$13$$种\n\n\t\t\t$$24$$种\n\n\t\t\t$$44$$种\n\n\t\t\t$$81$$种\n
\n取完这堆苹果一共有$$81$$种方法.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["枚举法综合", "计数模块", "有序枚举", "枚举法"]} +{"_id": "ff8080814526d2f4014536340f743f09", "question": "在三角形$$ABC$$内有$$100$$个点,以三角形的顶点和这$$100$$点为顶点,可把三角形剖分成多少个小三角形?\n ", "answer": "$$201$$个小三角形.\n ", "Analysis": "整体法.$$100$$个点每个点周围有$$360$$度,三角形本身内角和为$$180$$度,所以可以分成$$\\left( 360\\times 100+180 \\right)\\div 180=201$$个小三角形.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "加乘原理", "加乘原理综合"]} +{"_id": "ff8080814526d2f401453776645241da", "question": "二年级两个班共有学生$$90$$人,其中少先队员有$$71$$人,又知一班少先队员占全班人数的$$\\frac{3}{4}$$,二班少先队员占全班人数的$$\\frac{5}{6}$$,求两个班各有多少人?\n ", "answer": "一班有$$48$$人,二班有$$42$$人.\n ", "Analysis": "本题与鸡兔同笼问题相似,根据鸡兔同笼问题的假设法,\n 可求得一班人数为$$(90\\times \\frac{5}{6}-71)\\div (\\frac{5}{6}-\\frac{3}{4})=48$$(人),\n 那么二班人数为$$90-48=42$$(人).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "量��对应求单位1", "分百应用题"]} +{"_id": "ff808081453a6fac01453b86dc8b0324", "question": "四个自然数,每次取其中的三个相加,得到四个和,分别为$$22$$,$$24$$,$$27$$和$$20$$,求这四个数各是多少?\n ", "answer": "这四个数分别为$$9$$、$$7$$、$$4$$、$$11$$.\n ", "Analysis": "设这四个数的总和为$$x$$,那么这四个数分别为$$x-22$$,$$x-24$$,$$x-27$$和$$x-20$$,那么\n $$\\left(x-22 \\right)+\\left( x-24 \\right)+\\left( x-27 \\right)+\\left( x-20 \\right)=x$$\n $$4x-93=x$$\n $$x=31$$.\n 所以这四个数分别为$$31-22=9$$、$$31-24=7$$、$$31-27=4$$、$$31-20=11$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["以其他形式运用方程解应用题", "列方程解应用题", "应用题"]} +{"_id": "ff808081453a6fac01453b8757e10328", "question": "有一个六位数$$\\overline{1abcde}$$乘$$3$$后变成$$\\overline{abcde1}$$,求这个六位数.\n", "answer": "原六位数是$$142857$$.\n ", "Analysis": "设$$x=\\overline{abcde}$$,则有六位数$$\\overline{1x}$$和$$\\overline{x1}$$,\n 有$$100000+x\\times3=10x+1$$,解得$$x=42857$$,\n 所以原六位数是$$142857$$.\n 本题的巧妙之处在于$$\\overline{abcde}$$始终没有分开,所以我们把它看作一个整体.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["位值原理运用", "位值原理与进制", "位值原理的综合应用", "数论模块"]} +{"_id": "ff808081454b256501454e789d2303c1", "question": "一项工程,甲单独做需要$$30$$天时间,甲、乙合作需要$$12$$天时间,如果乙单独做需要多少时间?\n ", "answer": "$$20$$ .\n", "Analysis": "将整个工程的工作量看作“$$1$$”个单位,那么甲每天完成总量的$$\\frac{1}{30}$$,甲、乙合作每天完成总量的$$\\frac{1}{12}$$,乙单独做每天能完成总量的$$\\frac{1}{12}-\\frac{1}{30}=\\frac{1}{20}$$,所以乙单独做$$1\\div\\frac{1}{20}=20$$天能完成.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "分干合想问题", "工程问题"]} +{"_id": "ff808081454b256501454e7a192503cb", "question": "一件工作,甲、乙两人合作$$30$$天可以完成,共同做了$$6$$天后,甲离开了,由乙继续做了$$40$$天才完成.如果这件工作由甲或乙单独完成各需要多少天?\n ", "answer": "分别是$$75$$天和$$50$$天.\n", "Analysis": "共做了$$6$$天后,剩下的原来甲做$$24$$天,乙做$$24$$天. 现在,甲做$$0$$天,乙做$$40=(24+16)$$天.这说明原来甲$$24$$天做的工作,可由乙做$$16$$天来代替.因此甲的工作效率是乙的工作效率的$$\\frac{16}{24}=\\frac{2}{3}$$. 如果甲独做,所需时间是$$30+30\\times\\frac{3}{2}=75$$(天), 如果乙独做,所需时间是$$30+30\\times \\frac{2}{3}=50$$(天);甲和乙独做所需时间分别是$$75$$天和$$50$$天.\n\n另一种方法:\n\n乙:$1\\div\\left[\\left(1-\\frac{6}{30}\\right)\\div40\\right]=50$(天),\n\n甲:$1\\div\\left(\\frac{1}{30}-\\frac{1}{50}\\right)=75$(天).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["工程应用题", "合作过程请假", "应用题", "综合与实践"]} +{"_id": "ff808081454b256501454e7c440d03d5", "question": "一件工程,甲单独做要$$6$$小时,乙单独做要$$10$$小时,如果按甲、乙、甲、乙……顺序交替工作,每次$$1$$小时,那么需要多长时间完成?\n", "answer": "$$7$$小时$$20$$分钟或$7\\dfrac{1}{3}$小时.\n", "Analysis": "甲$$1$$小时完成整个工程的$$\\frac{1}{6}$$,乙$$1$$小时完成整个工程的$$\\frac{1}{10}$$,交替干活时两个小时完成整个工程的$$\\frac{1}{6}+\\frac{1}{10}=\\frac{4}{15}$$,甲、乙各干$$3$$小时后完成整个工程的$$\\frac{4}{15}\\times3=\\frac{4}{5}$$,还剩下$$\\frac{1}{5}$$,甲再干$$1$$小时完成整个工程的$$\\frac{1}{6}$$,还剩下$$\\frac{1}{30}$$,乙花$$\\frac{1}{3}$$小时即$$20$$分钟即可完成.所以需要$$7$$小时$$20$$分钟来完成整个工程.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["两人交替工作", "工程应用题", "应用题", "综合与实践"]} +{"_id": "ff808081454b256501454ee344cf048b", "question": "牧场上有一片匀速生长的草地,可供$$27$$头牛吃$$6$$周,或供$$23$$头牛吃$$9$$周,那么它可供多少头牛吃$$18$$周��\n ", "answer": "$$19$$头\n", "Analysis": "设$$1$$头牛$$1$$周的吃草量为“1”,草的生长速度为$$(23 \\times 9 - 27 \\times 6) \\div(9 - 6) = 15$$,原有草量为$$(27 - 15)\\times 6 = 72$$,可供$$72 \\div 18 +15 = 19$$(头)牛吃$$18$$周.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["牛吃草基本型", "应用题模块", "求头数", "牛吃草问题"]} +{"_id": "ff808081454b256501454ee37cd3048d", "question": "一项工程,甲、乙、丙三人合作需要$$13$$天完成.如果丙休息$$2$$天,乙就要多做$$4$$天,或者由甲、乙两人合作$$1$$天.问这项工程由甲单独做需要多少天?\n", "answer": "$$26$$天.\n ", "Analysis": "丙$$2$$天的工作量,相当乙$$4$$天的工作量,丙的工作效率是乙的工作效率的$$4\\div2=2$$(倍),甲、乙合作$$1$$天,与乙做$$4$$天一样,也就是甲做$$1$$天,相当于乙做$$3$$天,甲的工作效率是乙的工作效率的$$3$$倍.乙做$$13$$天,甲只要$$\\frac{13}{3}$$天,丙做$$13$$天,乙要$$26$$天,而甲只要$$\\frac{26}{3}$$天,他们共同做$$13$$天的工作量,由甲单独完成,甲需要$$13+\\frac{13}{3}+\\frac{26}{3}=26$$(天).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "合干分想问题", "工程问题"]} +{"_id": "ff808081454b2565014550c130e30a07", "question": "小红从家步行去学校.如果每分钟走$$120$$米,那么将比预定时间早到$$5$$分钟:如果每分钟走$$90$$米,则比预定时间迟到$$3$$分钟,那么小红家离学校有多远?\n ", "answer": "小红家离学校有$$2880$$米.\n ", "Analysis": "两次的速度比为$$120:90=4:3$$,路程不变,所有时间比应该是$$3:4$$,两次所有时间相差$$8$$分钟,\n 所以应该分别用了$$24$$分钟和$$32$$分钟,$$120\\times24=2880$$米 .\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "行程中的比例", "比例解行程问题"]} +{"_id": "ff808081454b3100014555e680131853", "question": "王明把$$3000$$元钱存入银行,年利率$$2$$.1%,每年取出后再次存入,这样三年后一共能取出多少元钱?\n ", "answer": "$$3193$$\n ", "Analysis": "$$3000\\times \\left( 1+2.1\\%\\right)\\times \\left( 1+2.1\\% \\right)\\times \\left( 1+2.1\\% \\right)=3193$$\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "利息问题", "经济问题"]} +{"_id": "ff808081454b3100014555e68c3b1855", "question": "甲、乙两店都经营同样的某种商品,甲店先涨价$$10\\%$$后,又降价$$10\\%$$;乙店先涨价$$15\\%$$后,又降价$$15\\%$$.此时,哪个店的售价高些?\n ", "answer": "甲 .\n", "Analysis": "甲店原价:$$\\left( 1+10\\% \\right)\\times \\left( 1-10\\%\\right)=99\\%$$;\n 对于乙店原价为:$$\\left( 1+15\\% \\right)\\times \\left( 1-15\\%\\right)=97.75\\%$$ ,所以甲店售价更高些.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["购物方案中两个价钱对比", "生活实践", "设计方案", "综合与实践"]} +{"_id": "ff808081454b3100014555e6a27d1857", "question": "商店进了一批钢笔,用零售价$$10$$元卖出$$20$$支与用零售价$$11$$元卖出$$15$$支的利润相同.这批钢笔的进货价是每支多少钱?\n ", "answer": "$$7$$元.\n ", "Analysis": "由于两种方式卖的钢笔的利润相同,而卖的支数不同,所卖的支数比为$$20:15$$,所以两种方式所卖钢笔的利润比为$$15:20$$,即$$3:4$$,而单支笔的利润差为$$11-10=1$$$$($$元$$)$$,所以两种方式,每支笔的利润分别为:$$1\\div \\left( 4-3 \\right)\\times 3=3$$元和$$1\\div \\left( 4-3 \\right)\\times 4=4$$元,所以钢笔的进货价为$$10-3=11-4=7$$元.\n\n由于两种卖法的利润相等,所以两种卖法的销售额之差和两种卖法的成本之差相等,所以$$20$$支钢笔的成本和$$15$$支钢笔的成本的差为$$10\\times 20-11\\times 15=35$$元,由于单支笔的成本价格是一样的,所以每只钢笔的成本为$$\\left( 10\\times 20-11\\times 15 \\right)\\div\\left( 20-15 \\right)=7$$(元).\n\n解:设进货价每支$$x$$元.\n\n$$(10-x)\\times20=(11-x)\\times15$$\n\n$$x=7$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["售价、利润、成本关系的问题", "经济问题", "应用题", "综合与实践"]} +{"_id": "ff8080814559f57d01455f1daf310478", "question": "一本书,已看了$$130$$页,剩下的准备$$8$$天看完,如果每天看的页数相等,$$3$$天看的页数恰好为全书的$$\\frac{5}{22}$$,这本书共有多少页?\n ", "answer": "全书共有$$330$$页.\n ", "Analysis": "由于每天看的页数相等,且$$3$$天看的页数恰好为全书的$$\\frac{5}{22}$$,故每天看全书的$$\\frac{5}{22}\\div3$$.从而$$8$$天将看全书的$$(\\frac{5}{22}\\div 3\\times 8=)\\frac{40}{66}$$,由此可以找到$$130$$页对应的分率为$$1-(\\frac{5}{22}\\div3)\\times8$$.即全书共有:\n $$130\\div[1-(\\frac{5}{22}\\div3)\\times8]=330$$(页).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "量率对应求单位1", "分百应用题"]} +{"_id": "ff8080814559f57d01455f1db588047a", "question": "一根木杆,第一次截去了全长的$$\\frac{1}{2}$$,第二次截去所剩木杆的$$\\frac{1}{3}$$,第三次截去所剩木杆的$$\\frac{1}{4}$$,第四次截去所剩木杆的$$\\frac{1}{5}$$,这时量得所剩木杆长为$$6$$厘米.木杆原来的长是多少厘米?\n", "answer": "木杆原来的长是$$30$$厘米.\n", "Analysis": "$$\\ \\ 6\\div\\left( 1-\\frac{1}{5}\\right)\\div\\left(1-\\frac{1}{4}\\right)\\div \\left(1-\\frac{1}{3}\\right)\\div \\left(1-\\frac{1}{2}\\right)$$\n\n$$=6\\div\\frac{4}{5}\\div \\frac{3}{4}\\div \\frac{2}{3}\\div \\frac{1}{2}$$\n\n$$=30$$(厘米)\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "量率对应求单位1", "分百应用题"]} +{"_id": "ff8080814559f57d01455f1dc938047c", "question": "老师买来一些本子和铅笔作奖品,已知本子本数与铅笔支数的比是$$4∶3$$,每位竞赛获奖的同学奖$$8$$本本子和$$5$$支铅笔,奖了$$7$$位同学后,剩下的本子本数与铅笔支数的比是$$3∶4$$,老师买来本子、铅笔各多少?\n ", "answer": "$$51$$支,$$68$$本\n ", "Analysis": "根据题意,有如下数量关系:\n $$($$本子本数$$-8\\times7)∶($$铅笔支数$$-5\\times7)=3∶4$$\n 解:设老师买来本子$$4x$$本,铅笔$$3x$$支.\n      $$(4x-8\\times 7):(3x-5\\times 7)=3:4$$\n      解得:        $$x=17$$\n 本子数:$$4x=4\\times17=68$$(本)\n 铅笔数:$$3x=3\\times 17=51$$(支)\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["方程法解其他问题", "应用题模块", "列方程解应用题", "一元一次方程解应用题"]} +{"_id": "ff8080814559f57d01455f1dd5eb047f", "question": "某工厂第一车间人数比第二车间的$$\\frac{4}{5}$$多$$16$$人,如果从第二车间调$$40$$人到第一车间,这时两个车间的人数正好相等,原来两个车间各有多少人?\n ", "answer": "第一车间$$400$$人,第二车间$$480$$人.\n ", "Analysis": "根据题意,有如下数量关系:\n 第一车间人数$$+40$$人$$=$$第二车间人数$$-40$$人\n 解:设第二车间有$$x$$人.\n $$\\frac{4}{5}x+16+40=x-40$$\n 解得:    $$x=480$$\n 第一车间人数为:$$\\frac{4}{5}x+16=\\frac{4}{5}\\times480+16=400$$(人)\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["方程法解其他问题", "应用题模块", "列方程解应用题", "一元一次方程解应用题"]} +{"_id": "ff8080814559f57d01455f1df10c0481", "question": "一条公路修了$$1000$$米后,剩下部分比全长的$$\\frac{3}{5}$$少$$200$$米,这条公路全长多少米?\n ", "answer": "$$2000$$\n ", "Analysis": "由题意知,假设少修$$200$$米,也就是修$$1000-200=800$$(米),那么剩下部分正好是全长的$$\\frac{3}{5}$$,因此已修的$$800$$米占全长的$$(1-\\frac{3}{5})$$,所以这条公路全长为:$$(1000-200)\\div (1-\\frac{3}{5})=2000$$$$($$米$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "量率对应求单位1", "分百应用题"]} +{"_id": "ff8080814559f57d01455f1e24d60485", "question": "小明看一本课外读物,读了几天后,已读的页数是剩下页数的$$\\frac{1}{8}$$,后来他又读了$$20$$页,这时已读的页数是剩下页数的$$\\frac{1}{6}$$,这本课外读物共有多少页?\n ", "answer": "$$630$$\n ", "Analysis": "根据题意,已读页数和��读页数都发生了变化,但这本书的总页数不变,可把总页数看作单位“$$1$$”,原来已读页数占总页数的$$\\frac{1}{1+8}$$,又读了$$20$$页后,这时已读页数占总页数的$$\\frac{1}{1+6}$$,这$$20$$页占这本书总页数的$$(\\frac{1}{1+6}-\\frac{1}{1+8})$$,则这本课外读物的页数为:$$20\\div(\\frac{1}{1+6}-\\frac{1}{1+8})=630$$(页).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "量率对应求单位1", "分百应用题"]} +{"_id": "ff8080814559f57d01456403d5b9075a", "question": "一个大人一餐能吃四个面包,四个幼儿一餐只吃一个面包,现有大人和幼儿共$$100$$人,一餐刚好吃$$100$$个面包,这$$100$$人中,大人和幼儿各有多少人?\n ", "answer": "大人有$$20$$人,幼儿有$$80$$人.\n ", "Analysis": "这是一个鸡兔同笼问题的变形.\n 设有$$x$$个幼儿,则有$$(100-x)$$个大人,列方程:\n $$x\\div 4+4(100-x)=100$$\n $$x+16(100-x)=400$$\n $$x+1600-400=16x$$\n $$1200=15x$$\n $$x=80$$\n $$100-80=20$$(人)\n 大人有$$20$$人,幼儿有$$80$$人.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["鸡兔同笼问题", "应用题模块", "假设法解鸡兔同笼", "基本型", "变型题"]} +{"_id": "ff8080814559f57d0145640409180765", "question": "某次数学竞赛,试题共有$$10$$道,每做对一题得$$6$$分,每做错一题倒扣$$2$$分,小红最终得$$44$$分,做对的题比做错的题多 ___          ___ 道.\n ", "answer": "$$6$$", "Analysis": "$$\\left( 60-44 \\right)\\div 8=2$$,做错$$2$$道题,做对$$8$$道题,对的比错的多$$6$$道.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "鸡兔同笼问题", "倒扣型", "假设法解鸡兔同笼"]} +{"_id": "ff80808145644e1a014564b48c4b008b", "question": "动物园门票大人$$20$$元,小孩$$10$$元.六一儿童节那天,儿童免票,结果与前一天相比,大人增加了$$60\\%$$,儿童增加了$$90\\%$$,共增加了$$2100$$人,但门票收入与前一天相同.六一儿童节这天共有多少人入园?\n ", "answer": "$$4850$$人.\n ", "Analysis": "前一天大人与小孩的人数比为$$1:(60\\%  \\times 2) = 5:6$$,六一那天增加的大人与增加的小孩人数比为$$\\left( {5 \\times 60\\% } \\right):\\left( {6 \\times 90\\% } \\right) = 5:9$$,大人增加的人数为$$2100 \\times \\frac{5}{{14}} = 750$$人,小孩增加的人数为$$2100 - 750 = 1350$$人,大人的总数为$$750 \\div 60\\%  + 750 = 2000$$人,小孩的总人数为$$1350 \\div 90\\%  + 1350 = 2850$$人,总人数为$$2000 + 2850 = 4850$$人.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["量率对应求单位一", "分数百分数应用题", "量率对应求单位1", "分百应用题", "应用题模块", "应用题", "综合与实践"]} +{"_id": "ff80808145644e1a014564b50d630094", "question": "一把小刀售价$$3$$元.如果小明买了这把小刀,那么小明与小强剩余的钱数之比是$$2:5$$;如果小强买了这把小刀,那么两人剩余的钱数之比变为$$8:13$$.小明原来有多少钱?\n ", "answer": "$$12$$元\n ", "Analysis": "此题中不管是小明买了这把刀还是小强买了这把刀,二人剩余的钱数不变,可以看做单位一.那么小明买刀后剩余的钱占二人买刀后剩余钱数的$$\\frac{{2}}{{{2} + {5}}} = \\frac{{2}}{{7}}$$,如果小强买了这把刀,小明的钱数占二人买刀后剩余钱数的$$\\frac{{8}}{{{8 + 13}}} = \\frac{{8}}{{{21}}}$$ .可求出买刀后二人剩余的钱数总和为$$3 \\div \\left( \\frac{8}{21}-\\frac{2}{7} \\right)= \\frac{{63}}{2}$$(元),小明原有$$\\frac{{63}}{2} \\times \\frac{8}{{21}}{ = }12$$(元).\n\n$$2:5=6:15$$,$$3\\div (8-6)\\times 8=12$$(元).\n\n由已知,小强的钱相当于小明、小强买刀后所剩钱数和的$$\\frac{5}{2+5}=\\frac{5}{7}$$,小明的钱相当于小明、小强买刀后钱数和的$$\\frac{8}{8+13}=\\frac{8}{21}$$,所以小明、小强的钱数的比值为$$\\frac{8}{21}:\\frac{5}{7}=8:15$$,而小明买刀后小明、小强的钱数之比为$$2:5=6:15$$,所以小明买刀前后的钱数之比为$$8:6=4:3$$,所以小刀的售价等于小明原来钱数的$$\\frac{4-3}{4}=\\frac{1}{4}$$,所以小明的钱数为$$3\\div \\frac{1}{4}=12$$(元).也可这样看,小明买刀与未买刀的钱数比为$$ \\frac{2}{7}:\\frac{8}{21}=3:4$$,小明的钱数为$$4\\times [3\\div (4-3)]=12$$(元).\n\n故答案为:$$12$$元.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分数百分数应用题", "需要统一单位一的问题", "量率对应求单位1", "分百应用题", "应用题模块", "应用题", "综合与实践"]} +{"_id": "ff80808145644e1a014564b50f0d0096", "question": "甲本月收入的钱数是乙收入的$$\\frac{5}{8}$$,甲本月支出的钱数是乙支出的$$\\frac{3}{4}$$,甲节余$$240$$元,乙节余$$480$$元.甲本月收入多少元?\n ", "answer": "$$600$$元.\n ", "Analysis": "甲、乙本月收入的比是$$5:8$$,分别节余$$240$$元和$$480$$元,支出的钱数之比是$$3:4$$.如果乙节余$$480$$元,甲节余$$480 \\div 8 \\times 5 = 300$$元,那么两人支出的钱数之比也是$$5:8$$,现在甲只节余$$240$$元,多支出了$$60$$元,结果支出的钱数之比从$$5:8$$变成了$$6:8$$(即$$3:4$$),所以这$$60$$元就对应$$6 - 5 = 1$$份,那么甲支出了$$60 \\times 6 = 360$$元,所以甲本月收入为$$360 + 240 = 600$$元.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "分百应用题", "量率对应已知单位1"]} +{"_id": "ff80808145644e1a014564b51b030098", "question": "甲、乙两人原有的钱数之比为$$6:5$$,后来甲又得到$$180$$元,乙又得到$$30$$元,这时甲、乙钱数之比为$$18:11$$.求原来两人的钱数之和为多少元?\n", "answer": "$$660$$元.\n", "Analysis": "两人原有钱数之比为$$6$$:$$5$$,如果甲得到$$180$$元,乙得到$$150$$元,那么两人的钱数之比仍为$$6$$:$$5$$,现在甲得到$$180$$元,乙只得到$$30$$元,相当于少得到了$$120$$元,现在两人钱数之比为$$18$$:$$11$$,可以理解为:两人的钱数分别增加$$180$$元和$$150$$元之后,钱数之比为$$18$$:$$15$$,然后乙的钱数减少$$120$$元,两人的钱数之比变为$$18$$:$$11$$,所以$$120$$元相当于$$4$$份,$$1$$份为$$30$$元,后来两人的钱数之和为$$30 \\times (18 + 15) = 990$$元,所以原来两人的总钱数之和为$$990 - 180 - 150 = 660$$元.\n\n设甲、乙原来各有$$6x$$、$$5x$$元,那么有$$(6x+180):(5x+30)=18:11$$,解比例方程得$$x=60$$,原来共有$$60\\times (6+5)=660$$(元).\n\n\n由于甲、乙得到的钱数不同,所以差并非不变.为了让得到的钱数相同,可以考虑将乙原有的钱数和得到的钱数都翻$$6$$倍,那么甲、乙原有钱数之比变为$$1:5$$,现有钱数之比变为$$3:11$$,统一差,变为$$2:10$$以及$$3:11$$,一份就是$$180$$元,所以原有钱数之和为$$(2+10\\div 6)\\times 180=660$$.\n\n故答案为:$$660$$元.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "复杂的比例问题", "比例应用题"]} +{"_id": "ff80808145644e1a014564b5461700a0", "question": "一块长方形铁板,宽是长的$$\\frac{4}{5}$$.从宽边截去$$21$$厘米,长边截去$$35$$%以后,得到一块正方形铁板.问原来长方形铁板的长是多少厘米?\n ", "answer": "$$140$$厘米.\n ", "Analysis": "如果只将长边截去$$35\\%$$,宽、长之比为$$4:\\left[ {5 \\times \\left( {1 - 35\\% } \\right)} \\right] = 16:13$$,所以宽边的长度为$$21 \\div (16 - 13) \\times 16 = 112$$厘米,所以原来铁板的长为$$112 \\div \\frac{4}{5} = 140$$厘米.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "量率对应求单位1", "分百应用题"]} +{"_id": "ff80808145644e1a014564b5585a00a2", "question": "一个正方形的一边减少$$20\\%$$,另一边增加$$2$$米,得到一个长方形,这个长方形的面积与原正方形面积相等.原正方形的边长是多少米?\n ", "answer": "$$8$$米.\n ", "Analysis": "要保证面积不变,一边减少$$20\\%$$,即是原来的$$\\frac{{4}}{{5}}$$,另一边要变成原来的$$\\frac{{5}}{{4}}$$,即增加$$\\frac{{5}}{{4}} - {1} = \\frac{{1}}{{4}}$$,所以原正方形的边长为$$2 \\div \\frac{1}{4} = 8$$$$($$米$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "量率对应求单位1", "分百应用题"]} +{"_id": "ff80808145644e1a014564b59ac500aa", "question": "甲、乙两个班共种树若干棵,已知甲班种的棵数的$$\\frac{1}{4}$$等于乙班种的棵数的$$\\frac{1}{5}$$,且乙班比甲班多种树$$24$$棵��甲、乙两个班各种树多少棵?\n ", "answer": "甲班$$96$$棵,乙班$$120$$棵.\n ", "Analysis": "甲、乙两班种树棵数之比为:$$\\frac{1}{5}:\\frac{1}{4} = 4:5$$,甲班种树棵数为:$$24 \\div \\left( {5 - 4} \\right) \\times 4 = 96$$$$($$棵$$)$$,乙班种树棵数为:$$24 \\div \\left( {5 - 4} \\right) \\times 5 = 120$$$$($$棵$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "基础份数思想", "比例应用题"]} +{"_id": "ff80808145644e1a014564b59e4300ac", "question": "一些苹果平均分给甲、乙两班的学生,甲班比乙班多分到$$16$$个,而甲、乙两班的人数比为$$13:11$$,求一共有多少个苹果?\n ", "answer": "$$192$$个.\n ", "Analysis": "一共有$$16 \\div \\left( {13 - 11} \\right) \\times \\left( {13 + 11} \\right) = 192$$个苹果.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["比例应用题", "按比分配问题", "应用题", "综合与实践"]} +{"_id": "ff80808145644e1a014564b5a3a400ae", "question": "师徒二人共加工零件$$400$$个,师傅加工一个零件用$$9$$分钟,徒弟加工一个零件用$$15$$分钟.完成任务时,师傅比徒弟多加工多少个零件?\n ", "answer": "$$100$$个.\n ", "Analysis": "师傅与徒弟的工作效率之比是$$\\frac{1}{9}:\\frac{1}{{15}} = 5:3$$,而工作时间相同,则工作量与工作效率成正比,所以师傅与徒弟分别完成总量的$$\\frac{5}{{5 + 3}}$$和$$\\frac{3}{{5 + 3}}$$,师傅比徒弟多加工零件$$400 \\times \\left( {\\frac{5}{{5 + 3}} - \\frac{3}{{5 + 3}}} \\right) = 100$$个.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["具体量工程问题", "简单工程问题", "有具体量的工程问题", "应用题模块", "应用题", "工程问题", "工程应用题", "综合与实践"]} +{"_id": "ff80808145644e1a014564b5aa9d00b0", "question": "师徒二人加工一批零件,师傅加工一个零件用$$9$$分钟,徒弟加工一个零件用$$15$$分钟.完成任务时,师傅比徒弟多加工$$100$$个零件,求师傅和徒弟一共加工了多少个零件?\n ", "answer": "$$400$$个.\n ", "Analysis": "师傅与徒弟的工作效率之比是$$\\frac{1}{9}:\\frac{1}{{15}} = 5:3$$,工作时间相同,工作量与工作效率成正比,所以师傅与徒弟分别完成总量的$$\\frac{5}{{5 + 3}}$$和$$\\frac{3}{{5 + 3}}$$,师傅和徒弟一共加工了$${100} \\div (\\frac{5}{{5 + 3}} - \\frac{3}{{5 + 3}}) = {400}$$个零件.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "量率对应求单位1", "分百应用题"]} +{"_id": "ff80808145644e1a014564b5b1d000b2", "question": "商店运来一批洗衣机,卖出$$24$$台,卖出的台数与剩下的台数的比是$$3∶5$$,这批洗衣机一共有多少台?\n ", "answer": "$$64$$台\n ", "Analysis": "剩下的与卖出的比为$$3:5$$,可知剩下的占$$5$$份,卖出的占$$3$$份,卖出$$24$$台,求出一份的台数,即可求出剩下的台数,再列式求出共运来的台数.\n\n$$24\\div 3\\times 5=8\\times 5=40$$(台);$$40+24=64$$(台).\n\n答:共有$$64$$台洗衣机.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "基础份数思想", "比例应用题"]} +{"_id": "ff80808145644e1a014564b5b6f100b4", "question": "雏鹰假日小队的同学分$$3$$组采集蓖麻籽,第一小组、第二小组、第三小组的工作效率之比是$$12∶11∶7$$,第一小组采集蓖麻籽$$36$$千克,第二、第三小组各采集蓖麻籽多少千克?\n ", "answer": "$$33$$,$$21$$\n ", "Analysis": "$$36$$千克是$$12$$份,所以一份是$$36 \\div 12{ = }3$$(千克).第二小组采集蓖麻籽$$3 \\times 11{ = }33$$(千克),第三组采集蓖麻籽$$3 \\times 7{ = }21$$(千克).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "基础份数思想", "比例应用题"]} +{"_id": "ff80808145644e1a014564b5bdf400b7", "question": "已知$$A$$、$$B$$、$$C$$三个数的比是$$2∶3∶5$$,这三个数的平均数是$$90$$,这三个数分别是多少?\n ", "answer": "$$54$$、$$81$$、$$135$$\n ", "Analysis": "三个数总和为$$90 \\times 3{ = }270$$,相当于把$$270$$分成了$$10$$份,$$A$$占$$2$$份,$$B$$占$$3$$份,$$C$$占$$5$$份.所以$$A$$是$$270 \\times \\frac{2}{{2{ + }3{ + }5}}{ = 54}$$,$$B$$是$$270 \\times \\frac{3}{{{2 + }3{ + }5}}{ = 81}$$,$$C$$是$$270 \\times \\frac{5}{{2{ + }3{ + }5}}{ = 135}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "按比分配", "比例应用题"]} +{"_id": "ff80808145644e1a014564b5cd2c00bc", "question": "已知甲、乙、丙三个数,甲等于乙、丙两数和的$$\\frac{{1}}{{3}}$$,乙等于甲、丙两数和的$$\\frac{{1}}{{2}}$$,丙等于甲、乙两数和的$$\\frac{{5}}{{7}}$$,求甲:乙:丙.\n ", "answer": "$$3:4:5$$\n", "Analysis": "由甲等于乙、丙两数和的$$\\frac{{1}}{{3}}$$,得到甲等于三个数和的$$\\frac{1}{{3{ + }1}}{ = }\\frac{1}{4}$$,同样的乙等于三个数和的$$\\frac{1}{{2{ + }1}}{ = }\\frac{1}{3}$$,丙等于三个数和的$$\\frac{5}{{7{ + }5}}{ = }\\frac{5}{{12}}$$ ,所以甲:乙:丙$${ = }\\frac{1}{4}:\\frac{1}{3}:\\frac{5}{{12}}{ = }3:4:5$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "分百应用题", "统一单位1", "转化单位1"]} +{"_id": "ff80808145644e1a014564b5d29e00be", "question": "参加植树的同学共有$$720$$人,已知六年级与五年级人数的比是$$3:2$$,六年级比四年级多$$80$$人,三个年级参加植树的各有多少人?\n ", "answer": "六年级:$$300$$人;五年级:$$200$$人;四年级:$$220$$人.\n", "Analysis": "假设四年级和六年级人数同样多,则参加植树的同学共有$$720 + 80 = 800$$人,四、五、六三个年级的人数比为$$3:2:3$$,知道三个量的和及它们的比,就可以按比例分配,分别求出三个年级参加植树的人数.\n\n六年级:$$800 \\times \\frac{3}{{3 + 2 + 3}} = 300$$人;\n\n五年级:$$800 \\times \\frac{2}{{3 + 2 + 3}} = 200$$人;\n\n四年级:$$300 - 80 = 220$$人.\n\n答:六年级参加植树$$300$$人,五年级参加植树$$200$$人,四年级参加植树$$220$$人.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "按比分配", "比例应用题"]} +{"_id": "ff80808145644e1a014564b64ab300c0", "question": "把$$300$$个苹果按$$4∶5∶6$$分给幼儿园的小、中、大三个班.小班、中班、大班各分得多少个苹果?\n ", "answer": "大班有$$80$$个,中班有$$100$$个,小班有$$120$$个.\n ", "Analysis": "相当于把$$300$$个苹果分成了$$15$$份,大班$$4$$份,中班$$5$$份,小班$$6$$份.所以大班分$$300 \\times \\frac{4}{{4{ + }5{ + }6}}{ = 80}$$(个),中班有$$300 \\times \\frac{5}{{4{ + }5{ + }6}}{ = 100}$$(个),小班有$$300 \\times \\frac{6}{{4{ + }5{ + }6}}{ = 120}$$(个).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["比例应用题", "按比分配问题", "应用题", "综合与实践"]} +{"_id": "ff80808145644e1a014564b652e100c2", "question": "一种药水是把药粉和水按照$$1∶100$$配制而成,要配制这种药水$$5050$$千克,需要药粉多少千克?\n ", "answer": "$$50$$千克.\n ", "Analysis": "相当于把药水分成了$$101$$份,药粉占$$1$$份.所以药粉有$$5050 \\times \\frac{1}{{1{ + }100}}{ = }50$$(千克).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "分百应用题", "量率对应已知单位1"]} +{"_id": "ff80808145644e1a014564b6596000c4", "question": "公园里柳树和杨树的棵数比是$$5:3$$,柳树和杨树共$$40$$棵,柳树和杨树各有多少棵?\n", "answer": "柳树$$25$$棵,杨树$$15$$棵.\n ", "Analysis": "相当于把杨树和柳树分成了$$8$$份,柳树占$$5$$份,杨树占$$3$$份.所以柳树有$$40 \\times \\frac{5}{{5{ + }3}}{ = }25$$(棵),柳树有$$40 \\times \\frac{3}{{5{ + }3}}{ = }15$$(棵).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["比例应用题", "按比分配问题", "应用题", "综合与实践"]} +{"_id": "ff80808145644e1a01456abd863f090d", "question": "林琳在$$450$$米长的环形跑道上跑一圈,已知她前一半时间每秒跑$$5$$米,后一半时间每秒跑$$4$$米,那么她的后一半路程跑了多少秒?\n ", "answer": "$$55$$秒.\n ", "Analysis": "设总时间为$$x$$,则前一半的时间为$$\\frac{1}{2}x$$,后一半时间同样为$$\\frac{1}{2}x$$\n $$\\frac{1}{2}x \\times 5 + \\frac{1}{2}x \\times 4 = 450$$\n $$x = 100$$\n 总共跑了$$100$$秒\n 前$$50$$秒每秒跑$$5$$米,跑了$$250$$米\n 后$$50$$秒每秒跑$$4$$米,跑了$$200$$米\n 后一半的路程为$$450\\div2=225$$米\n 后一半的路程用的时间为$$(250-225)\\div5+50=55$$秒.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "列方程解应用题", "一元一次方程解应用题"]} +{"_id": "ff80808145644e1a01456ac1aac9091b", "question": "某停车场有$$10$$辆出租汽车,第一辆出租汽车出发后,每隔$$4$$分钟,有一辆出租汽车开出.在第一辆出租汽车开出$$2$$分钟后,有一辆出租汽车进场.以后每隔$$6$$分钟有一辆出租汽车回场.回场的出租汽车,在原有的$$10$$辆出租汽车之后又依次每隔$$4$$分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?\n ", "answer": "$$108$$分钟.\n ", "Analysis": "这个题可以简单的找规律求解\n\n\n\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\n
时间车辆
$$4$$分钟$$9$$辆
$$6$$分钟$$10$$辆
$$8$$分钟$$9$$辆
$$12$$分钟$$9$$辆
$$16$$分钟$$8$$辆
$$18$$分钟$$9$$辆
$$20$$分钟$$8$$辆
$$24$$分钟$$8$$辆
\n由此可以看出:每$$12$$分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了$$12\\times9=108$$分钟的时候,剩下一辆车,这时再经过$$4$$分钟车厂恰好没有车了,所以第$$112$$分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为$$108$$分钟.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "求发车数量", "发车问题"]} +{"_id": "ff808081456f71c7014577f981b71229", "question": "列方程(组)解应用题:\n 有一筐桔子和苹果,桔子个数是苹果的$$3$$倍.现将它们分给小朋友们,每人分$$5$$个桔子和$$2$$个苹果,最后还剩下$$11$$个桔子和$$1$$个苹果.原来桔子、苹果各有多少个?\n ", "answer": "桔子$$51$$个,苹果$$17$$个.\n ", "Analysis": "设有$$x$$名小朋友,则桔子有$$5x+11$$个,苹果有$$2x+1$$个,故有方程$$5x+11=3(2x+1)$$,解得$$x=8$$,故桔子有$$5\\times 8+11=51$$个,苹果有$$2\\times8+1=17$$个.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["以文字题形式运用方程解应用题", "方程法解倍数问题", "一元一次方程解应用题", "应用题模块", "应用题", "列方程解应用题", "综合与实践"]} +{"_id": "ff808081456fc18b0145792f71991a6c", "question": "某工程先由甲独做$$63$$天,再由乙单独做$$28$$天即可完成;如果由甲、乙两人合作,需$$48$$天完成.现在甲先单独做$$42$$天,然后再由乙来单独完成,那么乙还需要做多少天?\n ", "answer": "$$56$$天.\n ", "Analysis": "先对比如下:甲做$$63$$天,乙做$$28$$天;甲做$$48$$天,乙做$$48$$天.就知道甲要少做$$63-48=15$$(天),乙要多做$$48-28=20$$(天),由此得出乙的工作效率是甲的$$\\frac{3}{4}$$,甲先单独做$$42$$天,比$$63$$天少做了$$63-42=21$$(天),相当于乙要做$$21\\times\\frac{4}{3}=28$$天因此,乙还要做$$28+28=56$$(天),乙还需要做$$56$$天.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模��", "基本合作问题", "工程问题"]} +{"_id": "ff808081456fc18b0145792f76791a6e", "question": "一项工程,甲独做$$6$$天完成,甲$$3$$天的工作量,乙要$$4$$天完成.两队合做$$2$$天后由乙队独做,还要几天才能完成?\n ", "answer": "$$\\frac{10}{3}$$天.\n ", "Analysis": "法一:我们把工程看作两个人分别完成的,那么显然,甲在其中只工作了$$2$$天,剩下的都是乙完成的.甲完成整个工作需要$$6$$天,除去自己完成的$$2$$天以外,剩下工作量甲需要$$4$$天完成,乙的工作效率是甲的$$\\frac{3}{4}$$,因此甲$$4$$天完成的量,乙需要$$4\\times \\frac{4}{3}=\\frac{16}{3}$$天完成,除去与甲合作的$$2$$天以外,乙还要做$$\\frac{16}{3}-2=\\frac{10}{3}$$天.\n 法二:甲的工作效率为$$\\frac{1}{6}$$,所以乙的工作效率为$$\\frac{1}{6}\\times3\\div 4=\\frac{1}{8}$$.两队合作$$2$$天后乙队独做还要$$\\left( 1-\\frac{1}{6}\\times 2-\\frac{1}{8}\\times 2 \\right)\\div\\frac{1}{8}=\\frac{10}{3}$$天才能完成.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "休息工程问题", "工程问题"]} +{"_id": "ff808081456fc18b0145792fee8b1a7a", "question": "一份文件,如果甲抄$$10$$小时,乙抄$$10$$小时可以抄完;如果甲抄$$8$$小时,乙抄$$13$$小时也可以抄完.现在甲先抄$$2$$小时,剩下的甲、乙合作,还需要几小时才能完成?\n ", "answer": "$$8\\frac{4}{5}$$小时.\n ", "Analysis": "题意可知,甲、乙合作的效率为$$\\frac{1}{10}$$;将甲抄$$8$$小时,乙抄$$13$$小时,转化为甲乙和抄$$8$$小时,乙单独抄$$5$$小时,则乙单独工作的效率为$$\\left(1-8\\times \\frac{1}{10} \\right)\\div (13-8)=\\frac{1}{25}$$,\n 所以甲单独工作的效率$$\\frac{1}{10}-\\frac{1}{25}=\\frac{3}{50}$$.甲、乙两人的工作效率之比为$$\\frac{3}{50}:\\frac{1}{25}=3:2$$.\n 甲先抄$$2$$小时,这$$2$$小时的工作量如果两人合作,需要$$3\\times 2\\div (3+2)=1\\frac{1}{5}$$小时,\n 所以剩下的工作量由甲、乙合作,还需要$$10-1\\frac{1}{5}=8\\frac{4}{5}$$小时.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "基本合作问题", "工程问题"]} +{"_id": "ff808081456fc18b014579301da11a81", "question": "一件工程,甲、乙两人合作$$8$$天可以完成,乙、丙两人合作$$6$$天可以完成,丙、丁两人合作$$12$$天可以完成.那么甲、丁两人合作多少天可以完成?\n ", "answer": "$$24$$天.\n ", "Analysis": "甲、乙,乙、丙,丙、丁合作的工作效率依次是$$\\frac{1}{8}$$、$$\\frac{1}{6}$$、$$\\frac{1}{12}$$.对于工作效率有$$($$甲$$+$$乙$$)+($$丙$$+$$丁$$)-($$乙$$+$$丙$$)=($$甲$$+$$丁$$)$$.即$$\\frac{1}{8}+\\frac{1}{12}-\\frac{1}{6}=\\frac{1}{24}$$,甲、丁合作的工作效率为$$\\frac{1}{24}$$.所以,甲、丁两人合作$$24$$天可以完成这件工程.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多人合作", "合作工程问题", "已知工时反推", "应用题模块", "工程问题"]} +{"_id": "ff808081456fc18b0145793021931a83", "question": "一项工程,甲单独做$$20$$天完成,乙单独做$$30$$天完成.甲、乙合作了几天后,乙因事请假,甲继续做,从开工到完成任务共用了$$16$$天.乙请假多少天?\n ", "answer": "$$10$$天.\n ", "Analysis": "甲一共干了$$16$$天,完成了全部工程的$$\\frac{1}{20}\\times16=\\frac{4}{5}$$,还有$$1-\\frac{4}{5}=\\frac{1}{5}$$是乙做的,所以乙干了$$\\frac{1}{5}\\div \\frac{1}{30}=6$$$$($$天$$)$$,休息了$$16-6=10$$$$($$天$$)$$,请假天数为:$$16-6=10$$$$($$天$$)$$.\n\n整个工程可以看成“甲$$16$$天$$+$$乙若干天”.甲$$16$$天完成了$$\\frac{1}{20}\\times 16=\\frac{4}{5}$$,余下的部分是乙完成的,$$\\frac{1}{5}\\div \\frac{1}{30}=6$$(天),那么乙请假了$$10$$天.\n\n假设乙没有请假,则两人合作$$16$$天,应完成全部工程的$$(\\frac{1}{20}+\\frac{1}{30})\\times16=\\frac{4}{3}$$,超过了单位“$$1$$”的$$\\frac{4}{3}-1=\\frac{1}{3}$$,则乙请假$$\\frac{1}{3}\\div\\frac{1}{30}=10$$$$($$天$$)$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "休息工程问题", "工程问题"]} +{"_id": "ff808081456fc18b01457930541a1a8b", "question": "甲、乙两人共同加工一批零件,$$8$$小时可以完成任务.如果甲单独加工,便需要$$12$$小时完成.现在甲、乙两人共同生产了$$2\\frac{2}{5}$$小时后,甲被调出做其他工作,由乙继续生产了$$420$$个零件才完成任务.问乙一共加工零件多少个?\n ", "answer": "$$480$$\n ", "Analysis": "乙单独加工,每小时加工$$\\frac{1}{8}-\\frac{1}{12}=\\frac{1}{24}$$  甲调出后,剩下工作乙需做$$(1-2\\frac{2}{5}\\times \\frac{1}{8})\\div \\frac{1}{24}=\\frac{84}{5}$$时所以乙每小时加工零件$$420\\div\\frac{84}{5}=25$$$$($$个$$)$$,则$$2\\frac{2}{5}$$小时加工$$25\\times2\\frac{2}{5}=60$$$$($$个$$)$$,所以乙一共加工零件$$420+60=480($$个$$)$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "休息工程问题", "工程问题"]} +{"_id": "ff808081456fc18b01457930c13b1a91", "question": "甲、乙、丙三人承包一项工程,发给他们工资共$$1800$$元,三人完成这项工程的具体情况是:甲、乙两人合作$$6$$天完成了工程的$$\\frac{1}{3}$$,因为甲有事,由乙、丙合作$$2$$天完成余下工程的$$\\frac{1}{4}$$,以后三人合作$$5$$天完成了这项工程,按完成量的多少来付劳动报酬,甲、乙、丙各得多少元?\n ", "answer": "甲应得$$330$$元,乙应得$$910$$元,丙应得$$560$$元.\n ", "Analysis": "根据题意可知,甲、乙两人的工作效率之和为$$\\frac{1}{3}\\div6=\\frac{1}{18}$$;\n 乙、丙两人的工作效率之和为$$(1-\\frac{1}{3})\\times \\frac{1}{4}\\div 2=\\frac{1}{12}$$;\n 甲、乙、丙三人的工作效率之和为$$(1-\\frac{1}{3})\\times (1-\\frac{1}{4})\\div 5=\\frac{1}{10}$$.\n 分别可求得甲的工作效率为$$\\frac{1}{10}-\\frac{1}{12}=\\frac{1}{60}$$,乙的工作效率为$$\\frac{1}{18}-\\frac{1}{60}=\\frac{7}{180}$$,丙的工作效率为$$\\frac{1}{10}-\\frac{1}{18}=\\frac{2}{45}$$,则甲完成的工程量为:$$\\frac{1}{60}\\times\\left( 6+5 \\right)=\\frac{11}{60}$$,乙完成的工程量为:$$\\frac{7}{180}\\times \\left( 6+2+5 \\right)=\\frac{91}{180}$$,丙完成的工程量为:$$\\frac{2}{45}\\times\\left( 2+5 \\right)=\\frac{14}{45}$$,三人所完成的工作量之比为$$\\frac{11}{60}:\\frac{91}{180}:\\frac{14}{45}=33:91:56$$.\n 所以,甲应得$$1800\\times \\frac{33}{33+91+56}=330$$元,乙应得$$330\\times \\frac{91}{33}=910$$元,丙应得$$330\\times \\frac{56}{33}=560$$元.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["休息工程问题", "合作工程问题", "应用题模块", "合作过程请假", "应用题", "工程问题", "工程应用题", "综合与实践"]} +{"_id": "ff808081456fc18b01457930f44e1a94", "question": "一项工程,甲$$15$$天做了$$\\frac{1}{4}$$后,乙加入进来,甲、乙一起又做了$$\\frac{1}{4}$$,这时丙也加入进甲、乙、丙一起做完.已知乙、丙的工作效率的比为$$3$$:$$5$$,整个过程中,乙、丙工作的天数之比为$$2$$:$$1$$,问题中情形下做完整个工程需多少天?\n ", "answer": "$$27$$天.\n ", "Analysis": "方法一:先把整个工程分为三个阶段:Ⅰ﹑Ⅱ﹑Ⅲ;且易知甲的工作效率为$$\\frac{1}{60}$$.又乙、丙工作的天数之比为$$(Ⅱ+Ⅲ):Ⅲ=2:1$$,所以有Ⅱ阶段和Ⅲ阶段所需的时间相等.即甲、乙合作完成的$$\\frac{1}{4}$$的工程与甲、乙、丙合作完成$$1-\\frac{1}{4}-\\frac{1}{4}=\\frac{1}{2}$$的工程所需的时间相等.所以对于工作效率有:$$($$甲$$+$$乙$$)\\times2=($$甲$$+$$乙$$+$$丙$$)$$,甲$$+$$乙$$=$$丙,那么有丙$$-$$乙$$=$$$$\\frac{1}{60}$$又有乙、丙的工作效率的比为$$3$$:$$5$$.易知乙的工作效率为$$\\frac{3}{120}$$,丙的工作效率为:$$\\frac{5}{120}$$.那么这种情形下完成整个工程所需的时间为:\n $$15+\\frac{1}{4}\\div(\\frac{1}{60}+\\frac{3}{120})+\\frac{1}{2}\\div (\\frac{1}{60}+\\frac{8}{120})=15+6+6=27$$天.\n 方法二:显然甲的工作效率为$$\\frac{1}{60}$$设乙的工作效率为$$3x$$,那么丙的工作效率为$$5x$$.所以有乙工作的天数为$$\\frac{1}{4}\\div(\\frac{1}{60}+3x)+\\frac{1}{2}\\div (\\frac{1}{60}+8x)$$,丙工作的天数为$$\\frac{1}{2}\\div(\\frac{1}{60}+8x)$$.且有$$\\frac{1}{4}\\div (\\frac{1}{60}+3x)+\\frac{1}{2}\\div(\\frac{1}{60}+8x)=2\\times \\frac{1}{2}\\div (\\frac{1}{60}+8x)$$.即$$\\frac{1}{4}\\div(\\frac{1}{60}+3x)=\\frac{1}{2}\\div (\\frac{1}{60}+8x)$$,解得$$x=\\frac{1}{120}$$.所以乙的工作效率为$$\\frac{3}{120}$$,丙的工作效率为高$$\\frac{5}{120}$$.那么这种情形下完成整个工程所需的时间为:$$15+\\frac{1}{4}\\div(\\frac{1}{60}+\\frac{3}{120})+\\frac{1}{2}\\div(\\frac{1}{60}+\\frac{8}{120})=15+6+6=27$$天.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "接力施工问题", "工程问题"]} +{"_id": "ff808081456fc18b01457931679f1a96", "question": "蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需$$5$$小时;排光一池水,单开排水管需$$3$$小时.现在池内有半池水,如果按进水,排水,进水,排水$$\\cdots$$的顺序轮流各开$$1$$小时.问:多长时间后水池的水刚好排完?$$($$精确到分钟$$)$$\n ", "answer": "$$7$$小时$$54$$分\n ", "Analysis": "法一:\n $$1$$小时排水比$$1$$小时进水多$$\\frac{1}{3}-\\frac{1}{5}=\\frac{2}{15}$$,$$\\frac{1}{2}\\div\\frac{2}{15}=3\\cdots \\frac{1}{10}$$,说明排水开了$$3$$小时后(实际加上进水$$3$$小时,已经过去$$6$$小时了),水池还剩一池子水的$$\\frac{1}{10}$$,\n 再过$$1$$小时,水池里的水为一池子水的$$\\frac{1}{10}+\\frac{1}{5}=\\frac{3}{10}$$,\n 把这些水排完需要$$\\frac{3}{10}\\div\\frac{1}{3}=\\frac{9}{10}$$小时,不到$$1$$小时,\n 所以共需要 $$6+1+\\frac{9}{10}=7\\frac{9}{10}$$小时$$=7$$小时$$54$$分.\n 法二:\n $$1$$小时排水比$$1$$小时进水多$$\\frac{1}{3}-\\frac{1}{5}=\\frac{2}{15}$$,$$\\frac{2}{15}\\times4-\\frac{1}{2}=\\frac{1}{30}$$,\n 说明$$8$$小时以后,水池的水全部排完,并且多排了一池子水的$$\\frac{1}{30}$$,\n 排一池子需要$$3$$小时,排一池子水的$$\\frac{1}{30}$$需要$$3\\times\\frac{1}{30}=\\frac{1}{10}$$小时,\n 所以实际需要$$8-\\frac{1}{10}=7\\frac{9}{10}$$小时$$=7$$小时$$54$$分.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "接力施工问题", "工程问题"]} +{"_id": "ff808081454416e6014544f83b40016d", "question": "某区举行小学生春季运动会,其中某校参加的人数占运动员总人数的$$\\frac{1}{15}$$,若这个学校再去$$10$$名运动员,则该校参加的人数占运动员总人数的$$\\frac{2}{23}$$,这次运动会原来共有运动员多少人?这个学校原来有多少人参加运动会?\n", "answer": "原有运动员$$450$$人,学校有运动员$$30$$人.\n ", "Analysis": "本题的解题思路是找出“不变量”,根据不变量写出等量关系,列方程解.或抓住不变量用转化法统一单位“1”使问题得以解决.\n\n解:设这次运动会原有运动员$$x$$人,可得\n\n$$x\\times(1-\\frac{1}{15})=(x+10)\\times (1-\\frac{2}{23})$$\n\n$$\\frac{14}{15}x=\\frac{21}{23}x+\\frac{210}{23}$$\n\n$$\\frac{14}{15}x-\\frac{21}{23}x=\\frac{210}{23}$$\n\n$$x=450$$\n\n$$450\\times \\frac{1}{15}=30$$(人).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["方程法解其他问题", "应用题模块", "列方程解应用题", "一元一次方程解应用题"]} +{"_id": "ff8080814559f57d01455f1c1f2c0460", "question": "用一批纸装订一种练习本.如果已装订$$120$$本,剩下的纸是这批纸的$$40\\%$$;如果装订了$$185$$本,则还剩下$$1350$$张纸.这批纸一共有多少张?\n ", "answer": "一共有$$18000$$张.\n ", "Analysis": "方法一:$$120$$本对应$$(1-40\\%)= 60\\%$$的总量,那么总量为$$120÷60\\%=200$$(本).\n\n当装订了$$185$$本时,还剩下$$200-185=15$$(本)未装订,对应为$$1350$$张,\n\n所以每本需纸张:$$1350÷15=90$$(张),\n\n那么$$200$$本需$$200×90=18000$$(张).即这批纸共有$$18000$$张.\n\n方法二:装订$$120$$本,剩下$$40\\%$$的纸,即用了$$60\\%$$的纸.\n\n那么装订$$185$$本,需用$$185×(60\\%÷120)= 92.5\\%$$的纸,\n\n即剩下$$1-92.5\\%=7.5\\%$$的纸,为$$1350$$张.\n\n所以这批纸共有$$1350÷7.5\\%=18000$$(张).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["量率对应求单位一", "分数百分数应用题", "量率对应求单位1", "分百应用题", "应用题模块", "应用题", "综合与实践"]} +{"_id": "ff8080814583feb30145876ac93a027b", "question": "一个骰子六个面上的数字分别为$$0$$,$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,现在来掷这个骰子,把每次掷出的点数依次求和,当总点数超过$$12$$时就停止不再掷了,这种掷法最有可能出现的总点数是 ___          ___ .\n", "answer": "$$13$$", "Analysis": "掷的总点数在$$8$$至$$12$$之间时,再掷一次,总点数才有可能超过$$12$$(至多是$$17$$).当总点数是$$8$$时,再掷一次,总点数是$$13$$的可能性比总点数超过$$13$$的可能性大.当总点数在$$9$$至$$12$$之间时,再掷一次,总点数是$$13$$的可能性不比总点数是$$14$$,$$15$$,$$16$$,$$17$$的可能性小.\n 例如,总点数是$$11$$时,再掷一次,出现$$0\\sim 5$$的可能性相同,所以总点数是$$11\\sim 16$$的可能性相同,即总数是$$13$$的可能性不比总数点数分别是$$14$$,$$15$$,$$16$$的可能性小,综上所述,总点数是$$13$$的可能性最大.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "统计与概率", "概率", "掷骰子", "典型问题"]} +{"_id": "ff8080814583feb30145876ea1da0282", "question": "在$$S$$岛上居住着$$100$$个人,其中一些人总是说假话,其余人则永远说真话,岛上的每一位居民崇拜三个神之一:太阳神、月亮神和地球神.向岛上的每一位居民提三个问题:⑴您崇拜太阳神吗?⑵您崇拜月亮神吗?⑶您崇拜地球神吗?对第一个问题有$$60$$人回答:“是”;对第二个问题有$$40$$人回答:“是”;对第三个问题有$$30$$人回答:“是”.他们中有多少人说的是假话?\n ", "answer": "岛上有$$30$$个人说的是假话.\n ", "Analysis": "我们将永远说真话的人称为老实人,把总说假话的人称为骗子.每个老实人都只会对一个问题“是”.而每个骗子则都对两个问题答“是”.将老实人的数目计为$$x$$,将骗子的数目计为$$y$$.于是$$x+2y=130$$.又由于在$$S$$岛上居住着$$100$$个人,所以$$x+y=100$$,联立两条方程,解得$$y=30$$.所以岛上有$$30$$个人说的是假话.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整数系数二元一次方程组解应用题", "逻辑推理", "应用题模块", "组合模块", "假设型逻辑推理", "多元一次方程解应用题", "答案(数字)正误问题", "列方程解应用题"]} +{"_id": "ff80808145933b5101459663a7810164", "question": "有$$1$$克、$$2$$克、$$5$$克三种砝码共$$16$$个,总重量为$$50$$克;如果把$$1$$克的砝码和$$5$$克的砝码的个数对调一下,这时总重量变为$$34$$克.那么$$1$$克、$$2$$克、$$5$$克的砝码有多少个?\n ", "answer": "原有$$1$$克砝码$$3$$个,$$2$$克砝码$$6$$个,$$5$$克砝码$$3+4=7$$个.\n ", "Analysis": "$$5$$克砝码比$$1$$克砝码每多$$1$$个,对调后总重量将减少$$5-1=4$$克,所以$$5$$克砝码比$$1$$克砝码多$$\\left(50-34 \\right)\\div 4=4$$(个).\n 在原来的砝码中减掉$$4$$个$$5$$克砝码,此时剩下$$12$$个砝码,且$$1$$克砝码与$$5$$克同样多,总重量为$$30$$克.\n 设剩下$$1$$克、$$5$$克各$$x$$个,$$2$$克砝码$$y$$个,则\n $$\\left\\{ \\begin{align}& 2x+y=12 \\\\ & (1+5)x+2y=30 \\\\ \\end{align}\\right.$$,解得$$\\left\\{ \\begin{align}& x=3 \\\\ & y=6 \\\\ \\end{align}\\right.$$\n 所以原有$$1$$克砝码$$3$$个,$$2$$克砝码$$6$$个,$$5$$克砝码$$3+4=7$$个.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数二元一次方程组解应用题"]} +{"_id": "ff80808145933b51014598d19e1f08c0", "question": "在$$8×8$$的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个?\n ", "answer": "$$48$$\n ", "Analysis": "首先可以知道题中所讲的$$1\\times 3$$长方形中间的那个小主格为黑色,这是因为两个白格不相邻,所以不能在中间.显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中.下面分两种情况来分析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样的$$1\\times 3$$长方形$$($$一横一竖$$)$$;第二种情况,位于边上的黑色方格只能对应一个$$1\\times 3$$长方形.由于在棋盘上的$$32$$个黑色方格中,位于棋盘内部的$$18$$个,位于边上的有$$12$$个,位于角上的有$$2$$个,所以共有$$18\\times 2+12=48$$个这样的长方形.本题也可以这样来考虑:事实上,每一行都有$$6$$个$$1\\times 3$$长方形,所以棋盘上横、竖共有$$1\\times 3$$长方形$$6\\times 8\\times 2=96$$个.由于棋盘上的染色具有对称性,因此包含两个白色小方格与一个黑色小方格的长方形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系,这说明它们各占一半,因此所求的长方形个数为$$96\\div 2=48$$个.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分类枚举法数图形", "计数模块", "长方形", "常规图形枚举计数", "几何计数"]} +{"_id": "ff80808145933b51014599184b990927", "question": "购买$$3$$斤苹果,$$2$$斤桔子需要$$6.90$$元;购买$$8$$斤苹果,$$9$$斤桔子需要$$22.80$$元,那么苹果、桔子各买$$1$$斤需要 ___          ___ 元.\n ", "answer": "$$2.7$$", "Analysis": "假设购买$$1$$斤苹果、桔子分别需要$$x$$元、$$y$$元,则:\n\n$$\\left\\{ \\begin{align}& 3x+2y=6.9 \\\\ &8x+9y=22.8 \\\\ \\end{align} \\right.$$,\n\n两式相加得$$11x+11y=29.7$$,即$$x+y=2.7$$.\n\n所以各买$$1$$斤需要$$2.7$$元.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数二元一次方程组解应用题"]} +{"_id": "ff80808145933e8e0145983fde44089e", "question": "有一个蓄水池装了$$9$$根相同的水管,其中一根是进水管,其余$$8$$根是出水管.开始时,进水管以均匀的速度不停地向蓄水池注水.后来,想打开出水管,使池内的水全部排光.如果同时打开$$8$$根出水管,则$$3$$小时可排尽池内的水;如果仅打开$$5$$根出水管,则需$$6$$小时才能排尽池内的水.若要在$$4.5$$小时内排尽池内的水,那么应当同时打开多少根出水管?\n ", "answer": "$$6$$根.\n ", "Analysis": "令$$1$$根出水管$$1$$小时可以出$$1$$份水.\n\n3小时排完共排掉$$3\\times 8=24$$份水;\n\n6小时排完共排掉$$5\\times 6=30$$份水;\n\n进水管每小时进水:$$(30-24)\\div (6-3)=2$$份水.\n\n池内原有水:$$24-2\\times 3=18$$份水\n\n现在要在$$4.5$$小时内排尽池内的水,则需要两根出水管用来对付进水管,还再需要$$18\\div 4.5=4$$ 根出水管用来对付原有水量;所以共需要$$4+2=6$$根出水管.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["淘水问题", "牛吃草转化型", "生活中的牛吃草", "牛吃草问题", "应用题模块"]} +{"_id": "ff80808145933e8e0145983fe91108a0", "question": "一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果$$3$$人淘水$$40$$分钟可以淘完;$$6$$人淘水$$16$$分钟可以把水淘完,那么,$$5$$人淘水几分钟可以把水淘完?\n ", "answer": "$$20$$分钟.\n ", "Analysis": "设$$1$$人$$1$$分钟淘出的水量是“1”,$$40-16=24$$分钟的进水量为$$3\\times 40-6\\times16=24$$,所以每分钟的进水量为$$24\\div 24=1$$,那么原有水量为:$$\\left( 3-1 \\right)\\times 40=80$$.$$5$$人淘水需要$$80\\div \\left( 5-1 \\right)=20$$$$($$分钟$$)$$把水淘完.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["淘水问题", "牛吃草转化型", "生活中的牛吃草", "牛吃草问题", "应用题模块"]} +{"_id": "ff80808145933e8e0145983ff52708a2", "question": "一只船发现漏水时,已经进了一些水,水匀速进入船内.如果$$10$$人淘水,$$3$$小时淘完;如果$$5$$人淘水,$$8$$小时淘完.如果要求$$2$$小时淘完,要安排多少人淘水?\n", "answer": "$$14$$人.\n ", "Analysis": "设$$1$$人$$1$$小时淘出的水量是“1”,淘水速度是$$(5\\times 8-10\\times 3)\\div (8-3)=2$$,原有水量$$(10-2)\\times 3=24$$,要求$$2$$小时淘完,要安排$$24\\div 2+2=14$$人淘水.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["淘水问题", "牛吃草转化型", "生活中的牛吃草", "牛吃草问题", "应用题模块"]} +{"_id": "ff80808145933e8e0145983ff9bf08a4", "question": "由于环境恶化、气候变暖,官厅水库的水在匀速减少,为了保证水库的水量,政府决定从上游的壶流河水库以及册田水库分别向官厅水库进行调水,已知这两个水库的每个闸门放水量是相同的,如果同时打开壶流河水库的$$5$$个闸门$$30$$小时可以使官厅水库水量达到原来的标准,如果同时打开册田水库的$$4$$个闸门$$40$$小时可以使官厅水库水量达到原来的标准,如果$$24$$小时使官厅水库水量达到原来的标准,问需同时打开两个水库的几个闸门?\n ", "answer": "$$6$$个.\n ", "Analysis": "设$$1$$个闸门$$1$$小时的放水量为“1”,那么每小时自然减少的水量为:$$\\left( 40\\times 4-30\\times5 \\right)\\div \\left( 40-30 \\right)=1$$,实际注入水量为:$$\\left( 5-1\\right)\\times 30=120$$���$$24$$小时蓄水需要打开的闸门数是:$$120\\div 24+1=6$$$$($$个$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["淘水问题", "牛吃草转化型", "生活中的牛吃草", "牛吃草问题", "应用题模块"]} +{"_id": "ff80808145933e8e014598401a3408aa", "question": "东升牧场南面一块$$2000$$平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供$$18$$头牛吃$$16$$天,或者供$$27$$头牛吃$$8$$天.在东升牧场的西侧有一块$$6000$$平方米的牧场,可供多少头牛吃$$6$$天?\n ", "answer": "$$99$$头牛.\n ", "Analysis": "设$$1$$头牛$$1$$天的吃草量为“1”,那么$$2000$$平方米的牧场上$$16-8=8$$(天)生长的草量为$$18\\times 16-27\\times 8=72$$,即每天生长的草量为$$72\\div 8=9$$.那么$$2000$$平方米的牧场上原有草量为:$$\\left( 18-9 \\right)\\times 16=144$$.\n\n则$$6000$$平方米的牧场每天生长的草量为$$9\\times \\left( 6000\\div 2000\\right)=27$$;原有草量为:$$144\\times \\left( 6000\\div 2000\\right)=432$$.$$6$$天里,该牧场共提供牧草$$432+27\\times 6=594$$,可以让$$594\\div 6=99$$(头)牛吃$$6$$天.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多种动物的牛吃草", "应用题模块", "牛吃草问题", "牛吃草转化型"]} +{"_id": "ff80808145933e8e014598402ae808ae", "question": "画展$$9$$点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开$$3$$个入场口,$$9$$点$$9$$分就不再有人排队;如果开$$5$$个入场口,$$9$$点$$5$$分就没有人排队.求第一个观众到达的时间.\n ", "answer": "$$8$$点$$15$$分.\n ", "Analysis": "如果把入场口看作为“牛”,开门前原有的观众为“原有草量”,每分钟来的观众为“草的增长速度”,那么本题就是一个“牛吃草”问题.设每一个入场口每分钟通过“$$1$$”份人,那么$$4$$分钟来的人为$$3\\times 9-5\\times 5=2$$,即$$1$$分钟来的人为$$2\\div 4=0.5$$,原有的人为:$$\\left(3-0.5 \\right)\\times 9=22.5$$.这些人来到画展,所用时间为$$22.5\\div 0.5=45$$$$($$分$$)$$.所以第一个观众到达的时间为$$8$$点$$15$$分.\n 点评:从表面上看这个问题与“牛吃草”问题相离很远,但仔细体会,题目中每分钟来的观众一样多,类似于“草的生长速度”,入场口的数量类似于“牛”的数量,问题就变成“牛吃草”问题了.解决一个问题的方法往往能解决一类问题,关键在于是否掌握了问题的实质.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["生活中的牛吃草排队问题", "牛吃草转化型", "生活中的牛吃草", "牛吃草问题", "应用题模块"]} +{"_id": "ff80808145933e8e01459840340708b1", "question": "林子里有猴子喜欢吃的野果,$$23$$只猴子可在$$9$$周内吃光,$$21$$只猴子可在$$12$$周内吃光,问如果要$$4$$周吃光野果,则需有多少只猴子一起吃?(假定野果生长的速度不变)\n ", "answer": "$$33$$只猴子.\n ", "Analysis": "设一只猴子一周吃的野果为“$$1$$”,则野果的生长速度是$$(21 \\times 12 - 23 \\times 9) \\div(12 - 9) = 15$$,原有的野果为$$(23 - 15) \\times 9 = 72$$,如果要$$4$$周吃光野果,则需有$$72\\div 4 + 15 = 33$$只猴子一起吃.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["牛吃草基本型", "应用题模块", "求头数", "牛吃草问题"]} +{"_id": "ff80808145933e8e0145984046c008b3", "question": "一片茂盛的草地,每天的生长速度相同,现在这片青草$$16$$头牛可吃$$15$$天,或者可供$$100$$只羊吃$$6$$天,而$$4$$只羊的吃草量相当于$$1$$头牛的吃草量,那么$$8$$头牛与$$48$$只羊一起吃,可以吃多少天?\n ", "answer": "$$9$$天.\n ", "Analysis": "设$$1$$头牛$$1$$天的吃草量为“$$1$$”,摘录条件,将它们转化为如下形式方便分析\n\n$$16$$头牛$$15$$天$$16\\times15=240$$:原有草量$$+15$$天生长的草量\n\n$$100$$只羊($$25$$头牛)$$6$$天 $$25×6=150$$:原有草量$$+6$$天生长的草量从上易发现:$$1$$天生长的草量$$=10$$;那么原有草量:$$150-10\\times6=90$$;\n\n$$8$$头牛与$$48$$只羊相当于$$20$$头牛的吃草量,其中$$10$$头牛去吃新生草,那么剩下的$$10$$头牛吃原有草,$$90$$只需$$9$$天,所以$$8$$头牛与$$48$$只羊一起吃,可以吃$$9$$天���\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多种动物的牛吃草", "应用题模块", "牛吃草问题", "牛吃草转化型"]} +{"_id": "ff80808145933e8e01459840675808b6", "question": "一块匀速生长的草地,可供$$16$$头牛吃$$20$$天或者供$$100$$只羊吃$$12$$天.如果一头牛一天吃草量等于$$5$$只羊一天的吃草量,那么这块草地可供$$10$$头牛和$$75$$只羊一起吃多少天?\n ", "answer": "$$8$$天.\n ", "Analysis": "设$$1$$头牛$$1$$天的吃草量为“$$1$$”,由于一头牛一天吃草量等于$$5$$只羊一天的吃草量,所以$$100$$只羊吃$$12$$天相当于$$20$$头牛吃$$12$$天.那么每天生长的草量为$$\\left( {16 \\times 20 - 20 \\times 12} \\right) \\div \\left( {20 - 12}\\right) = 10$$,原有草量为:$$\\left({16 - 10} \\right) \\times 20 = 120$$.\n\n$$10$$头牛和$$75$$只羊$$1$$天一起吃的草量,相当于$$25$$头牛一天吃的草量;$$25$$头牛中,若有$$10$$头牛去吃每天生长的草,那么剩下的$$15$$头牛需要$$120 \\div 15 = 8$$天可以把原有草量吃完,即这块草地可供$$10$$头牛和$$75$$只羊一起吃$$8$$天.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多种动物的牛吃草", "应用题模块", "牛吃草问题", "牛吃草转化型"]} +{"_id": "ff80808145933e8e01459840743408bc", "question": "由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少.如果某块草地上的草可供$$25$$头牛吃$$4$$天,或可供$$16$$头牛吃$$6$$天,那么可供多少头牛吃$$12$$天?\n ", "answer": "$$7$$头.\n ", "Analysis": "设$$1$$头牛$$1$$天吃的草为“$$1$$”.牧场上的草每天自然减少$$(25 \\times 4 - 16 \\times 6) \\div (6 - 4) = 2$$;\n 原来牧场有草$$(25 + 2) \\times 4 = 108$$,\n $$12$$天吃完需要牛的头数是:$$108 \\div 12 - 2 = 7$$$$($$头$$)$$或$$(108 - 12 \\times 2) \\div 12 = 7$$(头).\n \n此题的难点在于草在每天减少,草场每天减少量的求法与前面相同,只是在求草场原有量时要加上几天减少的量,在求问题“可供多少头牛吃$$12$$天”时要从原有量可供的牛数中减去每天减少量可供的牛数.\n\n草场每天减少量:$$(25\\times4-16\\times6)\\div (6-4)=2$$,即每天草场减少的量够$$2$$头牛吃.\n\n草场原有量:$$(25+2)\\times4=108或(16+2)\\times6=108$$.\n\n原草量够$$108\\div12=9$$(头)牛吃,但是每天减少量是$$2$$头牛吃的量,所以减少$$2$$头牛才能够$$12$$天,因此可供$$9-2=7$$(头)牛吃$$12$$天.\n\n答:可供$$7$$头牛吃$$12$$天.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["草衰减牛吃草", "应用题模块", "牛吃草问题", "牛吃草转化型"]} +{"_id": "ff80808145933e8e01459840795208be", "question": "由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供$$20$$头牛吃$$5$$天,或可供$$15$$头牛吃$$6$$天.照此计算,可以供多少头牛吃$$10$$天?\n ", "answer": "$$5$$头.\n ", "Analysis": "设$$1$$头牛$$1$$天的吃草量为“$$1$$”,那么每天自然减少的草量为:$$\\left( {20 \\times 5 - 15 \\times 6}\\right) \\div \\left( {6 - 5} \\right) = 10$$,原有草量为:$$\\left( {20 + 10} \\right) \\times 5 = 150$$;$$10$$天吃完需要牛的头数是:$$150 \\div 10 - 10 = 5$$$$($$头$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["草衰减牛吃草", "应用题模块", "牛吃草问题", "牛吃草转化型"]} +{"_id": "ff80808145933e8e014598407c0108c0", "question": "牧场上长满牧草,每天牧草都匀速生长.这片牧场可供$$10$$头牛吃$$20$$天,可供$$15$$头牛吃$$10$$天.供$$25$$头牛可吃几天?\n ", "answer": "$$5$$天.\n ", "Analysis": "设$$1$$头牛$$1$$天的吃草量为“1”,$$10$$头牛吃$$20$$天共吃了$$10 \\times 20 = 200$$份;$$15$$头牛吃$$10$$天共吃了$$15 \\times 10 = 150$$份.第一种吃法比第二种吃法多吃了$$200 - 150 = 50$$份草,这$$50$$份草是牧场的草$$20 - 10 = 10$$天生长出来的,所以每天生长的草量为$$50 \\div 10 = 5$$,那么原有草量为:$$200 - 5 \\times 20 = 100$$.\n 供$$25$$头牛吃,若有$$5$$头牛去吃每天生长的草,剩下$$20$$头牛需要$$100 \\div 20 = 5$$$$($$天$$)$$可将原有牧草吃完,即它可供$$25$$头牛吃$$5$$天.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["牛吃草基本型", "应用题模块", "牛吃草问题", "求天数"]} +{"_id": "ff80808145933e8e0145984084bd08c4", "question": "有一块匀速生长的草场,可供$$12$$头牛吃$$25$$天,或可供$$24$$头牛吃$$10$$天.那么它可供几头牛吃$$20$$天?\n ", "answer": "$$14$$头\n", "Analysis": "设$$1$$头牛$$1$$天的吃草量为“$$1$$”,那么$$25 - 10 = 15$$天生长的草量为$$12 \\times 25 - 24 \\times 10 = 60$$,所以每天生长的草量为$$60 \\div 15 = 4$$;原有草量为:$$\\left( {24 - 4} \\right) \\times 10= 200$$.\n $$20$$天里,草场共提供草$$200 + 4 \\times 20 = 280$$,可以让$$280 \\div 20 = 14$$头牛吃$$20$$天.\n \n解此题的关键是求每天生长量和草场原有量,之后研究多少头牛可以分$$20$$天把原有量吃完,需要再加上每天生长量够多少头牛吃的这一条件,可以求出结果.\n\n草场每天生长量:$$(12\\times 25-24\\times 10)\\div (25-10)=4$$;\n\n草场原有量:$$(12-4)\\times 25=200$$或$$(24-4)\\times 10=200$$;\n\n可供几头牛吃$$20$$天:$$(200+20\\times 4)\\div 20=14$$(头)或$$200\\div 20+4=14$$(头).\n\n可供$$14$$头牛吃$$20$$天.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["牛吃草基本型", "应用题模块", "求头数", "牛吃草问题"]} +{"_id": "ff80808145a7cf080145cae9d7552b2a", "question": "甲、乙两车分别从 $$A$$、$$B$$两地同时出发,相向而行.出发时,甲、乙的速度之比是 $$5 : 4$$,相遇后甲的速度减少$$20\\%$$,乙的速度增加 $$20\\%$$.这样当甲到达$$B$$地时,乙离$$A$$地还有$$10$$千米.那么$$A$$、$$B$$两地相距多少千米?\n ", "answer": "$$450$$千米\n", "Analysis": "两车相遇时甲走了全程的$$\\frac{5}{9}$$,乙走了全程的$$\\frac{4}{9}$$,\n\n之后甲的速度减少$$20\\%$$,乙的速度增加$$20\\%$$,\n\n此时甲、乙的速度比为$$5 \\times (1 - 20\\% ):4 \\times (1 + 20\\% ) = 5:6$$ ,\n\n所以甲到达$$B$$地时,乙又走了$$\\frac{4}{9} \\times \\frac{6}{5} = \\frac{8}{{15}}$$,距离 $$A$$地$$\\frac{5}{9} - \\frac{8}{{15}} = \\frac{1}{{45}}$$,\n\n所以$$A$$、$$B$$两地的距离为$$10 \\div \\frac{1}{{45}} = 450$$ $$($$千米$$)$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "相遇问题", "同时出发相向而行", "两人相遇与追及问题"]} +{"_id": "ff80808145a7d1300145b122a4c00750", "question": "一件衣服,第一天按原价出售,没人来买,第二天降价$$20$$%出售,仍无人问津,第三天再降价$$24$$元,终于售出.已知售出价格恰是原价的$$56$$%,这件衣服还盈利$$20$$元,那么衣服的成本价多少钱?\n ", "answer": "$$36$$元.\n ", "Analysis": "我们知道从第二天起开始降价,先降价$$20\\%$$然后又降价$$24$$元,最终是按原价的$$56\\%$$出售的,所以一共降价$$44\\%$$,因而第三天降价$$24\\%$$.$$24÷24\\%=100$$元.原价为$$100$$元.因为按原价的$$56\\%$$出售后,还盈利$$20$$元,所以$$100×56\\%-20=36$$元.所以成本价为$$36$$元.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "基本经济概念", "已知利润利润率求成本", "经济问题", "利润基本公式"]} +{"_id": "ff80808145a7d1300145b122c51f0757", "question": "一千克商品按$$20\\%$$的利润定价,然后又按$$8$$折售出,结果亏损了$$64$$元,这千克商品的成本是多少元?\n ", "answer": "$$1600$$.\n ", "Analysis": "$$64\\div \\left[1-\\left( 1+20\\% \\right)\\times 80\\% \\right]=1600$$(元).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["结合利润率、折扣的综合问题", "经济问题", "应用题", "综合与实践"]} +{"_id": "ff80808145a7d1300145b122d2a50759", "question": "张先生向商店订购某种商品$$80$$件,每件定价$$100$$元.张先生向商店经理说:“如果你肯减价,每减$$1$$元,我就多订$$4$$件.”商店经理算了一下,如果减价$$5\\%$$,那么由于张先生多订购,仍可获得与原来一样多的利润.问:这种商品的成本是多少?\n ", "answer": "$$75$$元.\n", "Analysis": "减价$$5\\%$$即减去$$100\\times5\\%=5$$元时,张先生应多定$$4\\times5=20$$件,前后所订件数之比为$$80:(80+20)=4:5$$;又前后所获得的总利润一样多,则每件商品的利润之比为$$5:4$$.前���售价相差$$5$$元,则利润也相差$$5$$元,所以原来的利润应为$$5\\div \\frac{5-4}{5}=25$$元,因此该商品的成本是$$100-25=75$$元.\n\n降价$$5\\%$$多订的件数为:$$100\\times 5\\%\\times 4=20$$(件),\n\n设每一件商品原来的利润为$$x$$元,\n\n则:$$80x=(x-5)\\times (80+20)$$,解得$$x=25$$,$$100-25=75$$(元).\n\n答:这种商品的成本是$$75$$元.\n\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["列方程解应用题", "以经济问题形式运用方程解应用题", "应用题", "综合与实践"]} +{"_id": "ff80808145a7d1300145b12346750767", "question": "某种少年读物,如果按原定价格销售,每售一本,获利$$0.24$$元;现在降价销售,结果售书量增加一倍,获利增加$$0.5$$倍.问:每本书售价降价多少元?\n ", "answer": "$$0.06$$元.\n", "Analysis": "降价销售平均每售$$2$$本书获利$$0.24\\times (1+\\frac{1}{2})=0.36$$(元),每本获利$$0.18$$元.\n\n所以每本书售价降低$$0.24-0.18=0.06$$(元).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["复杂的经济问题", "应用题模块", "经济问题"]} +{"_id": "ff80808145a7d1300145b1237e390770", "question": "一千克商品随季节变化降价出售,如果按现价降价$$10\\%$$,仍可获利$$180$$元,如果降价$$20\\%$$就要亏损$$240$$元,这种商品的进价是多少元?\n ", "answer": "$$3600$$.\n ", "Analysis": "根据盈亏问题可得现价为:$$\\left( 180+240 \\right)\\div \\left( 20\\%-10\\%\\right)=4200$$,所以成本为:$$\\left( 1-10\\% \\right)\\times4200-180=3600$$ $$($$元$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "综合型转化", "盈亏问题", "盈亏转化题型"]} +{"_id": "ff80808145a7d1300145b12387b70772", "question": "某商品价格因市场变化而降价,当初按盈利$$27\\%$$定价,卖出时如果比原价便宜$$4$$元,则仍可赚钱$$25\\%$$,求原价是多少元?\n ", "answer": "$$254$$.\n ", "Analysis": "根据量率对应得到成本为:$$4\\div\\left(27\\%-25\\%\\right)=200$$,当初利润为:$$200\\times 27\\%=54$$(元)所以原价为:$$200+54=254$$(元).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["量率对应求单位1", "分百应用题", "应用题模块", "基本经济概念", "折扣问题", "经济问题"]} +{"_id": "ff80808145a7d1300145b12468290776", "question": "一批冰箱,每台售价是$$2400$$元,预计获利$$7.2$$万元,但实际上由于制作成本提高了$$\\frac{1}{6}$$,所以利润减少了$$25\\%$$.求这批冰箱的台数.\n", "answer": "这批电冰箱共有$$75$$台.\n ", "Analysis": "比例法:\n\n电冰箱的售价不变,因此减少的利润相当于增加的成本,\n\n也就是说原成本的$$\\frac{1}{6}$$等于原利润的$$25\\%$$,\n\n从而原先成本与利润的比是$$25\\%:\\frac{1}{6}=3:2$$,而售价为$$2400$$元,\n\n所以原来每台电冰箱的利润是$$2400\\times\\frac{2}{2+3}=960$$元,\n\n那么这批电冰箱共有$$7.2\\times10000\\div 960=75$$台.\n\n算术法:\n\n利润减少了$$25\\%$$,减少了$$7.2\\times25\\%=1.8$$万元,\n\n由于售价不变,利润减少的等于成本提高的,\n\n所以总成本为$$1.8\\div \\frac{1}{6}=10.8$$万元,\n\n则总售价为$$10.8+7.2=18$$万元,\n\n共$$180000\\div 2400=75$$台.\n\n方程法:\n\n设一台冰箱成本为$$x$$元,等量关系仍是利润减少的等于成本提高的:\n\n$$\\frac{1}{6}x=(2400-x)\\times25\\%$$,\n\n解得$$x=1440$$,\n\n所以共$$72000\\div (2400-1440)=75$$台.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["复杂的经济问题", "应用题模块", "经济问题"]} +{"_id": "ff80808145a7d1300145b124b26d077e", "question": "甲、乙两商店中某种商品的定价相同.甲商店按定价销售这种商品.销售额是$$7200$$元;乙商店按定价的八折销售,比甲商店多售出$$15$$件.销售额与甲商店相同,则甲商店售出 ___          ___ 件这种商品.\n ", "answer": "$$60$$", "Analysis": "方法一:乙商店按定价的八折出售,则数量之比为:$$4:5$$,\n\n现在乙商店比甲商店多售出$$15$$件,则甲商店售出$$15\\times4=60$$件.\n\n方法二:假如乙商店和甲商店售出一样多的商品,\n\n它的销售额应是$$7200\\times0.8=5760$$,但是他多卖了$$15$$件,\n\n也就多卖了$$7200-5760=1440$$元,说明一件商品价格是$$96$$元,\n\n那么甲商店卖出的总件数就是$$5670\\div96=60$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "基本经济概念", "经济问题", "折扣问题"]} +{"_id": "ff80808145c23b540145c25cbf7a0026", "question": "林林倒满一杯纯牛奶,第一次喝了$$\\frac{1}{3}$$,然后加入豆浆,将杯子斟满并搅拌均匀,第二次,林林又喝了$$\\frac{1}{3}$$,继续用豆浆将杯子斟满并搅拌均匀,重复上述过程,那么第四次后,林林共喝了一杯纯牛奶总量的 ___          ___ .(用分数表示)\n ", "answer": "$$\\frac{65}{81}$$", "Analysis": " 第一次:喝掉的牛奶 $$\\frac{1}{3}$$ ,\n\n剩下的牛奶$$1-\\frac{1}{3}=\\frac{2}{3}$$ ,\n\n第二次:喝掉的牛奶$$\\frac{2}{3}\\times\\frac{1}{3}=\\frac{2}{9}$$(喝掉剩下$$\\frac{2}{3}$$的$$\\frac{1}{3}$$),\n\n剩下的牛奶$$\\frac{2}{3}\\times\\frac{2}{3}=\\frac{4}{9}$$(剩下是第一次剩下$$\\frac{2}{3}$$的$$\\frac{2}{3}$$),\n\n第三次:喝掉的牛奶$$\\frac{4}{9}\\times\\frac{1}{3}=\\frac{4}{27}$$(喝掉剩下$$\\frac{4}{9}$$的$$\\frac{1}{3}$$),\n\n剩下的牛奶$$\\frac{4}{9}$$×$$\\frac{2}{3}$$=$$\\frac{8}{27}$$(剩下是第一次剩下$$\\frac{4}{9}$$的$$\\frac{2}{3}$$),\n\n第四次:喝掉的牛奶$$\\frac{8}{27}\\times\\frac{1}{3}=\\frac{8}{81}$$(喝掉剩下$$\\frac{8}{27}$$的$$\\frac{1}{3}$$),\n\n所以最后喝掉的牛奶为:$$\\frac{1}{3}+\\frac{2}{9}+\\frac{4}{27}+\\frac{8}{81}=\\frac{65}{81}$$.\n\n第四次喝完之后,杯子里还剩下牛奶$$1\\times \\frac{2}{3}\\times \\frac{2}{3}\\times \\frac{2}{3}\\times \\frac{2}{3}=\\frac{16}{81}$$,\n\n那么喝掉的牛奶是$$1-\\frac{16}{81}=\\frac{65}{81}$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["统一单位1", "量率对应已知单位1", "转化单位1", "分百应用题", "应用题模块"]} +{"_id": "ff80808145cb8ada0145cb8e4bfa0016", "question": "有甲、乙两个瓶子,甲瓶里装了$$200$$毫升清水,乙瓶里装了$$200$$毫升纯酒精.第一次把$$20$$毫升纯酒精由乙瓶倒入甲瓶,第二次把甲瓶中$$20$$毫升溶液倒回乙瓶,此时甲瓶里含纯酒精多,还是乙瓶里含水多?\n ", "answer": "一样多.\n", "Analysis": "第一次把$$20$$毫升的纯酒精倒入甲瓶,则甲瓶的浓度为:$$20\\div \\left( 200+20 \\right)=\\frac{1}{11}$$,第二次把甲瓶中$$20$$毫升溶液倒回乙瓶,此时甲瓶中含酒精$$200\\times \\frac{1}{11}=\\frac{200}{11}$$毫升,乙瓶中含水$$20\\times \\left( 1-\\frac{1}{11} \\right)=\\frac{200}{11}$$毫升,即两者相等.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["浓度问题", "应用题模块", "已知溶质溶液求浓度", "浓度基本题型"]} +{"_id": "ff80808145cb8ada0145cb8e51b40018", "question": "甲容器中有$$8\\%$$的盐水$$300$$克,乙容器中有$$12.5\\%$$的盐水$$120$$克.往甲、乙两个容器分别倒入等量的水,使两个容器中盐水的浓度一样.每个容器应倒入多少克水?\n ", "answer": "$$180$$克.\n ", "Analysis": "方法一:甲容器中含盐$$300\\times 8\\%=24$$(克),乙容器中含盐$$120\\times 12.5\\%=15$$(克),含盐比为$$24:15=8:5$$,倒入等量的水后浓度相同,则盐水质量比也变为$$8:5$$,根据差不变可知,倒入水后甲容器中含有盐水$$(300-120)\\div (8-5)\\times 8=480$$(克),所以倒入水$$480-300=180$$(克).\n\n方法二:$$300\\times8\\%=24$$(克)\n\n$$120\\times12.5\\%=15$$(克)\n\n设每个容器应倒入$$x$$克水.\n\n$$24\\div(300+x)=15\\div(120+x)$$\n\n$$x=180$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["浓度问题", "应用题模块", "方程法解浓度问题"]} +{"_id": "ff80808145cb8ada0145cb8e55c1001a", "question": "甲、乙两只装糖水的桶,甲桶有糖水$$60$$千克,含糖率为$$40\\%$$;乙桶有糖水$$40$$千克,含糖率为$$20\\%$$.要使两桶糖水的含糖率相等,需把两桶的糖水相互交换多少千克?\n ", "answer": "互相交换$$24$$千克糖水后,含糖率相等.\n ", "Analysis": "设互相交换$$x$$千克糖水.\n\n$$[(60-x)\\times40\\%+x\\times20\\%]\\div60=[(40-x)\\times20\\%+x\\times40\\%]\\div40$$\n\n                             $$x=24$$\n\n交换$$24$$千克糖水.\n\n设需把两桶糖水相互交换$$x\\text{kg}$$.\n\n$$\\frac{60\\times 40\\%-40\\%x+20\\%x}{60}=\\frac{40\\times 20\\%-20\\%x+40\\%x}{40}$$\n\n$$\\frac{24-0.2x}{60}=\\frac{8+0.2x}{40}$$\n\n$$\\left( 24-0.2x \\right)\\times 40=\\left( 8+0.2x \\right)\\times 60$$\n\n$$960-8x=480+12x$$\n\n$$480=20x$$\n\n$$x=24$$.\n\n答:需要两桶糖水交换$$24\\text{kg}$$.\n\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["浓度问题", "应用题模块", "方程法解浓度问题"]} +{"_id": "ff80808145cb8ada0145cb8e5a65001c", "question": "大瓶酒精溶液是小瓶酒精溶液的$$2$$倍,大瓶酒精溶液的浓度为$$20\\%$$,小瓶酒精溶液的浓度为$$35\\%$$,将两瓶酒精溶液混合后,酒精溶液的浓度是多少?\n ", "answer": "混合后,酒精溶液的浓度为$$25\\%$$.\n ", "Analysis": "设小瓶酒精溶液为$$a$$,大瓶酒精溶液为$$2a$$ .\n\n那么没有混合前溶剂的重量为:$$35\\%a+20\\%\\times2a=0.35a+0.4a=0.75a$$ .\n\n混合后的溶液重量为:$$a+2a=3a$$ .\n\n根据浓度公式,有:$$0.75a\\div3a=0.25=25\\%$$ .\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["浓度问题", "已知两种溶液浓度,求混合后的浓度", "应用题", "综合与实践"]} +{"_id": "ff80808145cb8ada0145cb8ec0290024", "question": "甲种酒精$$4$$千克,乙种酒精$$6$$千克,混合成的酒精含纯酒精$$62\\%$$.如果甲种酒精和乙种酒精一样多,混合成的酒精含纯酒精$$61\\%$$.甲、乙两种酒精中含纯酒精的百分比各是多少?\n ", "answer": "甲$$56\\%$$;乙$$66\\%$$ .\n", "Analysis": "不妨设甲、乙两种酒精各取$$4$$千克,则混合后的浓度为$$61\\%$$,含纯酒精$$4 \\times 2 \\times 61\\%  =4.88$$千克;又知,$$4$$千克甲酒精与$$6$$千克乙酒精,混合后的浓度为$$62\\%$$,含纯酒精$$\\left( {4 + 6} \\right) \\times 62\\% = 6.2$$千克.相差$$6.2 - 4.88 = 1.32$$千克,说明$$6 - 4 = 2$$千克乙酒精中含纯酒精$$1.32$$千克,则乙酒精中纯酒精的百分比为$$1.32 \\div 2 \\times 100\\%  = 66\\% $$,那么甲酒精中纯酒精百分比为$$61\\%  \\times 2 - 66\\%  = 56\\% $$.\n\n甲、乙两种酒精各取$$4$$千克,则混合后的浓度为$$61\\%$$,而这种混合溶液,再混上$$2$$千克的乙酒精就能获得$$62\\%$$的混合溶液,由于混合的质量比是$$8:$$2$$ = 4:1$$,由十字交叉法,乙溶液的浓度为$$62\\%  + \\left( {62\\% - 61\\% } \\right) \\div 1 \\times 4 = 66\\%$$,又因为同样多的甲种酒精溶液和乙种溶液能配成$$61\\%$$的溶液,所以甲溶液浓度为$$61\\%  - \\left( {66\\%  - 61\\% } \\right) \\div 1 \\times 1 = 56\\%$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["浓度问题", "应用题模块", "浓度十字交叉法"]} +{"_id": "ff80808145cb8ada0145cb8eec27002a", "question": "甲、乙两瓶盐水,甲瓶盐水的浓度是乙瓶盐水的$$3$$倍.将$$100$$克甲瓶盐水与$$300$$克乙瓶盐水混合后得到浓度为$$15\\% $$的新盐水,那么甲瓶盐水的浓度是多少?\n ", "answer": "$$30\\%$$.\n ", "Analysis": "设乙瓶盐水的浓度是$$x\\% $$,甲瓶盐水的浓度是$$3x\\% $$,有$$100 \\times 3x\\%  + 300\\times x\\%  = (100 + 300) \\times 15\\% $$,解得$$x = 10$$,即甲瓶盐水的浓度是$$30\\% $$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["浓度问题", "应用题模块", "方程法解浓度问题"]} +{"_id": "ff80808145cb8ada0145cb8f01aa002e", "question": "有甲、乙两个同样的杯子,甲杯中有半杯清水,乙杯中盛满了含$$50\\%$$酒精的液体.先将乙杯的一半倒入甲杯,搅匀后,再将甲杯中酒精溶液的一半倒入乙杯.问这时乙杯中酒精溶液的浓度是多少?\n ", "answer": "$$37.5\\%$$.\n ", "Analysis": "第一次将乙杯的一半倒入甲杯,倒入的溶液的量与甲杯中原有液体的量相等,浓度为$$50\\%$$,所以得到的甲杯中的溶液的浓度为$$50\\%\\div2=25\\%$$;第二次将甲杯中酒精溶液的一半倒入乙杯,倒入的溶液的量与乙杯中剩余液体的量相等,而两种溶液的浓度分别为$$50\\%$$和$$25\\%$$,所以得到的溶液的浓度为$$(25\\%+50\\%)\\div2=37.5\\%$$,即这时乙杯中酒精溶液的浓度是$$37.5\\%$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["浓度问题", "应用题模块", "浓度十字交叉法"]} +{"_id": "ff80808145cc51010145d964f0d00be7", "question": "某工地用$$3$$种型号的卡车运送土方.已知甲、乙、丙三种卡车载重量之比为$$10:7:6$$,速度比为$$6:8:9$$,运送土方的路程之比为$$15:14:14$$,三种车的辆数之比为$$10:5:7$$.工程开始时,乙、丙两种车全部投入运输,但甲种车只有一半投入,直到$$10$$天后,另一半甲种车才投入工作,一共干了$$25$$天完成任务.那么,甲种车完成的工作量与总工作量之比是多少?\n ", "answer": "$$\\frac{32}{79}$$\n ", "Analysis": "由于甲、乙、丙三种卡车运送土方的路程之比为$$15:14:14$$,速度之比为$$6:8:9$$,所以它们运送$$1$$次所需的时间之比为$$\\frac{15}{6}:\\frac{14}{8}:\\frac{14}{9}=\\frac{5}{2}:\\frac{7}{4}:\\frac{14}{9}$$,相同时间内它们运送的次数比为:$$\\frac{2}{5}:\\frac{4}{7}:\\frac{9}{14}$$.在前$$10$$天,甲车只有一半投入使用,因此甲、乙、丙的数量之比为$$5:5:7$$.由于三种卡车载重量之比为$$10:7:6$$,所以三种卡车的总载重量之比为$$50:35:42$$.那么三种卡车在前$$10$$天内的工作量之比为:$$\\left( 50\\times \\frac{2}{5} \\right):\\left( 35\\times \\frac{4}{7}\\right):\\left( 42\\times \\frac{9}{14} \\right)=20:20:27$$.在后$$15$$天,由于甲车全部投入使用,所以在后$$15$$天里的工作量之比为$$40:20:27$$.所以在这$$25$$天内,甲的工作量与总工作量之比为:$$\\frac{20\\times10+40\\times 15}{(20+20+27)\\times 10+(40+20+27)\\times 15}=\\frac{32}{79}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "基本工程问题", "简单工程问题", "工程问题"]} +{"_id": "ff80808145cc51010145d9663e3a0beb", "question": "甲、乙两个工程队修路,最终按工作量分配$$8400$$元工资.按两队原计划的工作效率,乙队应获$$5040$$元.实际上从第$$5$$天开始,甲队的工作效率提高了$$1$$倍,这样甲队最终可比原计划多获得$$960$$元.那么两队原计划完成修路任务要多少天?\n ", "answer": "$$12$$天.\n ", "Analysis": "开始时甲队拿到$$8400-5040=3360$$(元)甲、乙的工资比等于甲、乙的工效比,即为$$3360:5040=2:3$$;甲提高工效后,甲、乙总的工资及工效比为$$(3360+960):(5040-960)=18:17$$.设甲开始时的工效为“$$2$$”,那么乙的工效为“$$3$$”,设甲在提高工效后还需$$x$$天才能完成任务.有$$(2\\times4+4x):(3\\times 4+3x)=18:17$$,化简为$$216+54x=136+68x$$,解得$$x=\\frac{40}{7}$$.工程总量为$$5\\times 4+7\\times \\frac{40}{7}=60$$,所以原计划$$60\\div (2+3)=12$$(天)完成.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "按比分配", "比例应用题"]} +{"_id": "ff80808145cc51010145da4377910d9c", "question": "一段路程分为上坡、平路、下坡三段,各段路程的长度之比是$$2∶3∶5$$,某人骑车走这三段路所用的时间之比是$$6∶5∶4$$.已知他走平路时速度为$$4.5$$千米/时,全程用了$$5$$时.问:全程多少千米?\n ", "answer": "$$25$$千米.\n ", "Analysis": "先求出走平路所用的时间和路程平路所有的时间是$$5 \\times \\frac{5}{{6{ + }5{ + }4}}{ = }\\frac{5}{3}$$(小时)平路的路程是$$4.5 \\times \\frac{5}{3}{ = }7.5$$(千米),总路程是$$7.5 \\div 3 \\times (2 + 3 + 5) = 25$$(千米).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "行程中的比例", "比例解行程问题"]} +{"_id": "ff80808145cc51010145da4488fc0da0", "question": "甲乙两车分别从$$A$$、$$B$$两地同时相向开出,甲车的速度是$$50$$千米/时,乙车的速度是$$40$$千米/时,当甲车驶过$$A$$、$$B$$距离的$$\\frac{1}{3}$$多$$50$$千米时,与乙车相遇.$$A$$、$$B$$两地相距 ___          ___ 千米.\n ", "answer": "$$225$$", "Analysis": "$$AB$$距离的$$\\frac{1}{3}$$多$$50$$千米即是$$AB$$距离的$$\\frac{5}{{4 + 5}} = \\frac{5}{9}$$,所以$$50$$千米的距离相当于全程的$$\\left( {\\frac{5}{9} - \\frac{1}{3}} \\right) = \\frac{2}{9}$$,全程的距离为$$50 \\div \\frac{2}{9} = 225$$(千米).\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "相遇问题", "方程解行程问题", "同时出发相向而行", "两人相遇与追及问题", "比例方程解行程问题"]} +{"_id": "ff80808145cc51010145da44dc960da4", "question": "$$1998$$年夏天长江洪水居高下不,$$8$$月$$22$$日武汉关水位高达$$2932$$米,已知武汉离长江入海口$$1125$$千米,而九江离武汉关$$269$$千米.假设从武汉到入海口的长江江面相同,请计算当天九江的水位是多少米.$$($$取二位小数$$)$$\n", "answer": "当天九江的水位是$$22.31$$米.\n ", "Analysis": "当天九江水位是$$29.32\\times\\frac { 1125-269 }{ 1125 } ≈22.31$$$$($$米$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["量率对应已知单位1", "分数百分数应用题", "分百应用题", "应用题模块", "应用题", "求分率", "已知单位一和对应分率,求部分量", "综合与实践"]} +{"_id": "ff80808145cc51010145da451cec0db0", "question": "甲、乙两车分别从$$A$$、$$B$$两地出发,在$$A$$、$$B$$之间不断往返行驶,已知甲车的速度是乙车的速度的$$\\frac{3}{7}$$,并且甲、乙两车第$$2007$$次相遇(这里特指面对面的相遇)的地点与第$$2008$$次相遇的地点恰好相距$$120$$千米,那么,$$A$$、$$B$$两地之间的距离等于多少千米?\n ", "answer": "$$300$$千米.\n", "Analysis": "甲、乙速度之比是$$3:7$$,所以我们可以设整个路程为$$3+7=10$$份,这样一个全程中甲走$$3$$份,第$$2007$$次相遇时甲总共走了$$3\\times(2007\\times2-1)=12039$$份,第$$2008$$次相遇时甲总共走了$$3\\times(2008\\times2-1)=12045$$份,所以总长为$$120\\div[12045-12040-(12040-12039)]\\times10=300$$千米.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多次相遇和追及", "直线型行程问题", "往返相遇"]} +{"_id": "ff80808145cc51010145da45a2b80dbb", "question": "甲、乙两人同时从$$A$$、$$B$$两地出发,甲每分钟行$$80$$米,乙每分钟行$$60$$米,出发一段时间后,两人在$$C$$处相遇;如果甲出发后在途中某地停留了$$7$$分钟,两人将在$$D$$处相遇,且中点距$$C$$、$$D$$距离相等,则$$A$$、$$B$$两地相距多少米?\n", "answer": "$$1680$$米.\n ", "Analysis": "甲、乙两人速度比为$$80:60$$ =$$ 4:3$$,相遇的时候时间相等,路程比等于速度之比,相遇时甲走了全程的$$\\frac{4}{7}$$,乙走了全程的$$\\frac{3}{7}$$.第二次甲停留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程的$$\\frac{4}{7}$$,甲行了全程的$$\\frac{3}{7}$$.由于甲、乙速度比为$$4 : 3$$,根据时间一定,路程比等于速度之比,所以甲行走期间乙走了$$\\frac{3}{7} \\times \\frac{3}{4}$$,所以甲停留期间乙行了$$\\frac{4}{7} - \\frac{3}{7} \\times \\frac{3}{4} = \\frac{1}{4}$$,所以 $$A$$、$$B$$两地的距离为$$60 \\times 7 \\div \\frac{1}{4} = 1680$$ $$($$米$$)$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "相遇问题", "同时出发相向而行", "两人相遇与追及问题"]} +{"_id": "ff80808145d03a7f0145d0c564410071", "question": "某次数学比赛,分两种方法给分.一种是答对一题给$$5$$分,不答给$$2$$分,答错不给分;另一种是先给$$40$$分,答对一题给$$3$$分,不答不给分,答错扣$$1$$分.某考生按两种判分方法均得$$81$$分,这次比赛共多少道题?\n ", "answer": "共有$$22$$道题.\n ", "Analysis": "设答对$$a$$道题,未答$$b$$道题,答错$$c$$道题,由条件可列方程\n $$\\left\\{ \\begin{align}& 5a+2b=81 \\\\ &40+3a-c=81 \\\\ \\end{align} \\right.$$\n 由$$\\left( 1\\right)$$式知,$$a$$是奇数,且小于$$17$$.$$\\left( 2 \\right)$$式可化简为$$c=3a-41\\cdots \\cdots \\left( 3 \\right)$$\n 由$$\\left( 3 \\right)$$式知,$$a$$大于$$13$$.综合上面的分析,$$a$$是大于$$13$$小于$$17$$的奇数,所以$$a=15$$.\n 再由$$\\left( 1\\right)\\left( 3 \\right)$$式得到$$b=3$$,$$c=4$$.$$a+b+c=15+3+4=22$$,所以共有$$22$$道题.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数二元一次方程组解应用题"]} +{"_id": "ff80808145d03a7f0145d0c5760a0073", "question": "甲、乙两件商品成本共$$600$$元,已知甲商品按$$45\\%$$的利润定价,乙商品按$$40\\%$$的利润定价;后来甲打$$8$$折出售,乙打$$9$$折出售,结果共获利$$110$$元.两件商品中,成本较高的那件商品的成本是多少?\n ", "answer": "成本较高的那件商品的成本是$$460$$元.\n ", "Analysis": "设甲、乙两件商品成本分别为$$x$$元、$$y$$元.\n 根据题意,有方程组:\n $$\\left\\{ \\begin{align}& x+y=600 \\\\ & x(1+45\\%)\\times0.8+y\\times (1+40\\%)\\times 0.9-600=110 \\\\ \\end{align} \\right.$$,解得$$\\left\\{\\begin{align}& x=460 \\\\ & y=140 \\\\ \\end{align} \\right.$$\n 所以成本较高的那件商品的成本是$$460$$元.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数二元一次方程组解应用题"]} +{"_id": "ff80808145d03a7f0145d0c6565a0075", "question": "有两种不同规格的油桶若干个,大的能装$$8$$千克油,小的能装$$5$$千克油,$$44$$千克油恰好装满这些油桶.问:大、小油桶各几个?\n ", "answer": "大油桶有$$3$$个,小油桶有$$4$$个.\n ", "Analysis": "设有大油桶$$x$$个,小油桶$$y$$个.由题意得:\n\n$$8x+5y=44$$\n\n可知$$8x\\leqslant 44$$,所以$$x=0,1,2,3,4,5$$.由于$$x$$、$$y$$必须为整数,所以相应的将$$x$$的所有可能值代入方程,可得$$x=3$$时,$$y=4$$这一组整数解.\n\n所以大油桶有$$3$$个,小油桶有$$4$$个.\n\n小结:这道题在解答时,也可联系数论的知识,注意到能被$$5$$整除的数的特点,便可轻松求解.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "不定方程解应用题", "列方程解应用题"]} +{"_id": "ff80808145deb5870145df865be201ed", "question": "甲、乙二人$$2$$时共可加工$$54$$个零件,甲加工$$3$$时的零件比乙加工$$4$$时的零件还多$$4$$个.问:甲每时加工多少个零件?\n ", "answer": "甲每小时加工$$16$$个零件.\n ", "Analysis": "设甲每小时加工$$x$$个零件,乙每小时加工$$y$$个零件.则根据题目条件有:\n $$\\left\\{ \\begin{align}& 2x+2y=54 \\\\ & 3x-4y=4 \\\\ \\end{align}\\right.$$,解得$$\\left\\{ \\begin{align}& x=16 \\\\ & y=11 \\\\ \\end{align}\\right.$$\n 所以甲每小时加工$$16$$个零件,乙每小时加工$$11$$个零件.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数二元一次方程组解应用题"]} +{"_id": "ff80808145deb5870145df867cd101ef", "question": "$$30$$辆小车和$$3$$辆卡车一次运货$$75$$吨,$$45$$辆小车和$$6$$辆卡车一次运货$$120$$吨.每辆卡车和每辆小车每次各运货多少吨?\n", "answer": "每辆小车每次运货$$2$$吨,每辆卡车每次运货$$5$$吨.\n", "Analysis": "设每辆小车和每辆货车每次各运货$$x$$、$$y$$吨,根据题意可得:\n\n$$\\left\\{ \\begin{align}& 30x+3y=75 \\\\ &45x+6y=120 \\\\ \\end{align} \\right.$$,解得$$\\left\\{\\begin{align}& x=2 \\\\ & y=5 \\\\ \\end{align} \\right.$$\n\n所以,每辆小车每次运货$$2$$吨,每辆卡车每次运货$$5$$吨.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数二元一次方程组解应用题"]} +{"_id": "ff80808145deb5870145df87393201f2", "question": "现有足够多的$$5$$角和$$8$$角的邮票,用来付$$4.7$$元的邮资,问$$8$$角的邮票需要多少张?\n ", "answer": "$$8$$角的邮票需要$$4$$张.\n ", "Analysis": "设$$5$$角和$$8$$角的邮票分别有$$x$$张和$$y$$张,那么就有等量关系:$$5x+8y=47$$.\n 尝试$$y$$的取值,当$$y$$取$$4$$时,$$x$$能取得整数$$3$$,当$$y$$再增大,取大于等于$$6$$的数时,$$x$$没有自然数解.所以$$8$$角的邮票需要$$4$$张.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "不定方程解应用题", "列方程解应用题"]} +{"_id": "ff80808145deb5870145e6dcf0f0164b", "question": "甲城的车站总是以$$20$$分钟的时间间隔向乙城发车,甲乙两城之间既有平路又有上坡和下坡,车辆(包括自行车)上坡和下坡的速度分别是平路上的$$80\\%$$和$$120\\%$$,有一名学生从乙城骑车去甲城,已知该学生平路上的骑车速度是汽车在平路上速度的四分之一,那么这位骑车的学生在平路、上坡、下坡时每隔多少分钟遇到一辆汽车?\n", "answer": "$$16$$;$$\\frac{120}{7}$$;$$\\frac{160}{11}$$.\n", "Analysis": "设汽车与自行车速度关系如下:\n\n\n\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\n
\n\t\t\t速度\n\n\t\t\t平路\n\n\t\t\t上坡\n\n\t\t\t下坡\n
\n\t\t\t汽车\n\n\t\t\t$$20$$\n\n\t\t\t$$16$$\n\n\t\t\t$$24$$\n
\n\t\t\t自行车\n\n\t\t\t$$5$$\n\n\t\t\t$$4$$\n\n\t\t\t$$6$$\n
\n则在三段路上两同向汽车的车距分别为$$20\\times 20=400$$、$$20\\times 16=320$$、$$20\\times 24=480$$.\n\n自行车在三段路上与汽车相遇的时间分别为平路:$$\\frac{400}{20+5}=16$$(分);上坡(自行车上坡、汽车下坡):$$\\frac{480}{4+24}=\\frac{120}{7}$$(分);下坡(自行车下坡、汽车上坡):$$\\frac{320}{6+16}=\\frac{160}{11}$$(分).\n\n当然上面的三个时间均为稳定的同段路的相遇时间,没有考虑例如汽车一段在平路、一段在上坡再和自行车相遇等更复杂的情况.\n\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "相遇问题", "发车问题", "求两车间距", "同时出发相向而行", "两人相遇与追及问题"]} +{"_id": "ff80808145deb5870145e6dd3b41164e", "question": "小丁在捷运站搭一座电扶梯下楼.如果他向下走$$14$$阶,则需时$$30$$秒即可由电扶梯顶到达底部;如果他向下走$$28$$阶,则需时$$18$$秒即可由电扶梯顶到达底部.请问这座电扶梯有几阶?\n ", "answer": "$$49$$阶.\n ", "Analysis": "首先从题中可以看出两种情况下小丁的速度是不相同的,否则两次走过的阶数之比为$$1:2$$,时间之比也应该为$$1:2$$才对.\n 既然小丁的速度有变化,那么应该考虑其中的不变量,也就是电扶梯的速度不变.假设这座电扶梯有$$x$$阶,那么在第一种情况下电扶梯走了$$(x-14)$$阶,第二种情况下电扶梯走了$$(x-28)$$阶,根据电扶梯的速度相同可得$$\\frac{x-14}{30}=\\frac{x-28}{18}$$,解得$$x=49$$.\n 即这座电扶梯有$$49$$阶.\n \n电梯的运行速度是$$(28-14)\\div (30-18)=\\frac{7}{6}$$(阶/秒),因此扶梯有$$14+30\\times \\frac{7}{6}=49$$(阶).\n\n第二种情况比第一种情况每秒多行电扶梯级数的$$\\frac{1}{18}-\\frac{1}{30}=\\frac{1}{45}$$,每秒相差$$\\frac{28}{18}-\\frac{14}{30}=\\frac{49}{45}$$(阶),因此这座电扶梯有$$\\frac{49}{45}\\div \\frac{1}{45}=49$$(阶).\n\n\n假设这座电扶梯有$$x$$阶,那么在第一种情况下电扶梯走了$$(x-14)$$阶,第二种情况下电扶梯走了$$(x-28)$$阶,根据电扶梯的速度相同可得$$\\frac{x-14}{30}=\\frac{x-28}{18}$$,解得$$x=49$$.即这座电扶梯有$$49$$阶.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "扶梯问题", "人速未知的扶梯问题"]} +{"_id": "ff8080814526d2f40145363459083f0d_1", "question": "甲、乙两个学生各从$$0\\sim 9$$这$$10$$个数字中随机挑选了两个数字(可以相同),求:\n\n这两个数字的差不超过$$2$$的概率?\n ", "answer": "$$\\frac{11}{25}$$.\n ", "Analysis": "两个数相同(差为$$0$$)的情况有$$10$$种,\n 两个数差为$$1$$有$$2\\times 9=18$$种,\n 两个数的差为$$2$$的情况有$$2\\times 8=16$$种,\n 所以两个数的差不超过$$2$$的概率有$$\\frac{10+18+16}{10\\times 10}=\\frac{11}{25}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "加乘原理求概率", "逻辑分析", "计数模块", "分类讨论思想", "统计与概率", "概率", "能力", "运算求解", "实践应用"]} +{"_id": "ff8080814526d2f40145363459083f0d_2", "question": "甲、乙两个学生各从$$0\\sim 9$$这$$10$$个数字中随机挑选了两个数字(可以相同),求:\n\n两个数字的差不超过$$6$$的概率?\n", "answer": "$$\\frac{22}{25}$$\n ", "Analysis": "两个数的差为$$7$$的情况有$$2\\times 3$$种.\n 两个数的差为$$8$$的情况有$$2\\times 2=4$$种.\n 两个数的差为$$9$$的情况有$$2$$种.\n 所以两个数字的差超过$$6$$的概率有$$\\frac{6+4+2}{10\\times 10}=\\frac{3}{25}$$.\n 两个数字的差不超过$$6$$的概率有$$1-\\frac{3}{25}=\\frac{22}{25}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "加乘原理求概率", "逻辑分析", "计数模块", "分类讨论思想", "统计与概率", "概率", "能力", "运算求解", "实践应用"]} +{"_id": "ff8080814526d2f401453636674f3f1e_1", "question": "四$$($$二$$)$$班有$$48$$名学生,在一节自习课上,写完语文作业的有$$30$$人,写完数学作业的有$$20$$人,语文数学都没写完的有$$6$$人.\n \n问语文数学都写完的有多少人?\n ", "answer": "$$8$$(人).\n", "Analysis": "由题意,有$$48-6=42$$$$($$人$$)$$至少完成了一科作业,根据包含排除原理,两科作业都完成的学生有:$$30+20-42=8$$$$($$人$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "容斥原理", "逐步调整思想", "转化与化归的思想", "计数模块", "二量容斥", "能力", "运算求解", "对应思想", "实践应用"]} +{"_id": "ff8080814526d2f401453636674f3f1e_2", "question": "四$$($$二$$)$$班有$$48$$名学生,在一节自习课上,写完语文作业的有$$30$$人,写完数学作业的有$$20$$人,语文数学都没写完的有$$6$$人.\n \n只写完语文作业的有多少人?\n ", "answer": "$$22$$(人).\n", "Analysis": "只写完语文作业的人数$$=$$写完语文作业的人数$$-$$语文数学都写完的人数,即$$30-8=22$$$$($$人$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "容斥原理", "逐步调整思想", "转化与化归的思想", "计数模块", "二量容斥", "能力", "运算求解", "对应思想", "实践应用"]} +{"_id": "ff808081454b256501454f5f0e610531_1", "question": "老师在黑板上随机写了$$8$$个数,每个数都是$$1$$、$$2$$、$$4$$中的某一个.学生们每次擦去两个相同的数,并把这两个相同的数的和写在黑板上.如果某位同学在黑板上写出了“$$2048$$”,则过程“成功结束” ,否则老师就再随机写一个数上去($$1$$或$$2$$或$$4$$),以保证黑板上仍有$$8$$个数.学生每次成功写数都会得与此数相同的分数,例如:擦去两个$$2$$,写上$$4$$,得到$$4$$分.如果并没有写出$$2048$$,但已没有相同的数可以同时擦去,则过程“失败结束”.\n \n如果黑板上出现了“$$32$$”,那么此时总分至少是多少分?\n ", "answer": "$$96$$.\n ", "Analysis": "逆推,出现了$$32$$,说明至少出现过$$2$$个$$16$$,进而至少出现过$$4$$个$$8$$;\n 则此时总分至少是$$32+16\\times 2+8\\times 4=96$$(分) ;\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "加乘原理综合", "加乘原理", "逻辑分析", "转化与化归的思想", "计数模块", "运算求解", "数学思想", "学习能力", "实践应用", "知识标签"]} +{"_id": "ff808081454b256501454f5f0e610531_2", "question": "老师在黑板上随机写了$$8$$个数,每个数都是$$1$$、$$2$$、$$4$$中的某一个.学生们每次擦去两个相同的数,并把这两个相同的数的和写在黑板上.如果某位同学在黑板上写出了“$$2048$$”,则过程“成功结束” ,否则老师就再随机写一个数上去($$1$$或$$2$$或$$4$$),以保证黑板上仍有$$8$$个数.学生每次成功写数都会得与此数相同的分数,例如:擦去两个$$2$$,写上$$4$$,得到$$4$$分.如果并没有写出$$2048$$,但已没有相同的数可以同时擦去,则过程“失败结束”.\n \n若一个过程结束后恰好得到了$$18000$$分,能否是一次“成功结束”?为什么?\n ", "answer": "不能.\n ", "Analysis": "同上题,出现了$$2048$$,至少要得如下的分数:\n $$2048+1024\\times 2+512\\times4+256\\times 8+128\\times 16+64\\times 32+32\\times64+16\\times 128+8\\times 256=2048\\times 9=18432$$\n 由于$$18000<18432$$,因此$$18000$$分是不可能成功结束的.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "加乘原理综合", "加乘原理", "逻辑分析", "转化与化归的思想", "计数模块", "运算求解", "数学思想", "学习能力", "实践应用", "知识标签"]} +{"_id": "ff808081454b256501454f5f0e610531_3", "question": "老师在黑板上随机写了$$8$$个数,每个数都是$$1$$、$$2$$、$$4$$���的某一个.学生们每次擦去两个相同的数,并把这两个相同的数的和写在黑板上.如果某位同学在黑板上写出了“$$2048$$”,则过程“成功结束” ,否则老师就再随机写一个数上去($$1$$或$$2$$或$$4$$),以保证黑板上仍有$$8$$个数.学生每次成功写数都会得与此数相同的分数,例如:擦去两个$$2$$,写上$$4$$,得到$$4$$分.如果并没有写出$$2048$$,但已没有相同的数可以同时擦去,则过程“失败结束”.\n \n某一次过程“成功结束”了,并且最后黑板上的数互不相同,那么这个过程的总得分最少是多少分?\n ", "answer": "$$18568$$.\n ", "Analysis": "根据前两问不难发现规律:\n\n出现$$8$$至少得分$$8\\times 1$$分;\n\n出现$$16$$至少得分$$16\\times 2$$分;\n\n出现$$32$$至少得分$$32\\times 3$$分;\n\n$$\\cdots$$\n\n出现$$2048$$至少得分$$2048\\times 9$$分;\n\n成功结束时黑板上有$$7$$个数,要使总得分最少,那么这$$7$$个数应该是:\n\n$$2048$$,$$1$$,$$2$$,$$4$$,$$8$$,$$16$$,$$32$$ ;其中$$2048$$,$$8$$,$$16$$,$$32$$的得分总和至少是:\n\n$$2048\\times 9+8\\times1+16\\times 2+32\\times 3=18568$$(分).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "加乘原理综合", "加乘原理", "逻辑分析", "转化与化归的思想", "计数模块", "运算求解", "数学思想", "学习能力", "实践应用", "知识标签"]} +{"_id": "ff808081454b256501454f5f1bf90535_1", "question": "方程:\n \n解方程:$$\\frac{x+8}{3}=3-\\frac{x-1}{5}$$\n ", "answer": "$$x=1$$ .\n", "Analysis": "两边同时扩$$15$$倍:$$5(x+8)=45-(3x-1)\\Rightarrow 5x+40=48-3x\\Rightarrow x=1$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "逐步调整思想", "转化与化归的思想", "比例应用题", "分数、小数系数方程", "计算模块", "能力", "运算求解", "应用题模块", "对应思想", "方程基础", "一元一次方程", "方程法解比例问题", "实践应用"]} +{"_id": "ff808081454b256501454f5f1bf90535_2", "question": "方程:\n \n列方程解应用题:\n\n五年一班男生和女生的人数比是$$5:4$$,后来又转来$$ 1$$ 名男生和$$ 2$$ 名女生,这时男生和女生的人数比是$$7:6$$,请问:这个班原来共有学生多少人?\n", "answer": "$$36$$.\n ", "Analysis": "设原来的男女生人数分别为$$5x$$人和$$4x$$人;\n 根据题意列方程:$$\\frac{5x+1}{4x+2}=\\frac{7}{6}$$\n $$65x+1)=7(4x+2)$$\n $$30x+6=28x+14$$\n $$2x=8$$\n $$x=4$$\n $$4\\times (5+4)=36$$(人)\n 这个班原来共有$$36$$人.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "逐步调整思想", "转化与化归的思想", "比例应用题", "分数、小数系数方程", "计算模块", "能力", "运算求解", "应用题模块", "对应思想", "方程基础", "一元一次方程", "方程法解比例问题", "实践应用"]} +{"_id": "ff80808145644e1a01456aad38eb08e4_1", "question": "甲、乙、丙三人相约去买糖果.由于甲比较能吃,所以三人相约:乙和丙出相同的钱数,甲出的钱数等于乙与丙的钱数之和.第一天,他们买了$$1$$盒,但由于甲没带够钱,所以乙替甲垫付了$$15$$元,结果乙和丙两人共出了$$75$$元.第二天,甲又单独向丙借了$$50$$元.第三天,三人相约再买$$3$$盒糖果,仍然按照约定的付钱方法.\n \n一盒糖果的价格是多少元?\n ", "answer": "$$120$$\n ", "Analysis": "第一天乙丙实际应出$$75-15=60$$(元),甲应出$$60$$元,共$$120$$元.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "除法的实际应用", "课内知识点", "运算求解", "实践应用", "七大能力", "逻辑分析", "加减法应用", "加减法应用顺口溜", "归一归总问题", "乘除法应用", "除法应用", "知识标签", "整数的简单实际问题", "数的运算的实际应用(应用题)", "减法的实际应用", "数与运算", "应用题模块", "对应思想", "数学思想", "学习能力"]} +{"_id": "ff80808145644e1a01456aad38eb08e4_2", "question": "甲、乙、丙三人相约去买糖果.由于甲比较能吃,所以三人相约:乙和丙出相同的钱数,甲出的钱数等于乙与丙的钱数之和.第一天,他们买了$$1$$盒,但由于甲没带够钱,所以乙替甲垫付了$$15$$元,结果乙和丙两人共出��$$75$$元.第二天,甲又单独向丙借了$$50$$元.第三天,三人相约再买$$3$$盒糖果,仍然按照约定的付钱方法.\n \n第三天买糖果时,如果要想使得他们付完糖果钱后三人互不相欠,甲、乙、丙$$3$$ 人应该各出多少元?\n ", "answer": "$$245$$、$$75$$、$$40$$.\n ", "Analysis": "第三天本来应该甲出$$60\\times 3=180$$(元),乙丙各出$$180\\div2=90$$(元),但甲之前欠乙$$15$$,欠丙$$50$$,所以甲应该多出这些钱,即甲出$$180+15+50=245$$(元),乙出$$90-15=75$$(元),丙出$$90-50=40$$(元).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "除法的实际应用", "课内知识点", "运算求解", "实践应用", "七大能力", "逻辑分析", "加减法应用", "加减法应用顺口溜", "归一归总问题", "乘除法应用", "除法应用", "知识标签", "整数的简单实际问题", "数的运算的实际应用(应用题)", "减法的实际应用", "数与运算", "应用题模块", "对应思想", "数学思想", "学习能力"]} +{"_id": "ff80808145644e1a01456abaf8ac0906_1", "question": "王老师每天早上晨练,他第一天跑步$$1000$$米,散步$$1600$$米,共用$$25$$分钟;第二天跑步$$2000$$米,散步$$800$$米,共用$$20$$分钟.假设王老师跑步的速度和散步的速度均保持不变.求:\n \n王老师跑步的速度?\n ", "answer": "王老师跑步的速度$$200$$米/分钟.\n ", "Analysis": "第二天跑步$$2000$$米,散步$$800$$米,共用$$20$$分钟,\n 那么跑步$$4000$$米,散步$$1600$$米,共用$$40$$分钟,\n 又已知跑步$$1000$$米,散步$$1600$$米,共用$$25$$分钟,\n 所以王老师跑步$$4000-1000=3000($$米$$)$$,用时$$40-25=15($$分钟$$)$$,\n 即王老师跑步的速度为$$3000\\div15=200($$米/分钟$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "课内题型", "直线型行程问题", "课内知识点", "运算求解", "单人简单行程问题", "实践应用", "七大能力", "逻辑分析", "路程=速度×时间", "应用题", "式与方程", "行程模块", "用公式直接求速度", "知识标签", "综合与实践", "数量关系", "行程应用题", "路程速度时间", "用公式直接求时间", "对应思想", "数学思想", "学习能力"]} +{"_id": "ff80808145644e1a01456abaf8ac0906_2", "question": "王老师每天早上晨练,他第一天跑步$$1000$$米,散步$$1600$$米,共用$$25$$分钟;第二天跑步$$2000$$米,散步$$800$$米,共用$$20$$分钟.假设王老师跑步的速度和散步的速度均保持不变.求:\n \n王老师散步$$800$$米所用的时间.\n ", "answer": "王老师散步$$800$$米所用的时间是$$10$$分钟.\n ", "Analysis": "因为王老师跑步$$2000$$米,散步$$800$$米,共用时$$20$$分钟,\n 所以王老师散步$$800$$米,用时$$20 - \\frac{{2000}}{{200}} = 20 - 10 = 10$$(分钟).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "课内题型", "直线型行程问题", "课内知识点", "运算求解", "单人简单行程问题", "实践应用", "七大能力", "逻辑分析", "路程=速度×时间", "应用题", "式与方程", "行程模块", "用公式直接求速度", "知识标签", "综合与实践", "数量关系", "行程应用题", "路程速度时间", "用公式直接求时间", "对应思想", "数学思想", "学习能力"]} +{"_id": "ff80808145933b510145991a1ce7092d_1", "question": "甲、乙两人平时喜欢散步.甲从$$A$$地出发,每走$$5$$分钟就要休息$$2$$分钟,需要$$50$$分钟走到$$B$$地.乙从$$B$$地出发,每走$$4$$分钟就要休息$$1$$分钟,需要$$74$$分钟走到$$A$$地.已知,$$A$$、$$B$$两地的距离是$$3600$$米.\n \n如果甲不休息,走完全程需要多少分钟?\n ", "answer": "$$36$$.\n ", "Analysis": "甲$$7$$分钟一个周期;$$50\\div 7=7\\ldots 1$$,$$5\\times7+1=36$$(分).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "直线型行程问题", "课内知识点", "运算求解", "单人简单行程问题", "实践应用", "七大能力", "相遇问题", "逻辑分析", "逐步调整思想", "路程=速度×时间", "式与方程", "两人相遇与追及问题", "行程模块", "双人简单行程问题", "同时出发相向而行", "知识标签", "数量关系", "路程速度时间", "对应思想", "数学思想", "学习能力"]} +{"_id": "ff80808145933b510145991a1ce7092d_2", "question": "甲、乙两人平时喜欢散步.甲从$$A$$地出发,每走$$5$$分钟就要休息$$2$$分钟,需要$$50$$分钟走到$$B$$地.乙从$$B$$地出发,每走$$4$$分钟就要休息$$1$$分钟,需要$$74$$分钟走到$$A$$地.已知,$$A$$、$$B$$两地的距离是$$3600$$米.\n \n有一天,甲、乙分别从$$A$$、$$B$$两地同时出发,相向而行(各自按先走后休息的方法走),经过$$25$$分钟后,甲、乙还相距多少米?\n ", "answer": "$$500$$.\n ", "Analysis": "甲的速度是$$3600\\div 36=100$$(米/分);\n 乙$$5$$分钟一个周期,$$74\\div 5=14\\cdots 4$$,$$14\\times4+4=60$$(分);\n 速度是$$3600\\div 60=60$$(米/分);\n $$25$$分钟,$$25\\div7=3\\cdots 4$$,甲实际走了$$3\\times 5+4=19$$(分),共$$100\\times19=1900$$(米);\n $$25\\div 5=5$$,乙实际走了$$4\\times5=20$$(分),共$$60\\times 20=1200$$(米);\n 两人相距$$3600-1900-1200=500$$(米).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "直线型行程问题", "课内知识点", "运算求解", "单人简单行程问题", "实践应用", "七大能力", "相遇问题", "逻辑分析", "逐步调整思想", "路程=速度×时间", "式与方程", "两人相遇与追及问题", "行程模块", "双人简单行程问题", "同时出发相向而行", "知识标签", "数量关系", "路程速度时间", "对应思想", "数学思想", "学习能力"]} +{"_id": "ff80808145933b510145991a1ce7092d_3", "question": "甲、乙两人平时喜欢散步.甲从$$A$$地出发,每走$$5$$分钟就要休息$$2$$分钟,需要$$50$$分钟走到$$B$$地.乙从$$B$$地出发,每走$$4$$分钟就要休息$$1$$分钟,需要$$74$$分钟走到$$A$$地.已知,$$A$$、$$B$$两地的距离是$$3600$$米.\n \n接$$(2)$$问,甲、乙继续行走,当两人第一次相遇时,甲从出发开始总共走了多少米?\n ", "answer": "$$2160$$.\n ", "Analysis": "剩余$$500$$米,第$$26$$分钟,甲乙均走,共行$$160$$米;\n 剩余$$340$$米,第$$27$$分钟,只有乙走,共行$$60$$米;\n 剩余$$280$$米,第$$28$$分钟,只有乙走,共行$$60$$米;\n 剩余$$220$$米,第$$29$$分钟,甲乙均走,共行$$160$$米;\n 剩余$$60$$米,第$$30$$分钟,只有甲走,这$$60$$米全部是由甲完成的;\n 甲总计走了$$1900+100+100+60=2160$$(米).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "直线型行程问题", "课内知识点", "运算求解", "单人简单行程问题", "实践应用", "七大能力", "相遇问题", "逻辑分析", "逐步调整思想", "路程=速度×时间", "式与方程", "两人相遇与追及问题", "行程模块", "双人简单行程问题", "同时出发相向而行", "知识标签", "数量关系", "路程速度时间", "对应思想", "数学思想", "学习能力"]} +{"_id": "ff80808145a7d1300145b595b47c15c3_1", "question": "某市有一项工程举行公开招标,有甲、乙、丙三家公司参加竞标.三家公司的竞标条件如下:\n
公司名称 单独完成工程所需天数 每天工资/万元
$$10$$ $$5.6$$
$$15$$ $$3.8$$
$$30$$ $$1.7$$
\n如果想尽快完工,应该选择哪两家公司合作?需要多少天完成?\n ", "answer": "应该选择甲、乙这两家公司合作.需要$$6$$天完成.\n ", "Analysis": "如果要想尽快完工,应该选择效率较高的两家公司.\n 由于甲、乙、丙三家公司单独做时,每天完成的工作量分别为$$\\frac{1}{10}$$、$$\\frac{1}{15}$$、$$\\frac{1}{30}$$,所以应该选择甲、乙这两家公司合作.\n 甲、乙两公司合作,完成工程需要的时间为$$1\\div (\\frac{1}{10}+\\frac{1}{15})=6$$天.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "基本合作问题", "逻辑分析", "合作工程问题", "能力", "运算求解", "应用题模块", "对应思想", "工程问题", "实践应用"]} +{"_id": "ff80808145a7d1300145b595b47c15c3_2", "question": "某市有一项工程举行公开招标,���甲、乙、丙三家公司参加竞标.三家公司的竞标条件如下:\n
公司名称 单独完成工程所需天数 每天工资/万元
$$10$$ $$5.6$$
$$15$$ $$3.8$$
$$30$$ $$1.7$$
\n 如果想尽量降低工资成本,应该选择哪两家公司合作?完工时要付工资多少元?\n ", "answer": "$$547500$$元.\n ", "Analysis": "如果想尽量降低工资成本,应该选择完成全部工程所需总工资较少的两家公司.\n 由于甲、乙、丙三家公司单独完成全部工程所需要的工资成本分别为$$5.6\\times 10=56$$万元、$$3.8\\times 15=57$$万元、$$1.7\\times 30=51$$万元,所以应当选择甲、丙这两家公司合作.\n 甲、丙两公司合作需要$$1\\div(\\frac{1}{10}+\\frac{1}{30})=7.5$$天才能完成工程,完工时要付的工资为:\n $$(5.6+1.7)\\times10000\\times 7.5=547500$$元.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "基本合作问题", "逻辑分析", "合作工程问题", "能力", "运算求解", "应用题模块", "对应思想", "工程问题", "实践应用"]} +{"_id": "ff80808145cc51010145d95ded7b0bdd_1", "question": "一项工程,若请甲工程队单独做需$$4$$个月完成,每月要耗资$$9$$万元;若请乙工程队单独做此项工程需$$6$$个月完成,每月耗资$$5$$万元.\n \n请问甲、乙两工程队合作需几个月完成?耗资多少万元?\n ", "answer": "甲、乙合作$$2.4$$个月所耗资金为$$33.6$$万元.\n ", "Analysis": "甲、乙两工程队每月完成的工程量分别占全部工程的$$\\frac{1}{4}$$、$$\\frac{1}{6}$$,那么甲、乙合作所需时间为:$$1\\div(\\frac{1}{4}+\\frac{1}{6})=2.4$$个月;甲、乙合作$$2.4$$个月所耗资金为:$$(9+5)\\times 2.4=33.6$$$$($$万元$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "基本合作问题", "逻辑分析", "合作工程问题", "能力", "运算求解", "应用题模块", "对应思想", "工程问题", "实践应用"]} +{"_id": "ff80808145cc51010145d95ded7b0bdd_2", "question": "一项工程,若请甲工程队单独做需$$4$$个月完成,每月要耗资$$9$$万元;若请乙工程队单独做此项工程需$$6$$个月完成,每月耗资$$5$$万元.\n \n现要求最迟$$5$$个月完成此项工程即可,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.\n ", "answer": "甲、乙两工程队合作$$\\frac{2}{3}$$个月后,乙工程队再单独做$$\\frac{13}{3}$$个月.\n ", "Analysis": "甲工程队完成全部工作要耗资$$9\\times 4=36$$万元,乙工程队完成全部工作要耗资$$5\\times 6=30$$万元,乙工程队耗资较少,为了节省资金,应尽量请乙工程队来做,但是乙工程队无法单独在五个月内完成工程,所以还需要请甲工程队来帮助完成一部分工程.所以,在五个月内完成的最好方案为:乙工程做$$5$$个月,甲工程队做$$(1-\\frac{5}{6})\\div \\frac{1}{4}=\\frac{2}{3}$$个月,即:甲、乙两工程队合作$$\\frac{2}{3}$$个月后,乙工程队再单独做$$\\frac{13}{3}$$个月.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "基本合作问题", "逻辑分析", "合作工程问题", "能力", "运算求解", "应用题模块", "对应思想", "工程问题", "实践应用"]} +{"_id": "ff80808145deb5c50145e55857f90ae0_1", "question": "某人沿着电车道旁的便道以每小时$$4.5$$千米的速度步行,每$$7.2$$分钟有一辆电车迎面开过,每$$12$$分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:\n \n电车的速度是多少?\n ", "answer": "即电车的速度为每分钟$$300$$米.\n ", "Analysis": "设电车的速度为每分钟$$x$$米.人的速度为每小时$$4.5$$千米,相当于每分钟$$75$$米.根据题意可列方程如下:$$\\left(x+75 \\right)\\times 7.2=\\left( x-75 \\right)\\times 12$$,解得$$x=300$$,即电车的速度为每分钟$$300$$米.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "行程模块", "逻辑分析", "发车问题", "方程解行程问题", "求发车时间间隔", "一元一次方程解行程问题", "能力", "运算求解", "对应思想", "方程思想", "实践应用"]} +{"_id": "ff80808145deb5c50145e55857f90ae0_2", "question": "某人沿着电车道旁的便道以每小时$$4.5$$千米的速度步行,每$$7.2$$分钟有一辆电车迎面开过,每$$12$$分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:\n \n电车之间的时间间隔是多少?\n ", "answer": "$$9$$分钟.\n ", "Analysis": "电车的速度为每分钟$$300$$米,相当于每小时$$18$$千米.相同方向的两辆电车之间的距离为:$$\\left( 300-75 \\right)\\times 12=2700$$$$($$米$$)$$,所以电车之间的时间间隔为:$$2700\\div 300=9$$$$($$分钟$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "行程模块", "逻辑分析", "发车问题", "方程解行程问题", "求发车时间间隔", "一元一次方程解行程问题", "能力", "运算求解", "对应思想", "方程思想", "实践应用"]} +{"_id": "ff80808145deb5c50145e55864110ae4", "question": "设有甲、乙、丙三人,他们步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的$$3$$倍.现甲从$$A$$地去$$B$$地,乙、丙从$$B$$地去$$A$$地,双方同时出发.出发时,甲、乙为步行,丙骑车.途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又重新步行,三人仍按各自原有方向继续前进.问:三人之中谁最先达到自己的目的地?谁最后到达目的地?\n", "answer": "丙最先到,甲最后到.\n ", "Analysis": "由于每人的步行速度和骑车速度都相同,\n 所以,要知道谁先到、谁后到,只要计算一下各人谁骑行最长,谁骑行最短.\n 将整个路程分成$$4$$份,甲、丙最先相遇,丙骑行$$3$$份;甲先步行了$$1$$份,\n 然后骑车与乙相遇,骑行$$2 \\times \\frac{3}{4} = \\frac{3}{2}$$份;\n 乙步行$$1 + (2 - \\frac{3}{2}) = \\frac{3}{2}$$份,骑行$$4 - \\frac{3}{2} = \\frac{5}{2}$$份,\n 可知,丙骑行的最长,甲骑行的最短,所以,丙最先到,甲最后到.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇追及问题", "直线型行程问题", "行程中的比例", "多人相遇与追及问题", "比例解行程问题"]} +{"_id": "ff80808145f521570145f8ddf93802c9", "question": "学校新修建的一条道路上有$$12$$盏路灯,为了节省用电而又不影响正常的照明,可以熄灭其中$$2$$盏灯,但两端的灯不能熄灭,也不能熄灭相邻的$$2$$盏灯,那么熄灯的方法共有多少种?\n ", "answer": "$$36$$.\n ", "Analysis": "要熄灭的是除两端以外的$$2$$盏灯,但不相邻.可以看成有$$10$$盏灯,共有$$9$$个空位,在这$$9$$个空位中找$$2$$个空位的方法数就是熄灭$$2$$盏灯的方法数,那么熄灯的方法数有$$\\text{C}_{9}^{2}=\\frac{9\\times 8}{2\\times 1}=36$$$$($$种$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "组合的基本应用", "组合"]} +{"_id": "ff80808145f521570145f9304e990353", "question": "在某次的考试中,甲、乙、丙三人优秀(互不影响)的概率为$$0.5$$,$$0.4$$,$$0.2$$,考试结束后,最容易出现几个人优秀?\n ", "answer": "$$1$$个人优秀.\n ", "Analysis": "注意他们的优秀率是互不影响的.\n 三人都优秀的概率是$$0.5\\times 0.4\\times 0.2=0.04$$,\n 只有甲乙两人优秀的概率为$$0.5\\times 0.4\\times \\left( 1-0.2 \\right)=0.16$$,(或$$0.5\\times0.4-0.04=0.16$$).\n 只有甲丙二人优秀的概率$$0.5\\times \\left( 1-0.4 \\right)\\times 0.2=0.06$$,\n 只有乙丙二人优秀的概率$$\\left( 1-0.5 \\right)\\times 0.4\\times 0.2=0.04$$,\n 所以有两人优秀的概率为$$0.16+0.06+0.04=0.26$$,\n 甲一人优秀的概率$$0.5\\times \\left( 1-0.4 \\right)\\times \\left( 1-0.2 \\right)=0.24$$,\n 乙一人优秀的概率$$\\left( 1-0.5 \\right)\\times 0.4\\times \\left( 1-0.2 \\right)=0.16$$,\n 丙一人优秀的概率$$\\left( 1-0.5 \\right)\\times \\left( 1-0.4 \\right)\\times 0.2=0.06$$,\n 所以只有一人优秀的概率为$$0.24+0.16+0.06=0.46$$\n 全都���优秀的概率为$$\\left( 1-0.5 \\right)\\left( 1-0.4 \\right)\\left( 1-0.2 \\right)=0.24$$,\n 最容易出现只有一人优秀的情况.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "统计与概率", "概率基本概念", "概率"]} +{"_id": "ff80808145ff6bf40145ffc6d1c300a8", "question": "甲、乙两个容器共有溶液$$2600$$克,从甲容器取出$$\\frac{1}{4}$$的溶液,从乙容器取出$$\\frac{1}{5}$$的溶液,结果两个容器共剩下$$2000$$克.两个容器原来各有多少克溶液?\n", "answer": "甲容器中有溶液$$1600$$克,乙容器中有溶液$$1000$$克.\n", "Analysis": "设甲容器有溶液$$x$$克,乙容器有溶液$$y$$克,根据题目条件有两条等量关系,一是两容器溶液加起来等于$$2600$$克,二是取溶液后两容器加起来有$$2000$$克.由此可列得方程组:\n\n$$\\left\\{ \\begin{align}& x+y=2600 \\\\ & \\left( 1-\\frac{1}{4}\\right)x+\\left( 1-\\frac{1}{5} \\right)y=2000 \\\\ \\end{align} \\right.$$\n\n方程组最终解得$$\\left\\{ \\begin{align}& x=1600 \\\\ & y=1000 \\\\ \\end{align}\\right.$$,所以甲容器中有溶液$$1600$$克,乙容器中有溶液$$1000$$克.\n\n设甲容器有溶液$$x$$克,乙容器有溶液($$2600-x$$)克.\n\n$\\dfrac{1}{4}x+\\dfrac{1}{5}\\left( 2600-x\\right)=2600-2000$\n\n解得$$x=1600$$,\n\n乙容器原来有溶液$$2600-1600=1000$$(克).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "分数系数方程(组)解题"]} +{"_id": "ff80808145ff6bf40145ffc6fc6d00ab", "question": "某公司花了$$44000$$元给办公室中添置了一些计算机和空调,办公室每月用电增加了$$480$$千瓦时,已知,计算机的价格为每台$$5000$$元,空调的价格为$$2000$$元,计算机每小时用电$$0.2$$千瓦时,平均每天使用$$5$$小时,空调每小时用电$$0.8$$千瓦时,平均每天运行$$5$$小时,如果一个月以$$30$$天计,求公司一共添置了多少台计算机,多少台空调?\n ", "answer": "$$8$$台计算机和$$2$$台空调.\n ", "Analysis": "设添置了$$x$$台计算机,$$y$$台空调.\n 则有$$\\left\\{ \\begin{align}& 5000x+2000y=44000\\cdots \\cdots \\cdots\\cdots \\cdots (1) \\\\ & 0.2\\times 5\\times 30x+0.8\\times 5\\times30y=480\\cdots (2) \\\\ \\end{align} \\right.$$\n ⑵式整理得$$x+4y=16$$,则$$x=16-4y$$;\n 代入⑴得$$5000\\left( 16-4y \\right)+2000y=44000$$,解得$$y=2$$,则$$x=8$$,\n 所以公司一共添置了$$8$$台计算机和$$2$$台空调.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数二元一次方程组解应用题"]} +{"_id": "ff80808145ff6bf40145ffc70ee700af", "question": "从甲地到乙地的公路,只有上坡路和下坡路,没有平路.一辆汽车上坡时每小时行驶$$20$$千米,下坡时每小时行驶$$35$$千米.车从甲地开往乙地需$$9$$小时,从乙地到甲地需$$7.5$$小时,问:甲乙两地公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?\n ", "answer": "甲、乙两地间的公路有$$210$$千米,从甲地到乙地须行驶$$140$$千米的上坡路.\n ", "Analysis": "从甲地到乙地的上坡路,就是从乙地到甲地的下坡路;从甲地到乙地下坡路,就是从乙地到甲地的上坡路.设从甲地到乙地的上坡路为$$x$$千米,下坡路为$$y$$千米,依题意得:\n $$\\left\\{\\begin{align}& \\frac{x}{20}+\\frac{y}{35}=9 \\\\ &\\frac{x}{35}+\\frac{y}{20}=7\\frac{1}{2} \\\\ \\end{align} \\right.$$\n 解得$$x=140$$,$$y=70$$,\n 所以甲、乙两地间的公路有$$140+70=210$$千米,从甲地到乙地须行驶$$140$$千米的上坡路.\n 甲、乙两地间的公路有$$210$$千米,从甲地到乙地须行驶$$140$$千米的上坡路.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题"]} +{"_id": "ff80808145ff6bf40145ffc76e2e00b2", "question": "商店有胶鞋、布鞋共$$45$$双,胶鞋每双$$3.5$$元,布鞋每双$$2.4$$元,全部卖出后,胶鞋比布鞋收入多$$10$$元.问:两种鞋各多少双?\n ", "answer": "布鞋有$$20$$双,胶鞋有$$25$$双.\n ", "Analysis": "设布鞋有$$x$$双,胶鞋有$$y$$双.\n $$\\left\\{ \\begin{align}& x+y=45 \\\\ & 3.5x-2.4y=10 \\\\ \\end{align}\\right.$$,解得$$\\left\\{ \\begin{align}& x=20 \\\\ & y=25 \\\\ \\end{align}\\right.$$\n 所以布鞋有$$20$$双,胶鞋有$$25$$双.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数二元一次方程组解应用题"]} +{"_id": "ff80808145ff6bf40145ffc79c8200b5", "question": "实验小学的五年级学生租车去野外开展“走向大自然,热爱大自然”活动,所有的学生和老师共$$306$$人恰好坐满了$$5$$辆大巴车和$$3$$辆中巴车,已知每辆中巴车的载客人数在$$20$$人到$$25$$人之间,求每辆大巴车的载客人数.\n ", "answer": "大巴车的载客人数为$$48$$人.\n ", "Analysis": "设每辆大巴车和中巴车的载客人数分别为$$x$$人和$$y$$人,那么有:$$5x+3y=306$$.由于知道中巴车的载客人数,也就是知道了$$y$$的取值范围,所以应该从$$y$$入手.显然$$3y$$被$$5$$除所得的余数与$$306$$被$$5$$除所得的余数相等,从个位数上来考虑,$$3y$$的个位数字只能为$$1$$或$$6$$,那么当$$y$$的个位数是$$2$$或$$7$$时成立.由于$$y$$的值在$$20$$与$$25$$之间,所以满足条件的$$y=22$$,继而求得$$x=48$$,所以大巴车的载客人数为$$48$$人.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "不定方程解应用题", "列方程解应用题"]} +{"_id": "ff80808145ff6bf40145ffc7c45d00b9", "question": "单位的职工到郊外植树,其中有男职工,也有女职工,并且有$$\\frac{1}{3}$$的职工各带一个孩子参加.男职工每人种$$13$$棵树,女职工每人种$$10$$棵树,每个孩子都种$$6$$棵树,他们一共种了$$216$$棵树,那么其中有多少名男职工?\n ", "answer": "其中有$$12$$名男职工.\n ", "Analysis": "因为有$$\\frac{1}{3}$$的职工各带一个孩子参加,则职工总人数是$$3$$的倍数.设男职工有$$x$$人,女职工有$$y$$人.\n 则职工总人数是$$\\left( x+y \\right)$$人,孩子是$$\\frac{x+y}{3}$$人.得到方程:$$13x+10y+\\left( x+y \\right)\\div 3\\times 6=216$$,化简得:$$5x+4y=72$$.因为男职工与女职工的人数都是整数,所以当$$y=3$$时,$$x=12$$;当$$y=8$$时,$$x=8$$;当$$y=13$$,$$x=4$$.其中只有$$3+12=15$$是$$3$$的倍数,符合题意,所以其中有$$12$$名男职工.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "不定方程解应用题", "列方程解应用题"]} +{"_id": "ff80808145ff6bf401460427b7670776", "question": "小李现有一笔存款,他把每月支出后剩余的钱都存入银行.已知小李每月的收入相同,如果他每月支出$$1000$$元,则一年半后小李有存款$$8000$$元(不计利息);如果他每月支出$$800$$元,则两年后他有存款$$12800$$元(不计利息).小李每月的收入是 ___          ___ 元,他现在存款 ___          ___ 元.\n ", "answer": "$$1000$$\n$$8000$$", "Analysis": "如果小李不支出,则一年半后有存款$$8000+1000\\times18=26000$$元,\n\n两年后有$$12800+800\\times24=32000$$(元).\n\n所以半年存款增加$$32000-26000=6000$$(元),每月增加$$6000\\div6=1000$$(元).\n\n所以小李月收入为$$1000$$(元),原来的存款有$$12800-(1000-800)\\times24=8000$$(元).\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["鸡兔同笼问题", "应用题模块", "假设法解鸡兔同笼", "基本型", "变型题"]} +{"_id": "ff80808145ff6bf401460fbc45451e33", "question": "箱子里装有若干个相同数量的黑球和白球,现往箱子里再放入$$14$$个球(只有黑球和白球),这时黑球数量占球的总数的$$\\frac{1}{6}$$,那么现在箱子里有 ___          ___ 个白球.\n ", "answer": "$$15$$", "Analysis": "由题意知,最终白球数量是黑球数量的$$5$$倍,\n 假设黑球最终总数是$$1$$份,那么白球是$$5$$份,放入的$$14$$个球中白球比黑球要多$$4$$份,\n 显然这$$4$$份必须是整数,故只可能为$$4$$、$$8$$、$$12$$,\n 若为$$4$$或$$8$$,可计算出球的总数不到$$14$$,与题目矛盾,\n 故$$4$$份为$$12$$,白球有$$5$$份即$$15$$个.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "基础份数思想", "比例应用题"]} +{"_id": "ff80808145ff6bf401460fbdccde1e38", "question": "一瓶饮料,一次喝掉一半饮料后,连瓶共重$$700$$克;如果喝掉饮料的$$\\frac{1}{3}$$后,连瓶共重$$800$$克,求瓶子的重量.\n ", "answer": "瓶子的重量为$$400$$克.\n ", "Analysis": "如下用文字等式表示题中的两个已知条件:\n 瓶重$$+$$饮料重的$$(1-\\frac{1}{2})=700$$克,\n 瓶重$$+$$饮料重的$$(1-\\frac{1}{3})=800$$克.\n 比较上面两个等式,可以看出$$800$$克比$$700$$克多的$$100$$克就是饮料的$$(1-\\frac{1}{3})$$比$$(1-\\frac{1}{2})$$多的.找到了量与率的对应,就可以求出饮料重,从而可以求出瓶重.列式为:\n 饮料重:$$(800-700)\\div[(1-\\frac{1}{3})-(1-\\frac{1}{2})]=600$$(克),\n 瓶重:$$700-600\\times\\frac{1}{2}=400$$(克).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["量率对应求单位一", "分数百分数应用题", "量率对应求单位1", "分百应用题", "应用题模块", "应用题", "综合与实践"]} +{"_id": "ff80808145ff6bf401460fbdfe261e3b", "question": "$$1$$只猴子摘了一堆桃子,第一天吃了这堆桃子的$$\\frac{1}{7}$$,第二天吃了余下的$$\\frac{1}{6}$$,第三天吃了余下的$$\\frac{1}{5}$$,第四天吃了余下的$$\\frac{1}{4}$$,第五天吃了余下的$$\\frac{1}{3}$$,第六天吃了余下的$$\\frac{1}{2}$$,这时还剩下$$12$$个桃子,那么第一天和第二天所吃桃子的总数是多少?\n", "answer": "第一天和第二天共吃桃子$$24$$个.\n ", "Analysis": "根据这道题的特点,用逆推法分析解答较好.逆推法就是从问题的结果出发思考,可以这样想,第六天吃了余下的$$\\frac{1}{2}$$,这时还剩下$$12$$个桃子,可以推想$$12$$个对应的就是$$\\left(1-\\frac{1}{2}\\right)$$,于是可以求出第五天吃了余下的$$\\frac{1}{3}$$后,还剩的桃子,以此类推,这样就可以找到问题的解答方法.\n\n列式:$$12\\div \\left(1-\\frac{1}{2}\\right)\\div \\left(1-\\frac{1}{3}\\right)\\div \\left(1-\\frac{1}{4}\\right)\\div\\left(1-\\frac{1}{5}\\right)\\div \\left(1-\\frac{1}{6}\\right)\\div \\left(1-\\frac{1}{7}\\right)$$\n\n$$=12\\div\\frac{1}{2}\\div \\frac{2}{3}\\div \\frac{3}{4}\\div \\frac{4}{5}\\div \\frac{5}{6}\\div\\frac{6}{7}=84$$(个)————总数\n\n$$84\\times\\frac{1}{7}=12$$(个)————第一天吃的\n\n$$84\\times\\left(1-\\frac{1}{7}\\right)\\times \\frac{1}{6}=12$$(个)——————第二天吃的\n\n$$12+12=24$$(个)\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["量率对应求单位一", "分数百分数应用题", "量率对应求单位1", "分百应用题", "应用题模块", "应用题", "综合与实践"]} +{"_id": "ff80808145ff6bf40146105e68411ea2", "question": "假设地球上新生成的资源增长速度是一定的,照此计算,地球上的资源可供$$110$$亿人生活$$90$$年;或供$$90$$亿人生活$$210$$年.为了使人类能够不断繁衍,地球上最多能养活多少人?\n ", "answer": "$$75$$亿人.\n ", "Analysis": "$$(90\\times 210 - 110 \\times 90) \\div (210 - 90) = 75$$亿人.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "多块草地的牛吃草", "牛吃草问题", "牛吃草转化型"]} +{"_id": "ff808081454eca7001456a1cc7ca23a5_1", "question": "计算:\n \n$$1234+5\\times (67+89)$$\n ", "answer": "$$2014$$.\n ", "Analysis": "原式$$=1234+5\\times 156=1234+780=2014$$ .\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "整数", "课内知识点", "整数乘法巧算之提取公因数(普通型)", "运算求解", "四则混合运算", "七大能力", "逐步调整思想", "转化与化归的思想", "乘法运算律", "整数提取公因数", "整数四则混合运算", "知识标签", "混合运算", "计算模块", "数与运算", "运算律", "对应思想", "提取公因数", "数学思想", "学习能力"]} +{"_id": "ff808081454eca7001456a1cc7ca23a5_2", "question": "计算:\n \n$$47\\times 43+79\\times 53+36\\times 47$$\n ", "answer": "$$7900$$.\n ", "Analysis": "原式$$=47\\times (43+36)+79\\times 53=(47+53)\\times 79=7900$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "整数", "课内知识点", "整数乘法巧算之提取公因数(普通型)", "运算求解", "四则混合运算", "七大能力", "逐步调整思想", "转化与化归的思��", "乘法运算律", "整数提取公因数", "整数四则混合运算", "知识标签", "混合运算", "计算模块", "数与运算", "运算律", "对应思想", "提取公因数", "数学思想", "学习能力"]} +{"_id": "ff80808149990d5e01499cd5f0190445_1", "question": "请回答下列问题:\n \n是否能将$$1$$~$$8$$排成一个圈,使得相邻两个数字的和都是一位数?如果能,请写出一种,如果不能,请说明理由.\n ", "answer": "不能.\n ", "Analysis": "不能,因为$$8$$要和两个数相邻,而$$8$$只有和$$1$$相邻才能得出一位数的和.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "课内知识点", "排列组合", "组合模块", "七大能力", "游戏策略", "有特殊要求的组数问题", "逐步调整思想", "抽象概括", "数字游戏", "计数模块", "排列数", "加乘原理", "数学广角", "知识标签", "对应思想", "操作与策略", "数学思想", "学习能力", "组数问题"]} +{"_id": "ff80808149990d5e01499cd5f0190445_2", "question": "请回答下列问题:\n \n请将$$1$$~$$8$$从左到右排成一行,使得相邻两个数字的和都是一位数.写出$$1$$种即可.\n ", "answer": "$$81634527$$\n ", "Analysis": "所有情况如下:\n $$81634527$$   $$81635427$$   $$81453627$$   $$81543627$$\n $$72634518$$   $$72635418$$   $$72453618$$   $$72543618$$\n $$81726345$$   $$81726354$$   $$81724536$$   $$81725436$$\n $$63452718$$   $$63542718$$   $$45362718$$   $$54362718$$\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "课内知识点", "排列组合", "组合模块", "七大能力", "游戏策略", "有特殊要求的组数问题", "逐步调整思想", "抽象概括", "数字游戏", "计数模块", "排列数", "加乘原理", "数学广角", "知识标签", "对应思想", "操作与策略", "数学思想", "学习能力", "组数问题"]} +{"_id": "ff80808149990d5e01499cd5f0190445_3", "question": "请回答下列问题:\n \n第$$2$$问中,将$$1$$~$$8$$从左到右排成一行,相邻两数字之和都是一位数,那么共有多少种不同的排法?\n ", "answer": "$$16$$.\n ", "Analysis": "$$81$$一定在一侧,即$$81$$或$$18$$(左右可颠倒,$$2$$种情况),剩余的$$6$$个格中,$$7$$与之相对,一定在另一侧的最左或最右,或者与$$2$$相邻,$$2$$种情况,剩余的$$4$$个格中,$$6$$一定在最左或最右,且只能与$$3$$相邻,$$2$$种情况,最后$$4$$和$$5$$随意排,$$2$$种情况,共$$2\\times 2\\times 2\\times 2=16$$种.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "课内知识点", "排列组合", "组合模块", "七大能力", "游戏策略", "有特殊要求的组数问题", "逐步调整思想", "抽象概括", "数字游戏", "计数模块", "排列数", "加乘原理", "数学广角", "知识标签", "对应思想", "操作与策略", "数学思想", "学习能力", "组数问题"]} +{"_id": "ff8080814a19e782014a388558523263_1", "question": "哪个数的平方等于$$4$$呢?大家一定会认为是$$2$$.然而事实上,$$-2$$的平方也等于$$4$$.于是,$$2$$和$$-2$$就都叫做$$4$$的平方根.更一般地,所有正实数都有一正一负两个平方根,其中正平方根又叫做算术平方根.我们把求解算术平方根的过程叫做开方.更进一步,我们有开方符号来表示这一过程:$$\\sqrt{x}$$表示平方以后等于$$x$$的非负数,即$$x$$的算术平方根.\n\n从而我们有$$\\sqrt{9}=3$$,$$\\sqrt{\\frac{1}{4}}=\\frac{1}{2}$$.\n\n$$\\sqrt{8}\\times \\sqrt{18}=\\sqrt{8\\times 18}=\\sqrt{144}=12$$,\n\n$$\\sqrt{80}=\\sqrt{16\\times 5}=\\sqrt{16}\\times\\sqrt{5}=4\\times \\sqrt{5}=4\\sqrt{5}$$.\n\n根据以上材料回答下列问题:\n\n判断下列各题对错(对的答√,错的答×)\n", "answer": "F\nT\nF\nT", "Analysis": "$$A$$)错的,$$a=5$$或$$-5$$;$$C$$)错的,$${{3}^{1006}}$$;\n ", "options": "1:$${{a}^{2}}=25$$,那么$$a$$只能等于$$5$$.(   )\n\n2:$$\\sqrt{a}\\times \\sqrt{b}=\\sqrt{ab}$$.(   )\n\n3:$$\\underbrace{\\sqrt{3}\\times \\sqrt{3}\\times\\cdots \\times \\sqrt{3}}_{2012个\\sqrt{3}}={{3}^{2012}}$$.(   )\n\n4:$$x>0$$,$$\\sqrt{25{{x}^{2}}}=5x$$.(   )\n", "logicQuesTypeName": "判断", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "逻辑分析", "转化与化归的思想", "计算模块", "观察规律型", "定义新运算", "运算求解", "数学思想", "学习能力", "知识标签", "���规律型定义新运算"]} +{"_id": "ff8080814a19e782014a388558523263_2", "question": "哪个数的平方等于$$4$$呢?大家一定会认为是$$2$$.然而事实上,$$-2$$的平方也等于$$4$$.于是,$$2$$和$$-2$$就都叫做$$4$$的平方根.更一般地,所有正实数都有一正一负两个平方根,其中正平方根又叫做算术平方根.我们把求解算术平方根的过程叫做开方.更进一步,我们有开方符号来表示这一过程:$$\\sqrt{x}$$表示平方以后等于$$x$$的非负数,即$$x$$的算术平方根.\n\n从而我们有$$\\sqrt{9}=3$$,$$\\sqrt{\\frac{1}{4}}=\\frac{1}{2}$$.\n\n$$\\sqrt{8}\\times \\sqrt{18}=\\sqrt{8\\times 18}=\\sqrt{144}=12$$,\n\n$$\\sqrt{80}=\\sqrt{16\\times 5}=\\sqrt{16}\\times\\sqrt{5}=4\\times \\sqrt{5}=4\\sqrt{5}$$.\n\n根据以上材料回答下列问题:\n\n$$\\sqrt{\\frac{36}{49}}=$$ ___          ___ .\n ", "answer": "$$\\frac{6}{7}$$", "Analysis": "$$\\sqrt{\\frac{36}{49}}=\\frac{6}{7}$$.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "逻辑分析", "转化与化归的思想", "计算模块", "观察规律型", "定义新运算", "运算求解", "数学思想", "学习能力", "知识标签", "找规律型定义新运算"]} +{"_id": "ff8080814a19e782014a388558523263_3", "question": "哪个数的平方等于$$4$$呢?大家一定会认为是$$2$$.然而事实上,$$-2$$的平方也等于$$4$$.于是,$$2$$和$$-2$$就都叫做$$4$$的平方根.更一般地,所有正实数都有一正一负两个平方根,其中正平方根又叫做算术平方根.我们把求解算术平方根的过程叫做开方.更进一步,我们有开方符号来表示这一过程:$$\\sqrt{x}$$表示平方以后等于$$x$$的非负数,即$$x$$的算术平方根.\n\n从而我们有$$\\sqrt{9}=3$$,$$\\sqrt{\\frac{1}{4}}=\\frac{1}{2}$$.\n\n$$\\sqrt{8}\\times \\sqrt{18}=\\sqrt{8\\times 18}=\\sqrt{144}=12$$,\n\n$$\\sqrt{80}=\\sqrt{16\\times 5}=\\sqrt{16}\\times\\sqrt{5}=4\\times \\sqrt{5}=4\\sqrt{5}$$.\n\n根据以上材料回答下列问题:\n\n$$\\sqrt{12}\\times \\sqrt{75}=$$ ___          ___ .\n ", "answer": "$$30$$", "Analysis": "$$\\sqrt{12}\\times \\sqrt{75}=\\sqrt{12\\times 75}=\\sqrt{900}=30$$.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "逻辑分析", "转化与化归的思想", "计算模块", "观察规律型", "定义新运算", "运算求解", "数学思想", "学习能力", "知识标签", "找规律型定义新运算"]} +{"_id": "ff8080814a19e782014a388558523263_4", "question": "哪个数的平方等于$$4$$呢?大家一定会认为是$$2$$.然而事实上,$$-2$$的平方也等于$$4$$.于是,$$2$$和$$-2$$就都叫做$$4$$的平方根.更一般地,所有正实数都有一正一负两个平方根,其中正平方根又叫做算术平方根.我们把求解算术平方根的过程叫做开方.更进一步,我们有开方符号来表示这一过程:$$\\sqrt{x}$$表示平方以后等于$$x$$的非负数,即$$x$$的算术平方根.\n\n从而我们有$$\\sqrt{9}=3$$,$$\\sqrt{\\frac{1}{4}}=\\frac{1}{2}$$.\n\n$$\\sqrt{8}\\times \\sqrt{18}=\\sqrt{8\\times 18}=\\sqrt{144}=12$$,\n\n$$\\sqrt{80}=\\sqrt{16\\times 5}=\\sqrt{16}\\times\\sqrt{5}=4\\times \\sqrt{5}=4\\sqrt{5}$$.\n\n根据以上材料回答下列问题:\n\n$$5\\sqrt{2}$$是 ___          ___ 的算术平方根.\n ", "answer": "$$50$$", "Analysis": "$$5\\sqrt{2}=\\sqrt{25}\\times \\sqrt{2}=\\sqrt{25\\times 2}=\\sqrt{50}$$.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "逻辑分析", "转化与化归的思想", "计算模块", "观察规律型", "定义新运算", "运算求解", "数学思想", "学习能力", "知识标签", "找规律型定义新运算"]} +{"_id": "ff8080814a19e782014a388558523263_5", "question": "哪个数的平方等于$$4$$呢?大家一定会认为是$$2$$.然而事实上,$$-2$$的平方也等于$$4$$.于是,$$2$$和$$-2$$就都叫做$$4$$的平方根.更一般地,所有正实数都有一正一负两个平方根,其中正平方根又叫做算术平方根.我们把求解算术平方根的过程叫做开方.更进一步,我们有开方符号来表示这一过程:$$\\sqrt{x}$$表示平方以后等于$$x$$的非负数,即$$x$$的算术平方根.\n\n从而我们有$$\\sqrt{9}=3$$,$$\\sqrt{\\frac{1}{4}}=\\frac{1}{2}$$.\n\n$$\\sqrt{8}\\times \\sqrt{18}=\\sqrt{8\\times 18}=\\sqrt{144}=12$$,\n\n$$\\sqrt{80}=\\sqrt{16\\times 5}=\\sqrt{16}\\times\\sqrt{5}=4\\times \\sqrt{5}=4\\sqrt{5}$$.\n\n根据以上材料回答���列问题:\n\n已知$${{(\\sqrt{2x-1})}^{2}}=5x-3$$,则$$x=$$ ___          ___ .\n ", "answer": "$$\\frac{2}{3}$$", "Analysis": "$${{(\\sqrt{2x-1})}^{2}}=2x-1$$,所以方程变为$$2x-1=5x-3$$,解得$$x=\\frac{2}{3}$$.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "逻辑分析", "转化与化归的思想", "计算模块", "观察规律型", "定义新运算", "运算求解", "数学思想", "学习能力", "知识标签", "找规律型定义新运算"]} +{"_id": "ff8080814518d52401451924e34704d7_1", "question": "小张和小王各以一定速度,在周长为$$500$$米的环形跑道上跑步.小王的速度是$$200$$米/分.\n\n小张和小王同时从同一地点出发,反向跑步,$$1$$分钟后两人第一次相遇,小张的速度是多少米/分?\n ", "answer": "$$300$$米/分.\n ", "Analysis": "两人相遇,也就是合起来跑了一个周长的行程.小张的速度是$$500 \\div 1 - 200 = 300$$(米/分).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "行程模块", "逻辑分析", "环形跑道", "环形跑道中的追及", "能力", "运算求解", "对应思想", "环形相遇同时同地出发", "实践应用", "环形追及同时同地出发", "环形跑道中的相遇"]} +{"_id": "ff8080814518d52401451924e34704d7_2", "question": "小张和小王各以一定速度,在周长为$$500$$米的环形跑道上跑步.小王的速度是$$200$$米/分.\n\n小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?\n ", "answer": "$$3$$圈.\n ", "Analysis": "在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是:$$500 \\div (300 - 200) = 5$$(分).$$300 \\times 5 \\div 500 = 3$$(圈).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "行程模块", "逻辑分析", "环形跑道", "环形跑道中的追及", "能力", "运算求解", "对应思想", "环形相遇同时同地出发", "实践应用", "环形追及同时同地出发", "环形跑道中的相遇"]} +{"_id": "ff8080814613dae9014621b74d620c93", "question": "有$$1996$$个棋子,两人轮流取棋子,每次轮流取其中的$$2$$个、$$4$$个或$$6$$个,谁最后取完棋子,就算获胜.那么先取的人为保证获胜,第一次应取几个棋子?\n ", "answer": "$$4$$ .\n", "Analysis": "先取的人先取$$4$$个棋子.然后无论后取的人取多少根,先取的人只需保证自己取的根数与其上次取的根数和为$$8$$就可胜.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["游戏策略", "抢占制胜点", "操作与策略", "组合模块", "棋盘类"]} +{"_id": "ff8080814613dd5801461efe9d3c0bf4_1", "question": "某射手在百步之外射箭恰好射到靶心的概率为$40\\%$,如果该射手在百步之外连射三箭,\n \n三箭全部射中靶心的概率为多少?\n ", "answer": "$$0.064$$\n ", "Analysis": "全部射中靶心的概率为$$0.4\\times 0.4\\times 0.4=0.064$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "逻辑分析", "基本概率", "计数模块", "统计与概率", "分类讨论思想", "概率", "能力", "运算求解", "可能性", "对应思想", "实践应用"]} +{"_id": "ff8080814613dd5801461efe9d3c0bf4_2", "question": "某射手在百步之外射箭恰好射到靶心的概率为$40\\%$,如果该射手在百步之外连射三箭,\n \n有一箭射中靶心的概率为多少?\n ", "answer": "$$0.432$$\n ", "Analysis": "第一箭射中,其他两箭射空的概率为$$0.4\\times \\left( 1-0.4 \\right)\\times \\left( 1-0.4 \\right)=0.144$$.\n 第二箭射中,其他两箭射空的概率为$$0.4\\times \\left( 1-0.4 \\right)\\times \\left( 1-0.4 \\right)=0.144$$.\n 第三箭射中,其他两箭射空的概率为$$0.4\\times \\left( 1-0.4 \\right)\\times \\left( 1-0.4 \\right)=0.144$$.\n 有一箭射中的概率为$$0.144+0.144+0.144=0.432$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "逻辑分析", "基本概率", "计数模块", "统计与概率", "分类讨论思想", "概率", "能力", "运算求解", "可���性", "对应思想", "实践应用"]} +{"_id": "ff8080814613dd5801461efe9d3c0bf4_3", "question": "某射手在百步之外射箭恰好射到靶心的概率为$40\\%$,如果该射手在百步之外连射三箭,\n \n有两箭射中靶心的概率为多少?\n ", "answer": "$$0.288$$.\n ", "Analysis": "第一箭射空,其他两箭射中的概率为$$\\left( 1-0.4 \\right)\\times 0.4\\times 0.4=0.096$$.\n 第二箭射空,其他两箭射中的概率为$$\\left( 1-0.4 \\right)\\times 0.4\\times 0.4=0.096$$.\n 第三箭射空,其他两箭射中的概率为$$\\left( 1-0.4 \\right)\\times 0.4\\times 0.4=0.096$$.\n 有两箭射空的概率为$$0.96+0.96+0.96=0.288$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "逻辑分析", "基本概率", "计数模块", "统计与概率", "分类讨论思想", "概率", "能力", "运算求解", "可能性", "对应思想", "实践应用"]} +{"_id": "ff8080814613dd5801461eff0efe0bfb", "question": "$$A$$、$$B$$、$$C$$、$$D$$、$$E$$、$$F$$六人抽签推选代表,公证人一共制作了六枚外表一模一样的签,其中只有一枚刻着“中”,六人按照字母顺序先后抽取签,如果例题中每个人抽完都放回,任意一个人如果抽中,则后边的人不再抽取,那么每个人抽中的概率为多少?\n ", "answer": "抽中的概率依次为:$$\\frac{1}{6}$$、$$\\frac{5}{6}\\times \\frac{1}{6}$$、$$\\frac{5}{6}\\times\\frac{1}{6}\\times \\frac{1}{6}$$、$$\\frac{5}{6}\\times \\frac{1}{6}\\times \\frac{1}{6}\\times \\frac{1}{6}$$、$$\\frac{5}{6}\\times\\frac{1}{6}\\times \\frac{1}{6}\\times \\frac{1}{6}\\times \\frac{1}{6}$$、$$\\frac{5}{6}\\times\\frac{1}{6}\\times \\frac{1}{6}\\times \\frac{1}{6}\\times \\frac{1}{6}\\times\\frac{1}{6}$$,在这种情况下先抽者,抽中的概率大.\n ", "Analysis": "抽中的概率依次为:$$\\frac{1}{6}$$、$$\\frac{5}{6}\\times \\frac{1}{6}$$、$$\\frac{5}{6}\\times\\frac{1}{6}\\times \\frac{1}{6}$$、$$\\frac{5}{6}\\times \\frac{1}{6}\\times \\frac{1}{6}\\times \\frac{1}{6}$$、$$\\frac{5}{6}\\times\\frac{1}{6}\\times \\frac{1}{6}\\times \\frac{1}{6}\\times \\frac{1}{6}$$、$$\\frac{5}{6}\\times\\frac{1}{6}\\times \\frac{1}{6}\\times \\frac{1}{6}\\times \\frac{1}{6}\\times\\frac{1}{6}$$,在这种情况下先抽者,抽中的概率大.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "统计与概率", "概率基本概念", "概率"]} +{"_id": "ff80808146233fe101462753d705040b", "question": "在环形跑道上,两人在一处背靠背站好,然后开始跑,每隔$$4$$分钟相遇一次;如果两人从同处同向同时跑,每隔$$20$$分钟相遇一次,已知环形跑道的长度是$$1600$$米,那么两人的速度分别是多少?\n ", "answer": "$$240$$米/分,$$160$$米/分\n", "Analysis": "两人反向沿环形跑道跑步时,每隔$$4$$分钟相遇一次,即两人$$4$$分钟共跑完一圈;当两人同向跑步时,每$$20$$分钟相遇一次,即其中的一人比另一人多跑一圈需要$$20$$分钟.两人速度和为:$$1600 \\div 4 = 400$$(米/分),两人速度差为:$$1600 \\div 20 = 80$$(米/分),所以两人速度分别为:$$\\left( 400 + 80 \\right)\\div 2 = 240$$(米/分),$$400 - 240 = 160$$(米/分).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "环形跑道", "相遇与追及结合"]} +{"_id": "ff80808146233fe101462754346f0410", "question": "某人在$$360$$米的环形跑道上跑了一圈,已知他前一半时间每秒跑$$5$$米,后一半时间每秒跑$$4$$米,则他后一半路程跑了多少秒?\n ", "answer": "$$44$$(秒) .\n", "Analysis": "设总时间为$$x$$,则前一半的时间为$$\\frac{1}{2}x$$,后一半时间同样为$$\\frac{1}{2}x$$\n\n$$\\frac{1}{2}x \\times 5 + \\frac{1}{2}x \\times 4 = 360$$\n\n$$x = 80$$\n\n总共跑了$$80$$秒\n\n前$$40$$秒每秒跑$$5$$米,跑了$$200$$米\n\n后$$40$$秒每秒跑$$4$$米,跑了$$160$$米\n\n后一半的路程为$$360\\div 2=180$$(米)\n\n后一半的路程用的时间为$$(200-180)\\div 5+40=44$$(秒).\n\n设一半的时间为$$t$$秒,则可列方程$$5t+4t=360$$,解得$$t=40$$,即后一半时间跑了$$40\\times 4=160$$米,后一半路程为$$360\\div 2=180$$(米),则后一半路程跑的时间为$$\\left( 180-160 \\right)\\div 5+40=44$$(秒).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["方程法解其他问题", "应用题模块", "列方程解应用题", "一元一次方��解应用题"]} +{"_id": "ff80808146233fe1014627551a2a041b", "question": "两人在环形跑道上跑步 ,两人从同一地点出发,小明每秒跑$$3$$米,小雅每秒跑$$4$$米,反向而行,$$45$$秒后两人相遇.如果同向而行,多少秒后小雅追上小明?\n", "answer": "$$315$$秒\n ", "Analysis": "$$(4+3)\\times45=315$$米——环形跑道的长(相遇问题求解)\n $$315\\div(4-3)=315$$秒——(追及问题求解)\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "环形跑道", "相遇与追及结合"]} +{"_id": "ff8080814623402701462cc71b150c64", "question": "把$$7$$支完全相同的铅笔分给甲、乙、丙$$3 $$个人,每人至少$$1$$支,问有多少种方法?\n ", "answer": "$$15$$\n ", "Analysis": "将铅笔排成一排,用两块挡板将这一排铅笔隔开成三份,然后分与甲、乙、丙,挡板可插入的位置一共有$$7-1=6$$个,$$6$$个位置中安插两个不分次序的挡板一共有$$6\\times 5\\div 2=15$$种方法.处理分东西的问题用隔板(挡板)法可以顺利解决.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["至少1个", "计数模块", "插板法", "组合", "排列组合"]} +{"_id": "ff8080814623402701462cc736330c6d", "question": "某小组有$$12$$个同学,其中男少先队员有$$3$$人,女少先队员有$$4$$人,全组同学站成一排,要求女少先队员都排一起,而男少先队员不排在一起,这样的排法有多少种?\n ", "answer": "$$3628800$$\n ", "Analysis": "把$$4$$个女少先队员看成一个整体,将这个整体与不是少先队员的$$5$$名同学一块儿进行排列,有$$\\text{A}_{6}^{6}=6\\times 5\\times 4\\times 3\\times 2\\times 1=720$$(种)排法.然后在七个空档中排列$$3$$个男少先队员,有$$\\text{A}_{7}^{3}=7\\times6$$ $$\\times 5=210$$(种)排法,最后$$4$$个女少先队员内部进行排列,有$$\\text{A}_{4}^{4}=4\\times 3\\times 2\\times 1=24$$(种)排法.由乘法原理,这样的排法一共有$$720\\times 210\\times 24=3628800$$(种).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "排列", "插空法"]} +{"_id": "ff8080814623402701462cc8287b0cdb", "question": "从$$1$$到$$2004$$这$$2004$$个正整数中,共有几个数与四位数$$8866$$相加时,至少发生一次进位?\n ", "answer": "$$1941$$\n ", "Analysis": "千位数小于等于$$1$$,百位数小于等于$$1$$,十位数小于等于$$3$$,个位数小于等于$$3$$,应该有$$2\\times 2\\times 4\\times 4-1=63$$种可以不进位,那么其他$$2004-63=1941$$个数都至少产生一次进位.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组数问题", "计数模块", "有特殊要求的组数问题", "加乘原理"]} +{"_id": "ff8080814623402701462cc9ce4b0d68", "question": "三所学校组织一次联欢晚会,共演出$$14$$个节目,如果每校至少演出$$3$$个节目,那么这三所学校演出节目数的不同情况共有多少种?\n ", "answer": "$$21$$\n ", "Analysis": "由于每校至少演出$$3$$个节目,所以可以由每所学校先分别出$$2$$个节目,剩下的$$8$$个节目再由$$3$$所学校分,也就是在$$8$$个物体间插入$$2$$个挡板,$$8$$个物体一共有$$7$$个间隔,这样的话一共有$$7\\times 6\\div 2\\times 1=21$$种方法.\n \n插板法,先给每校$$2$$个节目,还有$$8$$个节目,再满足每校至少演出$$1$$个节目,$$7$$个空插$$2$$个板,有$$C_{7}^{2}=21$$种方法.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["至少多个", "计数模块", "插板法", "组合", "排列组合"]} +{"_id": "ff8080814623402701462ccaf1f40d72", "question": "由$$4$$个不同的独唱节目和$$3$$个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?\n ", "answer": "$$432$$\n ", "Analysis": "先排独唱节目,四个节目随意排,是$$4$$个元素全排列的问题,有$$A_{4}^{4}=4\\times 3\\times 2\\times 1=24$$种排法;其次在独唱节目的首尾排合唱节目,有三个节目,两个位置,也就是从三个节目选两个进行排列的问题,有$$A_{3}^{2}=3\\times 2=6$$(种)排法;再在独唱节目之间的$$3$$个位置中排一个合唱节目,有$$3$$种排法.由乘���原理,一共有$$24\\times6\\times 3=432$$(种)不同的编排方法.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "排列的基本应用", "排列"]} +{"_id": "ff8080814623402701462cdaa9990e46", "question": "$$a,b,c,d,e$$五个人排成一排,$$a$$与$$b$$不相邻,共有多少种不同的排法?\n ", "answer": "$$72$$\n ", "Analysis": "解法一:插空法,先排$$c$$,$$d$$,$$e$$,有$$3\\times 2\\times 1=6$$种排法.\n\n在$$c$$,$$d$$,$$e$$三个人之间有$$2$$个空,再加上两端,共有$$4$$个空,$$a$$,$$b$$排在这$$4$$个空的位置上,$$a$$与$$b$$就不相邻,有$$4\\times 3=12$$种排法.根据分步计数乘法原理,不同的排法共有$$6\\times 12=72$$(种).\n\n解法二:排除法,把$$a$$,$$b$$当作一个人和其他三个人在一起排列,再考虑$$a$$与$$b$$本身的顺序,有$$\\text{A}_{4}^{4}\\text{A}_{2}^{2}$$ 种排法.总的排法为$$\\text{A}_{5}^{5}$$.总的排法减去$$a$$与$$b$$相邻的排法即为$$a$$与$$b$$不相邻的排法,应为$$\\text{A}_{5}^{5}-\\text{A}_{4}^{4}\\text{A}_{2}^{2}=72$$(种).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["排队问题", "计数模块", "加乘原理"]} +{"_id": "ff8080814623402701462cdb7df00e4a", "question": "$$6$$名小朋友$$ABCDEF$$站成一排,若$$A、B$$两人必须相邻,一共有多少种不同的站法?若$$AB$$两人不能相邻,一共有多少种不同的站法?\n ", "answer": "$$240$$   $$480$$\n", "Analysis": "若$$A、B$$两人必须站在一起,那么可以用“捆绑”的思想考虑,甲和乙两个人占据一个位置,但在这个位置上,可以甲在左乙在右,也可以甲在右乙在左.因此站法总数为$$\\text{A}_{2}^{2}\\times \\text{A}_{5}^{5}=2\\times 120=240$$(种).\n\n$$A、B$$两个人不能相邻与$$A、B$$两个人必须相邻是互补的事件,因为不加任何条件的站法总数为$$\\text{A}_{6}^{6}=720$$,所以$$A、B$$两个人不能相邻的站法总数为$$720-240=480$$(种).\n\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "排列综合", "排列"]} +{"_id": "ff808081462cb44401462ce0c5010068", "question": "求与$$2001$$互质,且小于$$2001$$的所有自然数的和.\n ", "answer": "$$1232616$$\n ", "Analysis": "若$$(a,2001)=1$$,则$$(2001-a,2001)=1$$,即小于$$2001$$与$$2001$$互质的自然数成对出现.而$$a+2001-a=2001$$.所以,小于$$2001$$且与$$2001$$互质的自然数的和$$=\\frac{1}{2}\\times $$小于$$2001$$且与$$2001$$互质的自然数的个数$$\\times2001$$.\n $$2001=3\\times 23\\times 29$$.\n 与$$2001$$有公约数$$3$$的数且不大于$$2001$$的数个数$$=\\left[ \\frac{2001}{3} \\right]=667$$;\n 与$$2001$$有公约数$$23$$的数且不大于$$2001$$的数个数$$=\\left[ \\frac{2001}{23} \\right]=87$$;\n 与$$2001$$有公约数$$29$$的数且不大于$$2001$$的数个数$$=\\left[ \\frac{2001}{29} \\right]=69$$;\n 与$$2001$$有公约数$$3\\times 29$$的数且不大于$$2001$$的数个数$$=\\left[ \\frac{2001}{3\\times 29} \\right]=23$$;\n 与$$2001$$有公约数$$3\\times 23$$的数且不大于$$2001$$的数个数$$=\\left[ \\frac{2001}{3\\times 23} \\right]=29$$;\n 与$$2001$$有公约数$$23\\times 29$$的数且不大于$$2001$$的数个数$$=\\left[ \\frac{2001}{23\\times 29} \\right]=3$$;\n 与$$2001$$有公约数$$3\\times 23\\times 29$$的数且不大于$$2001$$的数个数$$=\\left[\\frac{2001}{3\\times 23\\times 29} \\right]=1$$;\n 与$$2001$$互质且小于$$2001$$的数个数$$=2001-667-87-69+23+29+3-1=1232$$.\n 与$$2001$$互质且小于$$2001$$的数的和$$=\\frac{2001\\times 1232}{2}=1232616$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["容斥原理", "计数模块", "质数与合数判定", "三量容斥", "数论模块", "质数与合数的认识", "质数与合数"]} +{"_id": "ff8080814638e07e01463de881b6052e", "question": "如果某整数同时具备如下三条性质:①这个数与$$1$$的差是质数,②这个数除以$$2$$所得的商也是质数,③这个数除以$$9$$所得的余数是$$5$$,那么我们称这个整数为幸运数.求出所有的两位幸运数.\n ", "answer": "$$14$$\n ", "Analysis": "由条件②可知,所求的数是偶数,因此可设所求的幸运数是质数$$p$$的两倍,即此幸运数为$$2p$$,则$$p$$的所有可能取值为$$5$$,$$7$$,$$11$$,$$13$$,$$17$$,$$19$$,$$23$$,$$29$$,$$31$$,$$37$$,$$41$$,$$43$$,$$47$$.于是$$2p$$-$$1$$的所有可能取值为$$9$$,$$13$$,$$21$$,$$25$$,$$33$$,$$37$$,$$45$$,$$57$$,$$61$$,$$73$$,$$81$$,$$85$$,$$93$$.根据题目条件①,$$2p$$-$$1$$应为质数,因此$$2p$$-$$1$$只可能为$$13$$,$$37$$,$$61$$或$$73$$.再由条件③知$$2p$$-$$1$$除以$$9$$所得的余数应为$$4$$,于是$$2p$$-$$1$$只可能是$$13$$,从而这个幸运数只能是$$2p$$=$$14$$.\n \n逐一满足条件.\n\n满足除以$$9$$所得的余数是$$5$$的两位数有:$$14$$,$$23$$,$$32$$,$$41$$,$$50$$,$$59$$,$$68$$,$$77$$,$$86$$,$$95$$.\n\n同时还满足除以$$2$$的商也是质数的有$$14$$,$$86$$;\n\n还满足与$$1$$的差是质数的只有$$14$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["有序枚举", "质数与合数的认识", "计数模块", "余数问题", "除法中四量关系", "质数与合数判定", "枚举法综合", "枚举法", "数论模块", "余数问题带余除法", "质数与合数"]} +{"_id": "ff8080814638e07e01463de8874d0531", "question": "两个学生抄写同一个乘法算式,两个乘数都是两位数,他们各抄错了一个数字,于是得到两个不同的算式,但巧合的是,他们计算的结果都是$$936.$$如果正确的乘积不能被$$6$$整除,那么它等于多少?\n ", "answer": "$$676$$\n ", "Analysis": "注意$$936$$中有质因数$$13$$,故易见将其分解成两个两位数相乘的形式有$$13\\times 72$$,$$26\\times 36$$,$$39\\times 24$$,$$52\\times 18$$,$$78\\times 12$$这$$5$$种可能,由于两人各抄错了一个数字,因此两人的算式中应有两个位置上的数字相同.经枚举可知,他们所抄错的算式可能是($$13\\times 72$$,$$18\\times 52$$),($$13\\times 72$$,$$12\\times 78$$),($$26\\times 36$$,$$24\\times 39$$)或($$52\\times 18$$,$$12\\times 78$$).对于第一种情况,两人抄错的是第一个乘数的个位数字和第二个乘数的十位数字,正确的算式应是$$13\\times 52$$或$$18\\times 72$$,后者乘积是$$6$$的倍数,与题意不符,故原算式应为前者,正确的乘法算式是$$13\\times 52=676$$.对后三种情况作类似分析,可得出$$2\\times 3=6$$种可能的原乘法算式,但它们的结果都是$$6$$的倍数,不合题意.因此$$676$$即为所求.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分解质因数(式)", "数论模块", "分解质因数"]} +{"_id": "ff8080814638e07e01463de88b660533", "question": "有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少?\n ", "answer": "$$74$$和$$3$$或$$37$$和$$18$$.\n ", "Analysis": "两位数中,数字相同的两位数有$$11$$、$$22$$、$$33$$、$$44$$、$$55$$、$$66$$、$$77$$、$$88$$、$$99$$共九个,它们中的每个数都可以表示成两个整数相加的形式,例如$$33=1+32=2+31=3+30=\\cdots \\cdots =16+17$$,共有$$16$$种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有$$111$$、$$222$$、$$333$$、$$444$$、$$555$$、$$666$$、$$777$$、$$888$$、$$999$$,每个数都是$$111$$的倍数,而$$111=37\\times 3$$,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是$$37$$或$$37$$的倍数,但只能是$$37$$的$$2$$倍(想想为什么?)$$3$$倍就不是两位数了.\n 把九个三位数分解:$$111=37\\times 3$$、$$222=37\\times 6=74\\times 3$$、$$333=37\\times 9$$、$$444=37\\times12=74\\times 6$$、$$555=37\\times 15$$、$$666=37\\times 18=74\\times 9$$、$$777=37\\times 21$$、$$888=37\\times24=74\\times 12$$、$$999=37\\times 27$$.\n 把两个因数相加,只有($$74+3$$)$$=77$$和($$37+18$$)$$=55$$的两位数字相同.所以满足题意的答案是$$74$$和$$3$$,$$37$$和$$18$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["有序枚举", "因数与倍数基础", "已知乘积求因数", "计数模块", "分解质因数", "因数与倍数", "分解质因数的应用", "枚举法综合", "枚举法", "数论模块"]} +{"_id": "ff8080814638e07e01463de891950535", "question": "已知$$P$$是质数,$${{P}^{2}}+1$$也是质数,求$${{P}^{5}}+1997$$是多少?\n ", "answer": "$$2029$$ .\n", "Analysis": "$$P$$是质数,$${{P}^{2}}$$必定是合数,而且大于$$1.$$又由于$${{P}^{2}}+1$$是质数,$${{P}^{2}}$$大于$$1$$,$${{P}^{2}}+1$$一定是奇质数,则$${{P}^{2}}$$一定��偶数.所以$$P$$必定是偶质数,即$$P=2$$.\n $${{P}^{5}}+1997={{2}^{5}}+1997$$$$=32+1997$$$$=2029$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["特殊质数运用", "质数综合", "质数与合数", "数论模块"]} +{"_id": "ff8080814638e07e01463de89b180539", "question": "甲数比乙数大$$5$$,乙数比丙数大$$5$$,三个数的乘积是$$6384$$,求这三个数.\n", "answer": "$$14$$,$$19$$,$$24$$\n ", "Analysis": "将$$6384$$分解质因数,$$6384=2\\times 2\\times 2\\times 2\\times 3\\times 7\\times 19$$,则其中必有一个数是$$19$$或$$19$$的倍数;经试算,$$19-5=14=2\\times7$$,$$19+5=24=2\\times 2\\times 2\\times 3$$,恰好$$14\\times 19\\times24=6384$$,所以这三个数即为$$14$$,$$19$$,$$24$$.一般象这种类型的题,都是从最大的那个质因数去分析.如果这道题里$$19$$不符合要求,下一个该考虑$$38$$,再下一个该考虑$$57$$,依此类推.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分解质因数的应用", "数论模块", "分解质因数", "已知乘积求因数"]} +{"_id": "ff8080814638e0c401464b9e1b1b2073", "question": "小伟听说小峰养了一些兔和鸡,就问小峰:“你养了几只兔和鸡?”小峰说:“我养的兔比鸡多,鸡兔共$$24$$条腿.”那么小峰养了多少兔和鸡?\n ", "answer": "兔有$$5$$只,鸡有$$2$$只.\n ", "Analysis": "这是一道鸡兔同笼问题,但由于已知鸡兔腿的总数,而不是鸡兔腿数的差,所以用不定方程求解.\n 设小峰养了$$x$$只兔子和$$y$$只鸡,由题意得:\n                      $$4x+2y=24$$\n 即:$$2x+y=12$$,$$y=12-2x$$\n 这是一个不定方程,其可能整数解如下表所示:\n
$$x$$\n $$0$$\n $$1$$\n $$2$$\n $$3$$\n $$4$$\n $$5$$\n $$6$$\n
$$y$$\n $$12$$\n $$10$$\n $$8$$\n $$6$$\n $$4$$\n $$2$$\n $$0$$\n
由题意$$x>y$$,且$$x$$,$$y$$均不为$$0$$,所以$$x=5$$,$$y=2$$,也就是兔有$$5$$只,鸡有$$2$$只.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["鸡兔同笼问题", "原型题", "应用题模块", "假设法解鸡兔同笼", "基本型"]} +{"_id": "ff8080814638e13301464240d6770de4", "question": "在下列$$2n$$个数中,最多能选出多少个数,使得被选出的数中任意两个数的比都不是$$2$$或$$\\frac{1}{2}$$?\n $$3$$,$$3\\times 2$$,$$3\\times {{2}^{2}}$$,$$3\\times {{2}^{3}}$$,$$3\\times {{2}^{4}}$$,$$3\\times {{2}^{5}}$$,$$\\cdots$$$$3\\times {{2}^{2n-1}}$$.\n ", "answer": "不可能\n ", "Analysis": "最多可以选出$$n$$个,如$$3$$,$$3\\times {{2}^{2}}$$,$$3\\times {{2}^{4}}$$,$$\\cdots$$$$3\\times {{2}^{2n-2}}$$\n 如果选出的多于$$n$$个,那么就可以从中挑出$$n+1$$个如下:$${{2}^{{{l}_{1}}}}\\times 3$$,$${{2}^{{{l}_{2}}}}\\times3$$,$${{2}^{{{l}_{3}}}}\\times 3$$,......,$${{2}^{{{l}_{n+1}}}}\\times3$$,$${{l}_{1}}<{{l}_{2}}<{{l}_{3}}<\\cdots <{{l}_{n+1}}$$\n 则$$2n-1>{{l}_{n+1}}-{{l}_{1}}=({{l}_{n+1}}-{{l}_{n}})+({{l}_{n}}-{{l}_{n-1}})+\\cdots+({{l}_{2}}-{{l}_{1}})\\geqslant \\underbrace{2+2+\\cdots +2}_{n}=2n$$不可能.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["因数与倍数基础", "抽屉原理", "构造型抽屉原理", "因数与倍数", "数论模块", "组合模块"]} +{"_id": "ff8080814638e13301464240e2e30de9", "question": "两个最简分数,较大的减去较小的差是$$\\frac{5}{6}$$,两个分子的最大公因数等于两个分子的差,两个分子的最小公倍数是$$1050.$$求这两个最简分数.\n", "answer": "$$\\frac{75}{34}$$,$$\\frac{70}{51}$$\n ", "Analysis": "设这两个最简分数为$$\\frac{am}{bk}$$和$$\\frac{cm}{dk}$$,其中:\n\n$$(b,d)=1$$;$$(a,c)=1$$;$$(am,bk)=1$$;$$(cm,dk)=1$$.\n\n既然$$m=am-cm$$,所以有$$a-c=1$$.\n\n又因为$$\\left[ am,cm \\right]=1050=1\\times 2\\times 3\\times 5\\times 5\\times 7$$,可得到:\n\n①$$c=14$$,$$a=15$$,$$m=5$$,此时,\n\n$$\\frac{75}{bk}-\\frac{70}{dk}=\\frac{5}{6}$$,或$$\\frac{15}{bk}-\\frac{14}{dk}=\\frac{1}{6}$$;\n\n由$$\\frac{15}{bk}-\\frac{14}{dk}=\\frac{1}{6}\\Rightarrow \\frac{15}{bk}-\\frac{14}{dk}=\\frac{15d-14b}{kbd}=\\frac{1}{\\frac{kbd}{15d-14b}}=\\frac{1}{6}$$\n\n根据$$(b,d)=1$$;$$(a,c)=1$$;$$(am,bk)=1$$;$$(cm,dk)=1$$.应当有$$\\left( b,15d-14b \\right)=1$$,$$\\left( d,15d-14b \\right)=1$$,此时意味着:$$k=(15d-14b)\\times n$$,\n\n$$\\frac{1}{\\frac{kbd}{15d-14b}}=\\frac{1}{nbd}=\\frac{1}{1\\times2\\times 3}$$,即$$n$$,$$b$$,$$d$$只能取$$1$$,$$2$$,$$3$$,$$6$$.\n\n可知:$$\\left( n,15 \\right)=1$$,$$\\left( n,14 \\right)=1$$,因此$$n=1$$.同样,$$\\left( b,15\\right)=1$$,$$\\left( d,14 \\right)=1$$,因此可得:$$b=2$$,$$d=3$$.所以$$bk=2\\times(15d-14b)=34$$,$$dk=3\\times (15d-14b)=51$$.\n\n这两个分数是$$\\frac{75}{34}$$和$$\\frac{70}{51}$$.\n\n②$$c=6$$,$$a=7$$,$$m=5\\times 5$$,此时,\n\n$$\\frac{7\\times 5}{bk}-\\frac{6\\times 5}{dk}=\\frac{1}{6}\\Rightarrow\\frac{7\\times 5}{bk}-\\frac{6\\times 5}{dk}=5\\times \\left( \\frac{7}{bk}-\\frac{6}{dk}\\right)=\\frac{1}{6}$$;结合$$(b,d)=1$$,必有$$5\\left| k \\right.$$,即$$k$$有因数$$5$$,与$$(am,bk)=1$$,$$(cm,dk)=1$$矛盾;\n\n③$$c=5$$,$$a=6$$,$$m=5\\times 7$$,此时,\n\n$$\\frac{6\\times 7}{bk}-\\frac{5\\times 7}{dk}=\\frac{1}{6}$$;结合$$(b,d)=1$$,必有$$7\\left| k\\right.$$,即$$k$$有因数$$7$$,与$$(am,bk)=1$$,$$(cm,dk)=1$$矛盾;\n\n④$$c=2$$,$$a=3$$,$$m=5\\times 5\\times 7$$,此时,\n\n$$\\frac{3\\times 5\\times 7}{bk}-\\frac{2\\times5\\times 7}{dk}=\\frac{1}{6}$$;结合$$(b,d)=1$$,必有$$7\\left| k \\right.$$,即$$k$$有因数$$7$$,与$$(am,bk)=1$$,$$(cm,dk)=1$$矛盾;\n\n⑤$$c=1$$,$$a=2$$,$$m=3\\times 5\\times 5\\times 7$$,此时,\n\n$$\\frac{2\\times 3\\times 5\\times 7}{bk}-\\frac{3\\times5\\times 7}{dk}=\\frac{1}{6}$$;结合$$(b,d)=1$$,必有$$7\\left| k \\right.$$,即$$k$$有因数$$7$$,与$$(am,bk)=1$$,$$(cm,dk)=1$$矛盾;\n\n所以,这两个分数是$$\\frac{75}{34}$$和$$\\frac{70}{51}$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["两数的最小公倍数", "公倍数与最小公倍数", "公因数与最大公因数", "因数与倍数", "数论模块", "公因数与公倍数", "短除模型", "两数的最大公因数"]} +{"_id": "ff8080814638e13301464240e7500deb", "question": "老师为自己班级的$$50$$名学生做了$$50$$张分别写着$$1$$到$$50$$的数字卡片,每张卡片都是一面红色,另一面蓝色,两面都写着相同的数字.老师把这$$50$$张卡片都蓝色朝上地摆在桌上,对同学们说:“请你们按顺序逐个到前面来翻卡片,规则是:只要卡片上的数字是你自己序号的倍数,你就把它们都翻过来,蓝的就翻成红的,红的就翻成蓝的.”那么,当全体学生都按老师的要求翻完以后,红色朝上的卡片有多少张?\n ", "answer": "$$7$$ .\n", "Analysis": "每张卡片,所写数字有几个约数就被翻过几次.被翻了奇数次的卡片红色面朝上,而只有完全平方数才能有奇数个约数,所以本题也就是求写有完全平方数的卡片有几张,而$$1\\leqslant {{1}^{2}}<{{2}^{2}}<{{3}^{2}}<{{4}^{2}}<{{5}^{2}}<{{6}^{2}}<{{7}^{2}}<50$$,所以红色朝上的卡片共有$$7$$张.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["完全平方数", "平方数的综合应用", "数论模块"]} +{"_id": "ff8080814638e13301464bda805c1dda", "question": "甲、乙两人同时从$$A$$地出发,在 $$A、 B$$两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到达$$ A$$地、$$B$$地或遇到乙都会调头往回走,除此以外,两人在$$A、B$$之间行走方向不会改变,已知两人第一次相遇点距离$$ B$$地$$1800 $$米,第三次相遇点距离 $$B$$地 $$800$$米,那么第二次相遇的地点距离$$B$$地多少米?\n ", "answer": "第二次相遇的地点距离$$B$$地$$1200$$米.\n ", "Analysis": "设甲、乙两人的速度分别为$${v_1}$$、$${v_2}$$,全程为$$S$$,第二次相遇的地点距离$$B$$地$$x$$米.\n 由于甲的速度大于乙的速度,所以甲第一次遇到乙是甲到达$$B$$地并调头往回走时遇到乙的,\n 这时甲、乙合走了两个全程,第一次相遇的地点与$$B$$地的距离为$${v_1} \\times \\frac{{2s}}{{{v_1} + {v_2}}} - s = \\frac{{{v_1} - {v_2}}}{{{v_1} + {v_2}}}$$,\n 那么第一次相遇的地点到$$B$$地的距离与全程的比为$$\\frac{{{v_1} - {v_2}}}{{{v_1} + {v_2}}}$$;\n 两人第一次相遇后,甲调头向$$B$$地走,乙则继续向$$B$$地走,\n 这样一个过程与第一次相遇前相似,只是这次的“全程”为第一次相遇的地点到$$B$$地的距离,即$$1800$$米.\n 根据上$$B$$地的距离的比为$$\\frac{{{v_1} - {v_2}}}{{{v_1} + {v_2}}}$$;\n 类似分析可知,第三次相遇的地点到$$B$$地的距离与第二次相遇的地点到$$B$$地的距离的比为$$\\frac{{{v_1} - {v_2}}}{{{v_1} + {v_2}}}$$;\n 那么$$\\frac{{800}}{x} = \\frac{x}{{1800}}$$,得到 $$x = 1200$$,故第二次相遇的地点距离$$B$$地$$1200$$米.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "二元一次方程解行程问题", "直线型行程问题", "方程解行程问题", "多次相遇和追及", "往返相遇"]} +{"_id": "ff8080814638e13301464c1c8b421f19", "question": "甲、乙两车往返于$$A,B$$两地之间.甲车去时的速度为$$60$$千米/时,返回时的速度为$$40$$千米/时;乙车往返的速度都是$$50$$千米/时.求甲、乙两车往返一次所用时间的比.\n ", "answer": "甲、乙两车往返一次所用时间的比$$25:24$$.\n ", "Analysis": "设$$A,B$$两地相距$$600$$千米,\n 甲去时所花时间为$$600÷60=10($$小时),回时所花时间为$$600÷40=15($$小时),\n 一共花的时间为$$10+15=25($$小时);\n 乙来回一共花的时间为$$600×2÷50=24($$小时);\n 所以甲、乙两车往返一次所用时间的比$$25:24$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "路程速度时间", "直线型行程问题", "双人简单行程问题"]} +{"_id": "ff8080814638e133014656ac67cf3264", "question": "$$4$$个一位数的乘积是$$360$$,并且其中只有一个是合数,那么在这$$4$$个数字所组成的四位数中,最大的一个是多少?\n ", "answer": "$$8533$$\n ", "Analysis": "将$$360$$分解质因数得$$360=2\\times 2\\times 2\\times 3\\times 3\\times 5$$,它是$$6$$个质因数的乘积.因为题述的四个数中只有一个是合数,所有该合数必至少为$$6-3=3$$个质因数的积,又只有$$3$$个$$2$$相乘才能是一位数,所以这$$4$$个乘数分别为$$3$$,$$3$$,$$5$$,$$8$$,所组成的最大四位数是$$8533$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分解质因数(式)", "已知乘积求因数", "分解质因数", "分解质因数的应用", "数论模块"]} +{"_id": "ff8080814638e133014656ad23433271", "question": "将$$50$$分拆成$$10$$个质数的和,要求其中最大的质数尽可能大,则这个最大的质数是多少?\n ", "answer": "$$31$$ .\n", "Analysis": "若要求最大的质数尽可能大,则其余$$9$$个质数应尽可能小,最佳的方案是$$9$$个$$2$$.但是此时剩余的数为$$32$$,不是质数,所以退而求其次,另其余$$9$$个数为$$8$$个$$2$$,$$1$$个$$3$$,那么第$$10$$个数为$$31$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["特殊质数运用", "质数综合", "质数与合数", "数论模块"]} +{"_id": "ff8080814638e133014656ae857f3273", "question": "三位数的十位数字与个位数字的和等于百位数字的数,称为”好数”.共有多少个好数?\n ", "answer": "$$54$$ .\n", "Analysis": "按百位数分类计数:\n\n百位数=1$$,十位数=0$$,$$1$$共$$2$$个;\n\n百位数=2$$,十位数=0$$,$$1$$,$$2$$,共$$3$$个;\n\n百位数=3$$,十位数=0$$,$$1$$,$$2$$,$$3$$,共$$4$$个;\n\n$$\\cdots$$\n\n百位数=$$k$$,十位数=0$$,\\cdots,$$k$$.共$$k+1$$个;$$01)$$和第$$m(>1)$$号盒子没能与$$1$$号盒子组合在一起提问,如果除了这三个盒子外,其他$$12$$个盒子中的球都是白的,得到的回答全是“有”,而说$$1$$号是白的就错了.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["答案(数字)正误问题", "组合模块", "假设型逻辑推理", "逻辑推理"]} +{"_id": "ff808081466b745501466c2737dc009b", "question": "从山顶到山脚的路长$$36$$千米,一辆汽车上山,需要$$4$$小时到达山顶,下山沿原路返回,只用了$$2$$小时到达山脚.求这辆汽车往返一次平均每小时行多少千米?\n", "answer": "$$12$$千米/时\n ", "Analysis": "$$72 \\div (4{ + }2){ = 12}$$\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "公式法", "路程速度时间", "平均速度"]} +{"_id": "ff8080814670afea014674676b150672", "question": "一个长方体的长、宽、高都是整数厘米,它的体积是$$1998$$立方厘米,那么它的长、宽、高的和的最小可能值是多少厘米?\n ", "answer": "$$52$$\n ", "Analysis": "我们知道任意个已确定个数的数的乘积一定时,它们相互越接近,和越小.如$$3$$个数的积为$$18$$,则三个数为$$2$$、$$3$$、$$3$$时和最小,为$$8.1998=2×3×3×3×37$$,$$37$$是质数,不能再分解,所以$$2×3×3×3$$对应的两个数应越接近越好.有$$2×3×3×3=6×9$$时,即$$1998=6×9×37$$时,这三个自然数最接近.它们的和为$$6+9+37=52($$厘米).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组合模块最值问题", "多个数之和的最值", "组合模块", "积一定型最值原理"]} +{"_id": "ff8080814670afea014677001aab0c20", "question": "在黑板上写上$$1$$、$$2$$、$$3$$、$$4$$、$$\\cdots$$、$$2008$$,按下列规定进行“操作”:每次擦去其中的任意两个数$$a$$和$$b$$,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?\n", "answer": "偶数\n ", "Analysis": "根据等差数列求和公式,可知开始时黑板上所有数的和为$$1+2+3+\\cdots +2008=2009\\times 1004$$是一个偶数,而每一次“操作”,将$$a$$、$$b$$两个数变成了$$(a-b)$$,它们的和减少了$$2b$$,即减少了一个偶数.那么从整体上看,总和减少了一个偶数,其奇偶性不变,还是一个偶数.\n 所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数列与数表", "等差数列求和", "计算模块", "等差数列"]} +{"_id": "ff8080814670afea0146770029b40c25", "question": "$$5$$卷百科全书按从第$$1$$卷到第$$5$$卷的递增序号排列,今要将它们变为反序排列,即从第$$5$$卷到第$$1$$卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?\n", "answer": "$$10$$\n ", "Analysis": "因为必须是调换相邻的两卷,将第$$5$$卷调至原来第$$1$$卷的位置最少需$$4$$次,得到的顺序为$$51234$$;\n\n现在将第$$4$$卷调至此时第$$1$$卷的位置最少需$$3$$次,得到的顺序为$$54123$$;\n\n现在将第$$3$$卷调至此时第$$1$$卷的位置最少需$$2$$次,得到的顺序为$$54312$$;\n\n最后将第$$1$$卷和第$$2$$卷对调即可.\n\n所以,共需调换$$4+3+2+1=10$$(次).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["有序枚举", "计数模块", "操作问题", "枚举法综合", "枚举法", "操作与策略", "组合模块", "数字操作"]} +{"_id": "ff8080814670afea0146935f586124bf", "question": "有$$20$$张卡片,每张上写一个大于$$0$$的自然数,且任意$$9$$张上写的自然数的和都不大于$$63.$$若称写有大于$$7$$的自然数的卡片为“龙卡”,问:这$$20$$张卡片中“龙卡”最多有多少张?所有“龙卡”上写的自然数的和的最大值是多少?\n ", "answer": "$$7,61$$\n ", "Analysis": "由于“龙卡”上写的数最小为$$8$$,而$$8\\times 8=64>63$$所以这$$20$$张卡片中,“龙卡”至多$$7$$张.其余的$$13$$张卡片上写的数都是小于$$8$$的非龙卡.\n 设$$7$$张龙卡上写的数的和为$$S$$,再取两张非龙卡的卡片补足为一个$$9$$张组,当补足的数值最小时,$$S$$最大,由$$S+1+1\\leqslant 63$$因此$$S\\leqslant 61$$即$$7$$张龙卡上所写数的和S的最大可能值是$$61.$$现在说明,$$S$$的最大值为$$61$$是可以达到的.例如,$$7$$张龙卡是$$2$$张$$8$$,$$5$$张$$9;$$其余非龙卡是$$13$$张$$1$$,而$$S=8\\times 2+9\\times 5=61$$.满足题设条件.\n 因此,这$$20$$张卡片中“龙卡”最多有$$7$$张;所有“龙卡”上写的自然数的和的最大值是$$61$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组合模块最值问题", "操作问题", "枚举型最值问题", "操作与策略", "组合模块", "数字操作"]} +{"_id": "ff8080814670afec014676d33a280b6e", "question": "有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大?\n ", "answer": "$$210$$个\n ", "Analysis": "由于四位数的四个数位上的数的大小关系已经非常明确,而对于从$$0~9$$中任意选取的$$4$$个数字,它们的大小关系也是明确的,那么由这$$4$$个数字只能组成$$1$$个符合条件的四位数(题目中要求千位比百位大,所以千位不能为$$0$$,本身已符合四位数的首位不能为$$0$$的要求,所以进行选择时可以把$$0$$包含在内),也就是说满足条件的四位数的个数与从$$0~9$$中选取$$4$$个数字的选法是一一对应的关系,那么满足条件的四位数有$$\\text{C}_{10}^{4}=\\frac{10\\times 9\\times 8\\times 7}{4\\times 3\\times2\\times 1}=210$$个.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "组合的基本应用", "组合"]} +{"_id": "ff8080814694a4c30146a96f039d31d5", "question": "小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行.每隔$$30$$分钟就有辆公共汽车从后面超过他,每隔$$20$$分钟就遇到迎面开来的一辆公共汽车.问:该路公共汽车每隔多少分钟发一次车?\n ", "answer": "$$24$$分钟\n ", "Analysis": "假设小明在路上向前行走了$$60(20$$、$$30$$的最小公倍数)分钟后,立即回头再走$$60$$分钟,回到原地.这时在前$$60$$分钟他迎面遇到$$60\\div 20=3$$辆车,后$$60$$分钟有$$60\\div 30=2$$辆车追上他.那么在两个$$60$$分钟里他共遇到朝同一方向开来的$$5$$辆车,所以发车的时间为$$60\\times 2\\div (3+2)=24$$分钟.\n \n设小明走路速度为$$1$$,电车速度为$$v$$,根据车距相等列式:$$30(v-1)=20(v+1)\\Rightarrow v=5$$;\n\n则车距为:$$30\\times (5-1)=120$$,发车时间间隔为:$$120\\div 5=24$$(分钟).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "求发车时间间隔", "发车问题"]} +{"_id": "ff8080814694a4fc0146a3260fe21985", "question": "规定两人轮流做一个工程,要求第一个人先做$$1$$个小时,第二个人接着做一个小时,然后再由第一个人做$$1$$个小时,然后又由第二个人做$$1$$个小时,如此反复,做完为止.如果甲、乙轮流做这项工程需要$$9.8$$小时,而乙、甲轮流做同样的工程只需要$$9.6$$小时,那么乙单独做这个工程需要多少小时?\n", "answer": "$$7.3$$ .\n", "Analysis": "根据题意,有:甲乙甲乙$$\\cdots$$甲$$1$$小时$$+$$乙$$0.8$$小时,乙甲乙甲$$\\cdots$$乙$$1$$小时$$+$$甲$$0.6$$小时可知,\n\n甲做$$1 - 0.6 = 0.4$$小时与乙做$$1 - 0.8 = 0.2$$小时的工作量相等,\n\n故甲工作$$2$$小时,相当于乙$$1$$小时的工作量.\n\n所以,乙单独工作需要$$9.8 - 5 + 5 \\div 2 = 7.3$$(小时).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["两人交替工作", "工程应用题", "应用题", "综合与实践"]} +{"_id": "ff8080814694a4fc0146af64c1f22707", "question": "科技活动小组有$$55$$人.在一次制作飞机模型和制作舰艇模型的定时科技活动比赛中,老师到时清点发现:制作好一架飞机模型的同学有$$40$$人,制作好一艘舰艇的同学有$$32$$人.每个同学都至少完成了一项制作.问两项制作都完成的同学有多少人?\n ", "answer": "$$17$$人\n ", "Analysis": "因为$$40+32=72$$,$$72>55$$,所以必有人两项制作都完成了.由于每个同学都至少完成了一项制作,根据包含排除法可知:全组人数$$=40+32-$$完成了两项制作的人数,即$$55=72-$$完成了两项制作的人数.所以,完成了两项制作的人数为:$$72-55=17$$(人).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "容斥原理", "二量容斥"]} +{"_id": "ff8080814694a4fc0146af653732270e", "question": "实验二校一个歌舞表演队里,能表演独唱的有$$10$$人,能表演跳舞的有$$18$$人,两种都能表演的有$$7$$人.这个表演队共有多少人能登台表演歌舞?\n ", "answer": "$$21$$人\n ", "Analysis": "根据包含排除法,这个表演队能登台表演歌舞的人数为:$$10+18-7=21$$(人).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "容斥原理", "二量容斥"]} +{"_id": "ff8080814694a4fc0146af65379e2710", "question": "四(1)班有$$46$$人,其中会弹钢琴的有$$30$$人,会拉小提琴的有$$28$$人,则这个班既会弹钢琴又会拉小提琴的至少有 ___          ___ 人.\n ", "answer": "$$12$$", "Analysis": "至少一项不会的最多有$$(46-30)+(46-28)=34$$,那么两项都会的至少有$$46-34=12$$人.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "容斥原理", "多量容斥的最值问题"]} +{"_id": "ff8080814694a7d30146af12fe633145", "question": "把一个棱长均为整数的长方体的表面都涂上红色,然后切割成棱长为$$1$$的小立方块,其中,两面有红色的小立方块有$$40$$块,一面有红色的小立方块有$$66$$块,那么这个长方体的体积是多少?\n ", "answer": "$$150$$ .\n", "Analysis": "设长方体的长宽高上分别有两面有红色的小立方体$$x$$、$$y$$、$$z$$块,根据题意可得$$x+y+z=40\\div 4=10$$,①\n\n$$xy+xz+yz=66\\div 2=33$$,②\n\n由①和②可得,$${{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{10}^{2}}-2\\times 33=34$$,③\n\n并且$$x$$、$$y$$、$$z\\leqslant 5$$,\n\n由②可得,$$(x+y)(x+z)={{x}^{2}}+33$$,④\n\n若$$x=1$$,$$(1+y)(1+z)={{1}^{2}}+33=2\\times 17=1\\times 34$$,那么$$y$$和$$z$$是:$$2-1=1$$,$$17-1=16$$,或$$1-1=0$$,$$34-1=33$$,都不合$$x$$、$$y$$、$$z\\leqslant5$$,舍去;\n\n同理,若$$x=2$$,$$(2+y)(2+z)={{2}^{2}}+33=1\\times 37$$,那么$$y$$和$$z$$是:$$1-2=-1$$,$$37-2=35$$,不合$$x$$、$$y$$、$$z\\leqslant5$$,舍去;\n\n若$$x=3$$,$$(3+y)(3+z)={{3}^{2}}+33=42=6\\times 7=3\\times 14=2\\times 21=1\\times42$$,显然,$$3\\times 14$$、$$2\\times 21$$和$$1\\times 42$$都不合要求,那么$$y$$和$$z$$是:$$6-3=3$$,$$7-3=4$$,符合$$x$$、$$y$$、$$z\\leqslant 5$$;\n\n若$$x=4$$,$$(4+y)(4+z)={{4}^{2}}+33=49=7\\times 7$$,那么$$y$$和$$z$$是:$$7-4=3$$,$$7-4=3$$,符合$$x$$、$$y$$、$$z\\leqslant5$$;并且和上一种情况是同一种情况,\n\n若$$x=5$$,$$(5+y)(5+z)={{5}^{2}}+55=58=1\\times 58$$,显然,那么$$y$$和$$z$$是:$$1-5=-4$$,$$58-5=53$$,不符合$$x$$、$$y$$、$$z\\leqslant5$$;\n\n所以,长方体的长、宽、高是:$$4+2=6$$,$$3+2=5$$,$$3+2=5$$,\n\n所以,体积是:$$6\\times 5\\times 5=150$$.\n\n设长方体长$$a$$,宽$$b$$,高$$c$$.($$a\\leqslant b\\leqslant c$$)\n\n$$1$$)当$$a=1$$,$$b\\geqslant 1$$时,没有一面染色的小立方体,不符合题意,舍去.\n\n$$2$$)当$$c\\geqslant b\\geqslant a\\geqslant 2$$时,\n\n两面有红色的小正方体必在棱上��一面有红色的小正方体必在面的内部,由题得到:\n\n$$4(a-2)+4(b-2)+4(c-2)=40$$\n\n$$2(a-2)(b-2)+2(a-2)(c-2)+2(b-2)(c-2)=66$$,\n\n化简得到\n\n$$(a-2)+(b-2)+(c-2)=10$$\n\n$$(a-2)(b-2)+(a-2)(c-2)+(b-2)(c-2)=33$$.\n\n由于$$10$$是偶数,则$$a-2$$,$$b-2$$,$$c-2$$是三个偶数一个或者两个奇数和一个偶数.\n\n由于$$33$$是奇数,则$$a-2$$,$$b-2$$,$$c-2$$是两个奇数和一个偶数.\n\n小于$$10$$的奇数有$$1$$,$$3$$,$$5$$,$$7$$,$$9$$.\n\n则$$a-2$$,$$b-2$$,$$c-2$$三个数可以为($$1$$,$$1$$,$$8$$),($$1$$,$$3$$,$$6$$),($$1$$,$$5$$,$$4$$),($$1$$,$$7$$,$$2$$),($$1$$,$$9$$,$$0$$),($$3$$,$$3$$,$$4$$),($$3$$,$$5$$,$$2$$),($$3$$,$$7$$,$$0$$),($$5$$,$$5$$,$$0$$),代入$$(a-2)(b-2)+(a-2)(c-2)+(b-2)(c-2)=33$$检验.\n\n解得$$c-2=4$$\n\n$$b-2=3$$\n\n$$a-2=3$$,\n\n即$$c=6$$\n\n$$b=5$$\n\n$$a=5$$.\n\n体积为$$5\\times 5\\times 6=150$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["立体图形表面积体积应用", "立体图形的染色问题", "几何应用", "空间与图形"]} +{"_id": "ff8080814694a7d30146b827770c3be1", "question": "快、中、慢三辆车同时同地出发,沿同一公路去追赶前面一骑车人,这三辆车分别用$$6$$分、$$9$$分、$$12$$分追上骑车人.已知快、慢车的速度分别为$$60$$千米/时和$$40$$千米/时,求中速车的速度?\n", "answer": "$${46}\\frac{{2}}{{3}}$$千米/小时.\n ", "Analysis": "根据题意可知,\n\n快车走了$$60 \\times \\frac{6}{60}=6$$千米慢车走了$$40 \\times \\frac{12}{60}=8$$千米,\n\n骑车人的速度$$(8 - 6) \\div ( \\frac{12}{60}- \\frac{6}{60}) =20$$千米/小时,\n\n开始路程差$$(60-20)\\times \\frac{6}{60}=4$$千米,\n\n中速车速度$$4 \\div \\frac{9}{60}+20 = 46\\frac{{2}}{{3}}$$千米/小时.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人追及问题", "直线型行程问题", "多人相遇与追及问题"]} +{"_id": "ff8080814694a7d30146b82795f23be3", "question": "李华步行以每小时$$4$$千米的速度从学校出发到$$20.4$$千米处的冬令营报到.半小时后,营地老师闻讯前往迎接,每小时比李华多走$$1.2$$千米.又过了$$1.5$$小时,张明从学校骑车去营地报到.结果三人同时在途中某地相遇.问骑车人每小时行驶多少千米?\n ", "answer": "$$20$$千米/时\n ", "Analysis": "老师出发时,李华已经走了$$4 \\times 0.5 = 2$$(千米).接下来相遇所需要的时间为$$\\left( {20.4 - 2} \\right) \\div \\left[ {4 + \\left( {4 + 1.2} \\right)} \\right] = 2$$(小时).相遇地点与学校的距离用李华的速度和时间进行计算:$$4 \\times \\left( {0.5 + 2} \\right) = 10$$(千米).所以张明要用$$2 - 1.5 = 0.5$$小时感到距离学校$$10$$千米处,张明的速度为$$10 \\div 0.5 = 20$$(千米/时).\n \n设张明从学校出发$$x$$小时,三人相遇.\n\n$$4\\times (0.5+1.5+x)+(4+1.2)(1.5+x)=20.4$$\n\n解得$$x=0.5$$.\n\n张明走的路程是$$4\\times(0.5+1.5+x)=4\\times (0.5+1.5+0.5)=10$$千米,\n\n张明的速度$$10\\div 0.5=20$$千米/小时.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["以行程问题形式运用方程解应用题", "列方程解应用题", "应用题"]} +{"_id": "ff8080814694a7d30146b83067953c19", "question": "一只野兔逃出$$80$$步后猎狗才追它,野兔跑$$8$$步的路程猎狗只需跑$$3$$步,猎狗跑$$4$$步的时间兔子能跑$$9$$步.猎狗至少要跑多少步才能追上野兔?\n ", "answer": "$$192$$步\n ", "Analysis": "猎狗每步相当于$$8 \\div 3 = \\frac{8}{3}$$(兔步),猎狗的速度比兔子快$$(4 \\times \\frac{8}{3} - 9) \\div 4 = \\frac{5}{{12}}$$(兔步),$$80 \\div \\frac{5}{{12}} = 192$$(步),即猎狗至少要跑$$192$$步才能追上兔子.\n \n一步的长度比$$:$$狗$$:$$兔$$=8:3$$,一步的时间比$$:$$狗$$:$$兔$$=9:4$$,所以速度比$$:$$狗$$:$$兔$$=32:27$$;$$80\\div (32-27)\\times 27=432$$步,$$(432+80)\\div 8\\times 3=192$$步.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "追及问题", "不同时出发", "两人相遇与追及问题"]} +{"_id": "ff8080814694a7d30146c8de929e4de4", "question": "$$2006$$年夏天,我国某地区遭遇了严重干旱,政府为了解决村名饮水问题,在山下的一眼泉水旁修了一个蓄水池,每小时有$$40$$立方米泉水注入池中.第一���开动$$5$$台抽水机$$2.5$$小时就把一池水抽完,接着第二周开动$$8$$台抽水机$$1.5$$小时就把一池水抽完.后来由于旱情严重,开动$$13$$台抽水机同时供水,请问几小时可以把这池水抽完?\n ", "answer": "$$0.9$$小时\n ", "Analysis": "一台抽水机一小时的抽水量为$$40×(2.5-1.5)÷(5×2.5-8×1.5)=80($$立方米),\n 池水的总量为$$2.5×(80×5-40)=900($$立方米).\n 所以,使用$$13$$台抽水机,抽完池水需要的时间为$$900÷(80×13-40)=0.9($$小时).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["其他问题", "牛吃草转化型", "生活中的牛吃草", "牛吃草问题", "应用题模块"]} +{"_id": "ff8080814694a7d30146c8deaf434de6", "question": "一个水箱,用甲、乙、丙三个水管往里注水.若只开甲、丙两管,甲管注入$$18$$吨水时,水箱已满;若只开乙、丙两管,乙管注入$$27$$吨水时,水箱才满.又知,乙管每分钟注水量是甲管每分钟注水量的$$2$$倍.则该水箱最多可容纳多少吨水?\n ", "answer": "$$54$$吨\n ", "Analysis": "由于乙管每分钟注水量是甲管每分钟注水量的$$2$$倍.那么甲管注入$$18$$吨水的时间是乙管注入$$18\\times2=36$$吨水的时间,则甲管注入$$18$$吨水的时间与乙管注入$$27$$吨水的时间比是$$36:27=4:3$$.那么在这两种情况下丙管注水的时间比为$$4:3$$,而且前一种情况比后一种情况多注入$$27-18=9$$吨水,则甲管注入$$18$$吨水时,丙管注入水$$9\\div(4-3)\\times 4=36$$吨.\n 所以该水箱最多可容纳水$$18+36=54$$吨.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多人合作", "合作工程问题", "已知工时反推", "应用题模块", "工程问题"]} +{"_id": "ff8080814694a7d30146c8e91f104def", "question": "一件工作,甲独做要$$12$$天,乙独做要$$18$$天,丙独做要$$24$$天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的$$3$$倍,再由丙接着做,丙做的天数是乙做的天数的$$2$$倍,终于做完了这件工作.问总共用了多少天?\n ", "answer": "见解析\n", "Analysis": "解法一:甲做$$1$$天,乙就做$$3$$天,丙就做$$3\\times 2=6$$(天),\n\n甲做$$1$$天,完成工作量的$$\\frac{1}{{12}}$$,\n\n乙就完成工作量的$$\\frac{1}{{18}} \\times 3$$,\n\n丙就完成工作量的$$\\frac{1}{{24}} \\times 6$$,\n\n共完成$$\\frac{1}{{12}} + \\frac{1}{{18}} \\times 3 + \\frac{1}{{24}} \\times 6 = \\frac{1}{2}$$,\n\n$$1 \\div \\frac{1}{2} = 2$$(天),\n\n说明甲做了$$2$$天,乙做了$$6$$天,丙做了$$12$$天,即完成这件工作共用了$$20$$天.\n\n解法二:本题整数化会带来计算上的方便.\n\n$$12$$,$$18$$,$$24$$这三个数有一个易求出的最小公倍数$$72$$.\n\n可设全部工作量为$$72$$.甲每天完成$$6$$,乙每天完成$$4$$,丙每天完成$$3$$.\n\n总共用了$$72 \\times \\frac{{1 + 3 + 6}}{{6 \\times 1 + 4 \\times 3 + 3 \\times 6}} = 20$$(天).\n\n解法三:设甲做了$$x$$天,则乙做了$$3x$$天,丙做了$$6x$$天,可列出方程:\n\n$\\dfrac{1}{12}x+\\dfrac{1}{18}\\times3x+\\dfrac{1}{24}\\times6x=1$,\n\n解得$x=2$,\n\n则一共用了$x+3x+6x=(1+3+6)\\times2=20$(天).\n\n答:总共用了$$20$$天.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "接力施工问题", "工程问题"]} +{"_id": "ff80808146cd50eb0146d81f0c9f153c", "question": "湖中有$$A$$、$$B$$两岛,甲、乙二人都要在两岛间游一个来回.两人分别从$$A$$、$$B$$两岛同时出发,他们第一次相遇时距$$A$$岛$$700$$米,第二次相遇时距$$B$$岛$$400$$米.问:两岛相距多远?\n", "answer": "$$1700$$米\n ", "Analysis": "$$A$$、$$B$$两岛相距$$700 \\times 3 - 400 = 1700$$(米).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "相遇问题求路程和", "直线型行程问题", "行程应用题", "多次相遇和追及", "应用题", "两次相遇", "综合与实践"]} +{"_id": "ff80808146cd510f0146db30691f0c72", "question": "甲、乙、丙三个数,已知甲:(乙+丙)$$=4:3$$,乙:丙$$=2:7$$,求甲:乙:丙.\n ", "answer": "$$12:2:7$$ .\n", "Analysis": "由乙:丙=$$2:7$$可得到乙:$$\\left( 乙+丙 \\right)=2:9$$,丙:$$\\left(乙 + 丙\\right)=7:9$$,而甲:$$\\left( 乙+丙\\right)=4:3$$,\n 所以:甲��乙:丙=$$\\frac{4}{3}:\\frac{2}{9}:\\frac{7}{9}=12:2:7$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["比例应用题", "应用题", "化连比的应用", "综合与实践"]} +{"_id": "ff80808146cd510f0146db3a20290c7b", "question": "某团体有$$100$$名会员,男女会员人数之比是$$14:11$$,会员分成三组,甲组人数与乙、丙两组人数之和一样多,各组男女会员人数之比依次为$$12:13$$、$$5:3$$、$$2:1$$,那么丙组有多少名男会员?\n", "answer": "$$12$$\n ", "Analysis": "会员总人数$$100$$人,男女比例为$$14:11$$,则可知男、女会员人数分别为$$56$$人、$$44$$人;又已知甲组人数与乙、丙两组人数之和一样多,则可知甲组人数为$$50$$人,乙、丙人数之和为$$50$$人,可设丙组人数为$$x$$人,则乙组人数为$$\\left( 50-x \\right)$$人,又已知甲组男、女会员比为$$12:13$$,则甲组男、女会员人数分别为$$24$$人、$$26$$人,又已知乙、丙两组男、女会员比例,则可得:$$24+\\frac{5}{8}(50-x)+\\frac{2}{3}x=56$$,解得$$x=18$$.即丙组会员人数为$$18$$人,又已知男、女比例,可得丙组男会员人数为$$18\\times \\frac{2}{3}=12$$(人).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "方程法解比例问题", "比例应用题"]} +{"_id": "ff80808146cd510f0146db4282620c85", "question": "用$$24$$厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是$$3∶4∶5$$,这个直角三角形斜边上的高是多少厘米?\n ", "answer": "$$4.8$$厘米\n ", "Analysis": "相当于把$$24$$厘米的铁丝分成了$$12$$份,三条边分别长$$24\\times \\frac{3}{3+4+5}=6$$(厘米),$$24\\times\\frac{4}{3+4+5}=8$$(厘米),$$24\\times \\frac{5}{3+4+5}=10$$(厘米). 可知两条直角边分别长$$6$$厘米和$$8$$厘米,面积为$$6\\times8\\div 2=24$$(平方厘米),斜边高为$$24\\times 2\\div 10=4.8$$(厘米).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "分百应用题", "量率对应已知单位1"]} +{"_id": "ff80808146cd510f0146db454dba0c87", "question": "把一根绳子按$$3∶2$$截成甲、乙两段,已知乙段比甲段短$$1.6$$米,甲、乙两段各长多少米?\n ", "answer": "甲$$4.8$$米,乙$$3.2$$米.\n ", "Analysis": "甲是$$3$$份,乙是$$2$$份.甲比乙多$$1$$份,乙比甲短$$1.6$$米,即一份长$$1.6$$米.甲长$$1.6\\times 3=4.8$$(米)乙长$$1.6\\times 2=3.2$$(米).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "基础份数思想", "比例应用题"]} +{"_id": "ff80808146cd510f0146db5028cd0c92", "question": "小伟和小英给希望工程捐款的钱数比是$$7∶8$$,两人共捐款$$75$$元.小伟和小英各捐款多少元?\n ", "answer": "小伟捐了$$35$$元,小英捐了$$40$$元.\n ", "Analysis": "相当于把$$75$$元分成了$$15$$份,小伟占$$7$$份,小英占$$8$$份.小伟捐$$75\\times \\frac{7}{7+8}=35$$(元),小英捐$$75\\times\\frac{8}{7+8}=40$$(元).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["比例应用题", "按比分配问题", "应用题", "综合与实践"]} +{"_id": "ff80808146cd510f0146db579d230c96", "question": "小新、小志、小刚三人拥有的藏书数量之比为$$3:4:6$$,三人一共藏书$$52$$本,求他们三人各自的藏书数量.\n ", "answer": "小新有$$12$$本,小志有$$16$$本,小刚有$$24$$本.\n ", "Analysis": "根据题意可知,他们三人各自的藏书数量分别占三人藏书总量的$$\\frac{3}{3+4+6}$$、$$\\frac{4}{3+4+6}$$、$$\\frac{6}{3+4+6}$$,所以小新拥有的藏书数量为$$52\\times \\frac{3}{3+4+6}=12$$本,小志拥有的藏书数量为$$52\\times\\frac{4}{3+4+6}=16$$本,小刚拥有的藏书数量为$$52\\times \\frac{6}{3+4+6}=24$$本.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["量率对应已知单位1", "分数百分数应用题", "分百应用题", "应用题模块", "应用题", "已知单位一和对应分率,求部分量", "综合与实践"]} +{"_id": "ff80808146cd510f0146db58cf1f0c99", "question": "两地相距$$480$$千米,甲、乙两辆汽车同时从两地相向开出,$$4$$小时后相遇,已知甲、乙两车速度的比是$$5∶3.$$甲、乙两车每小时各行多少千米?\n ", "answer": "甲车每小时$$75$$千米,乙车每小时$$45$$千米.\n ", "Analysis": "甲乙两车速度和为:$$480\\div 4=120$$(千米/时).按比例分配,甲的速度为$$120\\times\\frac{5}{5+3}=75$$(千米/时),乙的速度为$$120\\times \\frac{3}{5+3}=45$$(千米/时).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "相遇问题求路程和", "直线型行程问题", "相遇问题", "行程应用题", "应用题", "同时出发相向而行", "两人相遇与追及问题", "综合与实践"]} +{"_id": "ff80808146cd510f0146db5dd2e70c9c", "question": "用$$36$$米长的篱笆围成一个长方形菜地,要求长与宽的比是$$5∶4$$,这块菜地的面积是多少平方米?\n ", "answer": "$$80$$平方米.\n ", "Analysis": "长与宽的和为$$36\\div 2=18$$(米).长宽比为$$5:4$$,所以这块菜地的长为$$18\\times \\frac{5}{5+4}=10$$(米),宽为$$18\\times\\frac{4}{5+4}=8$$(米).面积为$$10\\times 8=80$$(平方米).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["量率对应已知单位1", "分数百分数应用题", "分百应用题", "应用题模块", "应用题", "已知单位一和对应分率,求部分量", "综合与实践"]} +{"_id": "ff80808146cd510f0146db5e37d60c9f", "question": "有$$120$$个皮球,分给两个班使用,一班分到的$$\\frac{1}{3}$$与二班分到的$$\\frac{1}{2}$$相等,求两个班各分到多少皮球?\n ", "answer": "一班有$$72$$个,二班有$$48$$个.\n ", "Analysis": "根据题意可知一班与二班分到的球数比$$\\frac{1}{2}:\\frac{1}{3}=3:2$$,所以一班分到皮球$$120\\times \\frac{3}{3+2}=72$$个,二班分到皮球$$120-72=48$$个.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "分百应用题", "量率对应已知单位1"]} +{"_id": "ff80808146dc2afe0146dc4d271e0052", "question": "小李和小张在一个圆形跑道上匀速跑步,两人同时同地出发,小李顺时针跑,每$$72$$秒跑一圈;小张逆时针跑,每$$80$$秒跑一圈.在跑道上划定以起点为中心的$$\\frac{1}{4}$$圆弧区间,那么两人同时在划定的区间内所持续的时间为多少秒?\n ", "answer": "两人同时在规定的区间内所持续的时间为$$3$$,$$9$$,$$11$$,$$18$$秒.\n ", "Analysis": "①如果第一次小李速度$$\\frac{1}{72}$$出划定区域用时为$$\\frac{1}{8}\\div \\frac{1}{72}=9$$,小张速度$$\\frac{1}{80}$$出划定区域用时$$\\frac{1}{8}\\div\\frac{1}{80}=10$$,$$10$$大于$$9$$,所以为$$9$$秒;\n\n②第二次:小李入划定区域用时$$(1-\\frac{1}{4}\\div 2)\\div \\frac{1}{72}=63$$(秒),\n\n出区域时间$$(1+\\frac{1}{4}\\div2)\\div \\frac{1}{72}=81$$(秒);\n\n小张入区域用时$$(1-\\frac{1}{4}\\div 2)\\div \\frac{1}{80}=70$$(秒),\n\n出区域用时$$(1+\\frac{1}{4}\\div 2)\\div \\frac{1}{80}=90$$(秒),\n\n他们在划定区域时间范围$$70~81$$延续时间为$$11$$秒;\n\n③第三次:小李$$135~153$$,小张$$150~170$$范围$$150~153$$时间为$$3$$秒;\n\n④小李入划定区域用时$$(1-\\frac{1}{4}\\div 2)\\div \\frac{1}{72}=63$$(秒),\n\n出区域时间$$(1+\\frac{1}{4}\\div2)\\div \\frac{1}{72}=81$$(秒);\n\n$$81-63=18$$(秒).\n\n第$$720$$秒,它们第一次同时回到起点.因为小张每$$80$$秒跑一圈,所以从开始出发到第一次同时回到起点,小张在跑道上以起点为中心的圆弧区间内行进的时刻为如下区间:\n\n$$0-10$$、$$70-90$$、$$150-170$$、$$230-250$$、$$310-330$$、$$390-410$$、$$470-490$$、$$550-570$$、$$630-650$$、$$710-730$$.\n\n因为小李每$$72$$秒跑一圈,所以从开始出发到第一次同时回到起点,小李在跑道上以起点为中心的圆弧区间内行进的时刻为如下区间:$$0-9$$、$$63-81$$、$$135-153$$、$$207-225$$、$$279-297$$、$$351-369$$、$$423-441$$、$$495-513$$、$$567-585$$、$$639-657$$、$$711-729$$.\n\n上下对比可得两人同时在规定区间内的时间段为$$0-9$$、$$70-81$$、$$150-153$$、$$567-570$$、$$630-639$$、$$711-729$$,那么持续时间可能为$$9$$、$$11$$、$$3$$、$$18$$秒.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "环形跑道中的相遇", "环形相遇同时同地出发", "环形跑道"]} +{"_id": "ff80808146dc2afe0146dc4dda44008f", "question": "$$2011$$年$$4$$月$$16$$日是星期六.求二十一世纪中二月份有五个星期日的年份?\n ", "answer": "$$2004$$,$$2032$$,$$2060$$,$$2088$$.\n ", "Analysis": "根据题意,符合题意的年份必定是闰年(二月有$$29$$天),并且二月一日恰好是星期日,所以得先找到二十一世纪第一个二月一日是星期日的年份.根据题意,$$2011$$年$$4$$月$$16$$日是星期六,可倒推得$$2004$$年$$2$$月$$1$$日是星期日.这样可按每隔$$4\\times 7(=28)$$年为一个周期推算,二十一世纪符合题意的年份有$$2004$$,$$2032$$,$$2060$$和$$2088$$年,共有$$4$$个.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["日期中的周期", "应用题模块", "时间中的周期问题", "周期问题"]} +{"_id": "ff80808146dc2afe0146dc4df56300a0", "question": "甲、乙两人做数学游戏:在黑板上写一个自然数,轮到谁走时,谁就从该自然数中减去它的某个非零数字,并用所得的差替换原数.两人轮流走,谁所得到的数是零,就算谁赢.如果开始在黑板上写着数$$1994$$,并且甲先走,问谁有必胜策略?\n ", "answer": "甲\n ", "Analysis": "甲选择$$4$$,这样$$1994-4=1990$$;由于新数的个位数为$$0$$,乙只能选择减去其它位的数字(比如,$$1990-9=1981$$),这样他得到的新数的个位数必然不是$$0$$.\n 之后,甲又可以选择减去个位数$$\\cdots$$\n 这样进行下去,直到甲减去某个位数后,数变为$$0$$.\n \n从简单做起,发现$$1\\sim 9$$的时候甲直接赢,$$10$$的时候输,因此$$11\\sim 19$$的时候,减去个位就能把$$10$$让给对方,胜利,所以$$20$$也就必输…以此类推,$$30$$、$$40$$、$$…100$$、$$110$$、$$…1990$$都必输,发现$$10$$的倍数后手赢,其它都先手赢.所以$$1994$$甲能赢,先把$$4$$拿走剩的为$$10$$的倍数,无论乙拿什么,甲对应都拿个位上的数.甲必胜.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组合模块", "游戏策略", "数字游戏", "操作与策略"]} +{"_id": "ff80808146dc2afe0146dc5093070150", "question": "在一个西瓜上切$$6$$刀,最多能将瓜皮切成多少片?\n ", "answer": "$$32$$\n ", "Analysis": "将西瓜看做一个球体,球体上任意一个切割面都是圆形,所以球面上的切割线是封闭的圆周,考虑每一次切割能增加多少瓜皮片.当切$$1$$刀时,瓜皮被切成两份,当切第$$2$$刀时,由于切割线相交,所以瓜皮被切成$$4$$分,$$\\cdots$$,切第$$n$$次时,新增加的切割线与原来的切割线最多有$$2\\left( n-1 \\right)$$个交点.这些交点将第$$n$$条切割线分成$$2\\left( n-1 \\right)$$段,也就是说新增加的切割线使瓜皮数量增加了$$2\\left( n-1 \\right)$$,所以在西瓜上切$$6$$刀,最多能将瓜皮切成$$1+1+2\\times 1+2\\times 2+2\\times 3+2\\times 4+2\\times 5=32$$片.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["归纳递推", "组合模块", "线确定点递推", "操作与策略"]} +{"_id": "ff80808146dc2afe0146dc50b8d80168", "question": "圆周上有$$12$$个点,其中一个点涂红,还有一个点涂了蓝色,其余$$10$$个点没有涂色,以这些点为顶点的凸多边形中,其顶点包含了红点及蓝点的多边形称为双色多边形;只包含红点(蓝点)的多边形称为红色(蓝色)多边形.不包含红点及蓝点的称无色多边形.试问,以这$$12$$个点为顶点的所有凸多边形(边数可以从三角形到$$12$$边形)中,双色多边形的个数与无色多边形的个数,哪一种较多?多多少个?\n ", "answer": "双色多边形比无色多边形多$$10+45=55$$个.\n ", "Analysis": "从任意一个双色的$$N$$边形出发($$N\\ge 5$$时),在去掉这个双色多边形中的红色顶点与蓝色顶点后,将得到一个无色的$$N-2$$边形;另一方面,对于一个任意的无色的$$M$$边形,如果加上红色顶点和蓝色顶点,就得到一个双色的$$M+2$$边形,所以无色多边形与双色多边形中的五边形以上的图形是一一对应的关系,所以双色多边形的个数比较多,多的是双色三角形和双色四边形的个数.而双色三角形有$$10$$个,双色四边形有$$C_{10}^{2}=45$$个,所以双色多边形比无色多边形多$$10+45=55$$个.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "排列组合", "组合的基本应用", "组合"]} +{"_id": "ff80808146dc2afe0146dc50d0080171", "question": "三位数中,百位数比十位数大,十位数比个位数大的数有多少个?\n ", "answer": "$$120$$种\n ", "Analysis": "相当于在$$10$$个数字中选出$$3$$个数字,然后按从大到小排列.共有$$10×9×8÷(3×2×1)=120$$种.实际上,前铺中每一种划法都对应着一个数.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组数问题", "计数模块", "有特殊要求的组数问题", "加乘原理"]} +{"_id": "ff80808146dc2afe0146dc51a5e701f3", "question": "一个蓄水池装有$$9$$根水管,其中$$1$$根为进水管,其余$$8$$根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把$$8$$根出水管全部打开,需要$$3$$小时可将池内的水排光;而若仅打开$$3$$根出水管,则需要$$18$$小时.问如果想要在$$8$$小时内将池中的水全部排光,最少要打开几根出水管?\n ", "answer": "$$5$$根\n ", "Analysis": "设$$1$$根排水管$$1$$小时排水为“$$1$$”,进水速度为$$(3\\times 18-8\\times 3)\\div (18-3)=2$$,原有水量为$$(8-2)\\times 3=18$$,如果想要在$$8$$小时内将池中的水全部排光,最少要打开$$18\\div 8+2=4.25$$根出水管,每根出水管$$1$$小时排水$$1$$份,又出水管的根数是整数,故最少要打开$$5$$根出水管.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["其他问题", "牛吃草转化型", "生活中的牛吃草", "牛吃草问题", "应用题模块"]} +{"_id": "ff80808146dc2afe0146dc521d7f0235", "question": "一项工程,乙单独做要$$17$$天完成.如果第一天甲做,第二天乙做,这样交替轮流做,那么恰好用整数天完成;如果第一天乙做,第二天甲做,这样交替轮流做,那么比上次轮流的做法多用半天完工.问:甲单独做需要几天?\n", "answer": "甲单独做需要$$8.5$$天.\n ", "Analysis": "甲、乙轮流做,如果是偶数天完成,\n\n那么乙、甲轮流做必然也是偶数天完成,且等于甲、乙轮流做的天数,与题意不符;\n\n所以甲、乙轮流做是奇数天完成,最后一天是甲做的.\n\n那么乙、甲轮流做比甲、乙轮流做多用半天,这半天是甲做的.\n\n如果设甲、乙工作效率分别为$${V_1}$$和$${V_1}$$,\n\n那么$${V_1} = {V_2} + \\frac{1}{2}{V_1}$$,所以$${V_1} = 2{V_2}$$,\n\n乙单独做要用$$17$$天,甲的工作效率是乙的$$2$$倍,所以甲单独做需要$$17 \\div 2 = 8.5$$(天).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["两人交替工作", "工程应用题", "应用题", "综合与实践"]} +{"_id": "ff80808146dc2afe0146dc5232780245", "question": "一项工程,甲、乙合作$$12\\frac{3}{5}$$小时可以完成,若第$$1$$小时甲做,第$$2$$小时乙做,这样交替轮流做,恰好整数小时做完;若第$$1$$小时乙做,第$$2$$小时甲做,这样交替轮流做,比上次轮流做要多$$\\frac{1}{3}$$小时,那么这项工作由甲单独做,要用多少小时才能完成?\n ", "answer": "这项工作由甲单独做,要用$$21$$小时才能完成.\n ", "Analysis": "若第一种做法的最后一小时是乙做的,那么甲、乙共做了偶数个小时,\n\n那么第二种做法中甲、乙用的时间应与第一种做法相同,不会多$$\\frac{1}{3}$$小时,与题意不符.\n\n所以第一种做法的最后一小时是甲做的,第二种做法中最后$$\\frac{1}{3}$$小时是甲做的,\n\n而这$$\\frac{1}{3}$$小时之前的一小时是乙做的,所以$$v_{乙}+\\frac{1}{3}v_{甲}=v_{甲}$$,得$$ v_{乙}= \\frac{2}{3}v_{甲}$$.\n\n甲、乙工作效率之和为:$$1 \\div 12\\frac{3}{5} = \\frac{5}{{63}}$$,甲的工作效率为:$$\\frac{5}{{63}} \\div (1 + \\frac{2}{3}) = \\frac{3}{{63}} = \\frac{1}{{21}}$$,\n\n所以甲单独做的时间为$$1 \\div \\frac{1}{{21}} = 21$$$$($$小时$$)$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "接力施工问题", "工程问题"]} +{"_id": "ff80808146dc2afe0146dc5233c7024a", "question": "一项工程,甲单独做要$$12$$小时完成,乙单独做要$$18$$小时完成.若甲先做$$1$$小时,然后乙接替甲做$$1$$小时,再由甲接替乙做$$1$$小时,$$\\cdots$$,两人如此交替工作,请问:完成任务时,共用了多少小时?\n ", "answer": "$$14\\frac{1}{3}$$时.\n", "Analysis": "① ��甲、乙两人合作共需多少小时?\n\n$$1 \\div \\left( {\\frac{1}{{12}} + \\frac{1}{{18}}} \\right) = 1 \\div \\frac{5}{{36}} = 7\\frac{1}{5}$$(小时).\n\n②甲、乙两人各单独做$$7$$小时后,还剩多少?\n\n$$1 - 7 \\times \\left( {\\frac{1}{{12}} + \\frac{1}{{18}}} \\right) = 1 - \\frac{{35}}{{36}} = \\frac{1}{{36}}$$.\n\n③余下的$$\\frac{1}{{36}}$$由甲独做需要多少小时?\n\n$$\\frac{1}{{36}} \\div \\frac{1}{{12}} = \\frac{1}{3}$$(时).\n\n④共用了多少小时?\n\n$$7 \\times 2 + \\frac{1}{3} = 14\\frac{1}{3}$$(时).\n\n在工程问题中,转换条件是常用手法.\n\n本题中,甲做$$1$$小时,乙做$$1$$小时,相当于他们合作$$1$$小时,也就是每$$2$$小时,相当于两人合做$$1$$小时.\n\n这样先算一下一共进行了多少个这样的$$2$$小时,余下部分问题就好解决了.\n\n答:完成任务时共用了$$14\\frac{1}{3}$$小时.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["两人交替工作", "工程应用题", "应用题", "综合与实践"]} +{"_id": "ff80808146dc2b120146e67392d00e15", "question": "甲乙丙三人到银行存款,甲存入的款数比乙多$$\\frac{1}{5}$$,乙存入的款数比丙多$$\\frac{1}{5}$$,问甲存入的款数比丙多几分之几?\n ", "answer": "甲存入的款数比丙多$$\\frac{11}{25}$$.\n ", "Analysis": "“甲存入的款数比乙多$$\\frac{1}{5}$$,乙存入的款数比丙多$$\\frac{1}{5}$$”,这两个$$\\frac{1}{5}$$对应着不同的单位“1”,因而如能直接相加.设丙存入的款数为单位“1”,则乙存入的款数为丙的(1+$$\\frac{1}{5}$$),甲存入的款数为丙的(1+$$\\frac{1}{5}$$)×(1+$$\\frac{1}{5}$$),于是,甲存入的款数比丙存入的款数多(1+$$\\frac{1}{5}$$)×(1+$$\\frac{1}{5}$$)-1=$$\\frac{11}{25}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["求分率", "应用题模块", "分百应用题"]} +{"_id": "ff80808146ec1d880147094f2d9d1a32", "question": "王大妈拿了一袋硬币去银行兑换纸币,袋中有一分、二分、五分和一角四种硬币,二分硬币的枚数是一分的$$\\frac{3}{5}$$,五分硬币的枚数是二分的$$\\frac{3}{5}$$,一角硬币的枚数是五分的$$\\frac{3}{5}$$少$$7$$枚.王大妈兑换到的纸币恰好是大于$$50$$小于$$100$$的整元数.问这四种硬币各有多少枚?\n ", "answer": "$$1375,825,495,290$$\n ", "Analysis": "设$$1$$分的硬币有$$x$$个,共计$$\\frac{1}{100}x$$元;则$$2$$分的硬币有$$\\frac{3}{5}x$$,共计$$\\frac{3}{250}x$$元;$$5$$分的硬币有$$\\frac{9}{25}x$$个,共计$$\\frac{9}{500}x$$元;$$1$$角的硬币有$$\\frac{27}{125}x-7$$个,共计$$\\frac{27}{1250}x-0.7$$元.总计共$$\\frac{x}{100}+\\frac{3}{250}x+\\frac{9}{500}x+\\frac{27}{1250}x-0.7=0.0616x-0.7$$元,且$$x$$必为$$125$$的倍数,不妨设$$x=125k$$,则$$0.0616x-0.7=7.7k-0.7$$,为了使其为整数,$$k=1,11,21,\\cdots$$,经检验,只有$$k=11$$时,$$7.7k-0.7=84$$元,在$$50$$到$$100$$之间.当$$k=11$$时,分别可以得到$$1$$分的硬币有$$1375$$枚,$$2$$分的硬币有$$825$$枚,$$5$$分的有$$495$$枚,$$1$$角的$$290$$枚.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "列方程解应用题", "设而不求"]} +{"_id": "ff80808146ec1d880147094feda41a37", "question": "若干人完成了植树$$2013$$棵的任务,每人植树的棵数相同.如果有$$5$$人不参加植树,其余的人每人多植$$2$$棵不能完成任务,而每人多植$$3$$棵可以超额完成任务.问:共有多少人参加了植树?\n", "answer": "$$61$$\n ", "Analysis": "设共有$$a$$人参加植树,每人植$$b$$棵树.\n\n$$a\\times b=2013$$,说明$$a$$是$$2013$$的因数.\n\n$$2013=3\\times 11\\times 61$$,$$2013$$的因数有$$1$$,$$3$$,$$11$$,$$33$$,$$61$$,$$183$$,$$671$$,$$2013$$共$$8$$个.\n\n由题意可知,$$a$$是大于$$5$$,所以$$a$$可以取值$$11$$,$$33$$,$$61$$,$$183$$,$$671$$,$$2013$$.\n\n($$1$$)$$a=11$$时,每人种$$183$$棵树,$$5$$人离开后,有$$11-5=6$$(人),\n\n每人多种$$2$$棵:小于$$2013$$,符合题意;每人多种$$3$$棵:小于$$2013$$,不符合题意.\n\n($$2$$)$$a=33$$时,每人种$$61$$棵树,$$5$$人离开后,有$$33-5=28$$(人),\n\n每人多种$$2$$棵:小于$$2013$$,符合题意;每人多种$$3$$棵:小于$$2013$$,不符合题意.\n\n($$3$$)$$a=61$$时,每人种$$33$$棵树,$$5$$人离开后,有$$61-5=56$$(人),\n\n每人多种$$2$$棵:小于$$2013$$,符合��意;每人多种$$3$$棵:大于$$2013$$,符合题意.\n\n($$4$$)$$a=183$$时,每人种$$11$$棵树,$$5$$人离开后有$$183-5=178$$(人),\n\n每人多种$$2$$棵:大于$$2013$$,不符合题意;\n\n($$5$$)$$a=671$$时,每人种$$3$$棵树,$$5$$人离开后有$$671-5=666$$(人),\n\n每人多种$$2$$棵:大于$$2013$$,不符合题意;\n\n($$6$$)$$a=2013$$时,每人种$$1$$棵树,$$5$$人离开后有$$2013-5=2008$$(人),\n\n每人多种$$2$$棵:大于$$2013$$,不符合题意;\n\n综上,共有$$61$$人参加了植树.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["因数与倍数基础", "已知乘积求因数", "因数与倍数", "分解质因数", "分解质因数的应用", "数论模块"]} +{"_id": "ff8080814715301501471adbde6a04e5", "question": "编号从$$1$$到$$10$$的$$10$$个白球排成一行,现按照如下方法涂红色:1)涂$$2$$个球;2)被涂色的$$2$$个球的编号之差大于$$2.$$那么不同的涂色方法有多少种?\n", "answer": "$$28$$\n ", "Analysis": "设被染色的每两个球中的小号码为$$k$$,则$$k$$取值$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,$$6$$,$$7$$.另一个被染色的球的号码可能是$$k+3$$,$$k+4$$,$$\\cdots \\cdots $$,$$10$$\n\n采用列举法:$$k=1$$时,$$(1,4)$$$$(1,5)$$$$(1,6)$$$$(1,7)$$$$(1,8)$$$$(1,9)$$$$(1,10)$$,共$$7$$种;\n\n$$k=2$$时,$$(2,5)$$$$(2,6)$$$$(2,7)$$$$(2,8)$$$$(2,9)$$$$(2,10)$$,共$$6$$种;\n\n$$k=3$$时,$$(3,6)$$$$(3,7)$$$$(3,8)$$$$(3,9)$$$$(3,10)$$,共$$5$$种;\n\n$$k=4$$时,$$(4,7)$$$$(4,8)$$$$(4,9)$$$$(4,10)$$,共$$4$$种;\n\n$$k=5$$时,$$(5,8)$$$$(5,9)$$$$(5,10)$$,共$$3$$种;\n\n$$k=6$$时,$$(6,9)$$$$(6,10)$$,共$$2$$种;\n\n$$k=7$$时,$$(7,10)$$,共$$1$$种.\n\n不同的染色法数为$$1+2+3+4+5+6+7=28$$(种).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["枚举法综合", "计数模块", "有序枚举", "枚举法"]} +{"_id": "ff8080814715301501471adbfcd604ef", "question": "一次数学竞赛中,参赛各队每题的得分只有$$0$$分,$$3$$分和$$5$$分三种可能.比赛结束时,有三个队的总得分之和为$$32$$分.若任何一个队的总得分都可能达到$$32$$分,那么这三个队的总得分共有多少种不同的情况?\n ", "answer": "$$255$$\n ", "Analysis": "设三队得$$3$$分的题共$$x$$道,得$$5$$分的题共$$y$$道,则$$3x+5y=32$$(分)可得到以下两种情况:\n 1)$$x=9$$,$$y=1$$.此时,相当于三队分$$9$$个$$3$$分和$$1$$个$$5$$分,三个队分$$5$$分的可能共有$$3$$种.当时$$0\\leqslant i\\leqslant 9$$,若某个队得$$i$$个$$3$$分,则另外两个队分$$(9-i)$$个$$3$$分的可能共有$$(10-i)$$种.所以对于$$9$$个$$3$$分共有$$10+9+8+\\cdots +1=55$$(种).\n 分$$9$$个$$3$$分和$$1$$个$$5$$分的总可能有$$55\\times 3=165$$(种).\n 2)此时相当于三队分$$4$$个$$3$$分和$$4$$个$$5$$分.当$$0\\leqslant i\\leqslant 4$$时,若某个队得$$i$$个$$3$$分,则另外两个队分$$(4-i)$$个$$3$$分的可能共有$$(5-i)$$种.所以对于$$4$$个$$3$$分共有$$5+4+3+2+1=15$$(种).\n 甲乙丙三队再分$$4$$个$$5$$分,类似地也有$$15$$种分法.但某队得$$5$$分的个数不少于$$3$$个时,其中的$$3$$个$$5$$分与$$1)$$中的得$$5$$个$$3$$分的得分数一样,所以在$$1)$$中已考虑过.而三个队分$$4$$个$$5$$分,其中有一队得到不少于$$3$$个的分法共$$9$$种.所以三队分$$4$$个$$3$$分和$$4$$个$$5$$分共有$$15\\times (15-9)=90$$(种).\n 综合$$1)$$和$$2$$),三个队的不同的总得分情况共有$$165+90=255$$种.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组合模块", "单循环赛", "体育比赛", "逻辑推理"]} +{"_id": "ff8080814715301501471ce8116006df", "question": "一辆汽车原计划$$6$$小时从$$A$$城到$$B$$城.汽车行驶了一半路程后,因故在途中停留了$$30$$分钟.如果按照原定的时间到达$$B$$城,汽车在后一半路程的速度就应该提高$$12$$千米/时,那么$$A、B$$两城相距多少千米?\n ", "answer": "$$360$$(千米).\n", "Analysis": "汽车行驶了一半路程即行驶了$$3$$小时,那么他后一半路程行驶了$$2.5$$小时,$$2.5$$小时比原来$$2.5$$小时多行驶$$2.5×12=30$$千米.则原来的速度为$$30÷(3-2.5)=60$$(千米).那么$$A、B$$两地相距$$60×6=360$$(千米).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "路程速度时间", "直线型行程问题", "单人变速问题"]} +{"_id": "ff808081471efe4e01472014f3380181", "question": "商店进了一批钢笔,如果用零售价$$7$$元卖出$$20$$支与用零售价$$8$$元卖出$$15$$支所赚的钱数相同.那么每支钢笔的进货价是多少元?\n ", "answer": "$$4$$\n ", "Analysis": "设每支进货价$$x$$元,则可得$$20\\times (7-x)=15\\times (8-x)$$,解得$$x=4$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["以文字题形式运用方程解应用题", "一元一次方程解应用题", "方程法解其他问题", "应用题模块", "应用题", "列方程解应用题", "综合与实践"]} +{"_id": "ff808081471efe4e0147209b743701e9", "question": "小军原有故事书的本数是小力的$$3$$倍,小军又买来$$7$$本书,小力买来$$6$$本书后,小军所有的书是小力的$$2$$倍,两人原来各有多少本书?\n ", "answer": "小力原有故事书$$5$$本,小军原有故事书$$15$$本.\n ", "Analysis": "设小力原有故事书$$x$$本,则小军原有故事书$$3x$$本\n\n$$3x+7=2(x+6)$$\n\n$$3x-2x=2\\times 6-7$$\n\n$$x=5$$\n\n$$3\\times5=15$$(本)\n\n答:小力原有故事书$$5$$本,小军原有故事书$$15$$本.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "列方程解应用题", "一元一次方程解应用题"]} +{"_id": "ff808081472482f501473260b8ff0ae1", "question": "甲、乙两人同时从$$A$$地出发到$$B$$地,经过$$3$$小时,甲先到$$B$$地,乙还需要$$1$$小时到达$$B$$地,此时甲、乙共行了$$35$$千米.求 $$A$$、$$B$$两地间的距离.\n", "answer": "$$A$$、$$B$$两地间的距离是$$20$$千米.\n", "Analysis": "若要走完全程,甲需$$3.$$小时,乙需$$4$$小时,\n\n根据反比例模型可知甲、乙速度之比为$$4:3$$,\n\n而实际上甲、乙都是走了$$3$$小时,\n\n根据正比例模型可知甲、乙走过的路程之比为$$4:3$$,一共为$$35$$千米,\n\n那么甲走了$$35\\div \\left( 4+3 \\right)\\times 4=20$$(千米),此即为$$A$$、$$B$$两地的距离.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["用公式直接求路程", "行程应用题", "应用题", "综合与实践"]} +{"_id": "ff808081472482f50147293a87b003a0", "question": "已知$${{a}_{1}},{{a}_{2}},{{a}_{3}},{{a}_{4}},{{a}_{5}},{{a}_{6}},{{a}_{7}}$$是彼此互不相等的正整数,它们的和等于$$159$$,求其中最小数$${{a}_{1}}$$的最大值.\n ", "answer": "$$19$$\n ", "Analysis": "设$${{a}_{1}}<{{a}_{2}}<{{a}_{3}}<{{a}_{4}}<{{a}_{{}}}5<{{a}_{6}}d$$,$$a+8=d+10$$,$$a=d+2$$,按照减法继续十位运算可得,$$c-1=b$$,继续百位运算可得$$b=c$$.矛盾.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["构造与论证", "位值原理运用", "组合模块", "数论模块", "位值原理与进制", "位值原理的综合应用"]} +{"_id": "ff80808147248448014724de39470140", "question": "十个互不相同的非零自然数之和等于$$102,$$那么其中最大的两个数之和的最大值等于多少?其中最小的两个数之和的最小值等于多少?\n ", "answer": "$$66$$,$$3$$\n ", "Analysis": "最大的两个数之和的最大值$$102-(1+2+3+4+5+6+7+8)=102-36=66$$,最小的两个数之和的最小值$$1+2=3$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组合模块最值问题", "组合模块", "枚举型最值问题"]} +{"_id": "ff80808147248448014724de3a410144", "question": "记一千个自然数$$x$$,$$x+1$$,$$x+2$$,......,$$x+999$$的和为$$a$$,如果$$a$$的数字和等于$$50$$,则$$x$$最小为多少?\n ", "answer": "$$99500$$ .\n", "Analysis": "根据等差数列求和公式,这一千个数的和为$$1000x+499500$$,要让这个数的各位数字和为$$50$$且数字最小,要让各位数字尽量大,数位尽量少;由于这个数的末三位是$$5$$,$$0$$,$$0$$,则当前面再有$$4$$个$$9$$的时候位数最少且数字和达到$$50$$.故这个和为$$99999500$$是最好的,则$$1000x=99999500-499500=99500000$$,故$$x=99500$$为最小情况.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["数列与数表", "等差数列求和", "计算模块", "等差数列"]} +{"_id": "ff80808147248448014724de3ab90146", "question": "已知$$99$$个互不相同的奇数$${{p}_{1}}$$,$${{p}_{2}}$$,$${{p}_{3}}$$,$$\\cdots$$,$${{p}_{99}}$$,记$$N={{p}_{1}}^{2}+{{p}_{2}}^{2}+\\cdots +{{p}_{99}}^{2}$$,问:$$N$$被$$3$$除的余数是多少?\n ", "answer": "$$0$$或$$1$$或$$2$$.\n ", "Analysis": "奇数表示成$$2k+1$$的形式,$${{(2k+1)}^{2}}=4{{k}^{2}}+4k+1=3({{k}^{2}}+k)+k+1$$,即除以$$3$$余$$k+1$$,即余数有可能为$$0$$,有可能为$$1$$,也有可能为$$2$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["完全平方数", "平方数的余数特征", "平方数除以3的余数", "数论模块"]} +{"_id": "ff80808147248448014724de4eff0152", "question": "设$$n$$是小于$$50$$的自然数,求使得$$3n+5$$和$$5n+4$$有大于$$1$$的公因数的所有$$n$$.\n", "answer": "$$7$$,$$20$$,$$33$$,$$46$$\n ", "Analysis": "对于小于$$50$$的自然数$$n$$,设$$d$$是$$3n+5$$和$$5n+4$$大于$$1$$的公因数,则$$d$$整除$$5(3n+5)-5(5n-4)$$,所以$$d=13$$,进而$$13\\left| 3n+5 \\right.$$,$$13\\left| 5n+4 \\right.$$,所以$$13\\left|[2(3n+5)-(5n+4)] \\right.$$,$$13\\left| (n+6 \\right.)$$,所以$$n$$为$$7$$,$$20$$,$$33$$,$$46$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["因数", "数的认识", "数的特征", "两个数的公因数"]} +{"_id": "ff80808147248448014724de526f015f", "question": "小明与小华同在小六$$(1)$$班,该班学生人数介于$$20$$和$$30$$之间,且每个人的出生日期均不相同.小明说:“本班比我大的人数是比我小的人数的两倍”小华说:“本班比我大的人数是比我小的人数的的三倍”,问这个班有多少名学生?\n ", "answer": "$$25$$\n ", "Analysis": "根据小明说“本班比我大的人数是比我小的人数的两倍”,且出生日期各不相同(也就是没有一样大的),可知,班上的总人数减去小明后能分成$$3$$等份,故能被$$3$$整除,而总人数是$$20$$到$$30$$之间,因此,减去一人后就是$$19$$到$$29$$之间,且能被$$3$$整除,故只有$$21$$,$$24$$,$$27$$,同理,再根据小华所说的,班上总人数减去$$1$$人后还能分成$$4$$等分,也就是能被$$4$$整除,上述三个数只有$$24$$满足条件,故,班上总人数应该是$$24+1=25$$人.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整除特征", "整除特征综合", "数论模块", "整除"]} +{"_id": "ff80808147342b05014738d6be3303e3", "question": "用四个数字$$4$$和一些加、减、乘、除号和括号,写出四个分别等于$$3$$、$$4$$、$$5$$和$$6$$的算式.\n ", "answer": "$$(4+4+4)\\div 4=3$$;$$4+(4-4)\\times4=4$$;$$(4\\times 4+4)\\div 4=5$$;$$4+(4+4)\\div4=6$$.\n ", "Analysis": "难度不是很大,就是要学会多尝试.\n\n因为$$12\\div 4=3$$,$$4+4+4=12$$,所以可以写成$$\\left( 4+4+4 \\right)\\div 4=3$$;\n\n因为$$4\\times (4-4)=0$$,$$4+0=4$$,所以可以写成$$4+\\left( 4-4 \\right)\\times 4=4$$;\n\n因为$$4\\times 4+4=20$$,$$20\\div 4=5$$,所以可以写成$$(4\\times 4+4)\\div 4=5$$;\n\n因为$$2+4=6$$,$$(4+4)\\div 4=2$$,所以可以写成$$\\left( 4+4 \\right)\\div 4+4=6$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["等式填符号", "必填符号型", "数字谜", "组合模块", "巧填算符"]} +{"_id": "ff80808147342b7e01473de2b2010ffc", "question": "在一个盛有部分水的长方体容器中,插有两根���棒,木棒漏在外面的长度比是$$3:7$$,当水面的高度升高$$10$$厘米后,木棒露在外面的长度比变为$$2:5$$,当$$2: 5$$木棒露在外面的长度比变成$$1:3$$时,还需要升高 ___          ___ 厘米的水.\n", "answer": "$$20$$", "Analysis": "设两根木棒长度分别为$$3a$$和$$7a$$,则$$\\frac { 3a-10 }{ 7a-10 } =\\frac { 2 }{ 5 } $$,解得$$a=30$$,所以水面升高$$10$$厘米后,两根木棒露在外面的长度为$$3\\times 30-10=80$$和$$7\\times 30-10=200$$;设当长度比变为$$1:3$$时,还需升高$$x$$厘米,则$${ (80-x) }$$:$${( 200-x) } =\\frac { 1 }{ 3 } $$,解得$$x=20$$,所以还需升高$$20$$厘米的水.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["方程法解其他问题", "应用题模块", "列方程解应用题", "一元一次方程解应用题"]} +{"_id": "ff80808147342bac0147429bfccf1b06", "question": "水泊梁山共聚$$108$$名将领,受招安后奉命征讨“方腊”(人名).征讨过程中战死将领占总人数的$$\\frac { 35 }{ 54 } $$,征讨得胜后辞官将领占总人数的$$\\frac { 1 }{ 18 } $$,那么,队伍中还有 ___          ___ 名将领.\n ", "answer": "$$32$$", "Analysis": "战死将领有$$108\\times \\frac { 35 }{ 54 } =70$$(名)\n\n辞官将领有$$108\\times \\frac { 1 }{ 18 } =6$$(名)\n\n所以队伍中还有将领$$108-70-6=32$$(名)\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "分百应用题", "量率对应已知单位1"]} +{"_id": "ff80808147342bac01475bef2a763ca8", "question": "甲、乙、丙、丁四人分$$2013$$块糖果,甲分得的糖果比乙的$$2$$倍多$$10$$块,比丙的$$3$$倍多$$18$$块,比丁的$$5$$倍少$$55$$块.那么甲分得糖果多少块?\n ", "answer": "$$990$$\n ", "Analysis": "由甲是乙的$$2$$倍多$$10$$块,是丙的$$3$$倍多$$18$$块,是丁的$$5$$倍少$$55$$块,\n\n得甲$$-10=2\\times $$乙,甲$$-18=3\\times $$丙,甲$$+55=5\\times $$丁,\n\n即甲$$\\times 15-150=30\\times $$乙,甲$$\\times 10-180=30\\times$$丙,甲$$\\times 6+330=30\\times $$丁.\n\n三式相加得甲$$\\times 31=$$乙$$\\times 30+$$丙$$\\times 30+$$丁$$\\times 30$$,\n\n即甲$$\\times 61=30\\times $$甲$$+30\\times $$乙$$+30\\times $$丙$$+30\\times $$丁①,\n\n又甲$$+$$乙$$+$$丙$$+$$丁$$=2013$$,\n\n所以$$30\\times $$甲$$+30\\times $$乙$$+30\\times $$丙$$+30\\times $$丁$$=30\\times 2013$$②,\n\n将②代入①得$$61\\times $$甲$$=30\\times 2013=30\\times 33\\times 61$$.\n\n所以,甲$$=30\\times33=990$$.\n\n乙是甲的$$\\frac{1}{2}$$少$$5$$块,丙是甲的$$\\frac{1}{3}$$少$$6$$块,丁是甲的$$\\frac{1}{5}$$多$$11$$块,\n\n$$2013\\div (1+\\frac{1}{2}+\\frac{1}{3}+\\frac{1}{5})=990$$(块).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多量和倍", "多量和倍问题", "和倍问题", "和差倍问题", "应用题模块"]} +{"_id": "ff808081475cebd301476124839f0910", "question": "京新小学六年级有两个班共有学生$$90$$人,期末两个班共选出三好学生$$14$$人,其中从甲班选出$$\\frac{1}{6}$$,从乙班选出$$\\frac{1}{7}$$,两班各有学生多少人?\n ", "answer": "$$48$$、$$42$$\n ", "Analysis": "此题可以从多角度思考解答.\n 假设从两个班都选出$$\\frac{1}{6}$$,$$90\\times\\frac{1}{6}=15()$$,比实际$$14$$人多$$1$$人,这是因为把$$\\frac{1}{7}$$看作$$\\frac{1}{6}$$,多出$$(\\frac{1}{6}-\\frac{1}{7})=\\frac{1}{42}$$,就是$$1$$人对应率,找到这个关系即可解决此问题.\n 列式:$$(90\\times\\frac{1}{6}-14)\\div (\\frac{1}{6}-\\frac{1}{7})$$\n $$=1\\div \\frac{1}{42}$$\n $$=42(人)$$——————乙班人数\n $$90-42=48$$(人)————甲班人数\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["量率对应求单位一", "分数百分数应用题", "量率对应求单位1", "分百应用题", "应用题模块", "应用题", "综合与实践"]} +{"_id": "ff808081477bd84c014790a041553462", "question": "某小学六年级有$$6$$个班,每个班各有$$40$$名学生,现要在六年级的$$6$$个班中随机抽取$$2$$个班,参加电视台的现场娱乐活动,活动中有$$1$$次抽奖活动,将抽取$$4$$名幸运观众,那么六年级学生小宝成为幸运观众的概率为多少?\n ", "answer": "$$\\frac{1}{60}$$\n ", "Analysis": "小宝所在班级被抽中参加娱乐活动的概率为$$\\frac{\\text{C}_{5}^{1}}{\\text{C}_{6}^{2}}=\\frac{5}{15}=\\frac{1}{3}$$,如果小宝参加了娱乐活动,那么小宝成为幸运观众的概率为$$\\frac{4}{40\\times 2}=\\frac{1}{20}$$,所以小宝成为幸运观众的概率为$$\\frac{1}{3}\\times\\frac{1}{20}=\\frac{1}{60}$$.\n \n小宝所在班级被抽中参加娱乐活动的概率为$$\\frac{5}{6\\times 5\\div 2}=\\frac{1}{3}$$,如果小宝参加了娱乐活动,那么小宝成为幸运观众的概率为$$\\frac{4}{40\\times 2}=\\frac{1}{20}$$, 所以小宝成为幸运观众的概率为$$\\frac{1}{3}\\times \\frac{1}{20}=\\frac{1}{60}$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "统计与概率", "计数求概率", "概率"]} +{"_id": "ff808081477bd84c014790a042693466", "question": "在某个池塘中随机捕捞$$100$$条鱼,并给鱼作上标记后放回池塘中,过一段时间后又再次随机捕捞$$200$$尾,发现其中有$$25$$条鱼是被作过标记的,如果两次捕捞之间鱼的数量没有增加或减少,那么请你估计这个池塘中一共有鱼多少尾?\n ", "answer": "$$800$$\n ", "Analysis": "$$200$$尾鱼中有$$25$$条鱼被标记过,没所以池塘中鱼被标记的概率的实验得出值为$$25\\div 200=0.125$$,\n 所以池塘中的鱼被标记的概率可以看作是$$0.125$$,池塘中鱼的数量约为$$100\\div 0.125=800$$尾.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "统计与概率", "概率基本概念", "概率"]} +{"_id": "ff808081477bd84c014790a042e53468", "question": "分别先后掷$$2$$次骰子,点数之和为$$6$$的概率为多少?点数之积为$$6$$的概率为多少?\n ", "answer": "$$\\frac{5}{36}$$,$$\\frac{1}{9}$$\n ", "Analysis": "根据乘法原理,先后两次掷骰子出现的两个点数一共有$$6\\times 6=36$$.\n 将点数为$$6$$的情况全部枚举出来有:\n $$\\left( 1,5 \\right)\\left( 2,4 \\right)\\left(3,3 \\right)\\left( 4,2 \\right)\\left( 5,1 \\right)$$\n 点数之积为$$6$$的情况为:\n $$\\left( 1,6 \\right)\\left( 2,3 \\right)\\left(3,2 \\right)\\left( 6,1 \\right)$$\n 两个数相加和为$$6$$的有$$5$$组,一共是$$36$$组,所以点数之和为$$6$$的概率是$$\\frac{5}{36}$$;\n 点数之积为$$6$$的概率为$$\\frac{4}{36}=\\frac{1}{9}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "统计与概率", "概率", "掷骰子", "典型问题"]} +{"_id": "ff808081477bd84c014790a04362346a", "question": "冬冬与阿奇做游戏:由冬冬抛出$$3$$枚硬币,如果抛出的结果中,有$$2$$枚或$$2$$枚以上的硬币正面朝上,冬冬就获胜;否则阿奇获胜.请问:这个游戏公平吗?\n ", "answer": "公平.\n", "Analysis": "$$3$$枚硬币中,必有$$2$$枚同正或同反(抽屉原理),即冬冬获胜或失败的机率是一样的,因此游戏公平.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["基本概率", "计数模块", "统计与概率", "概率", "可能性"]} +{"_id": "ff808081477bd84c014790a0440b346c", "question": "气象台预报“本市明天降雨概率是$$80\\%”$$.对此信息,下列说法中正确的是(      ).\n ", "answer": "D", "Analysis": "降水概率指的是可能性的大小,并不是降水覆盖的地区或者降水的时间.$$80\\%$$的概率也不是指肯定下雨,$$100\\%$$的概率才是肯定下雨.$$80\\%$$的概率是说明有比较大的可能性下雨.\n ", "options": "A:本市明天将有$$80\\%$$的地区降水.\n \nB:本市明天将有$$80\\%$$的时间降水.\n \nC:明天肯定下雨.\n\nD:明天降水的可能性比较大.\n", "logicQuesTypeName": "单选", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["基本概率", "计数模块", "统计与概率", "概率", "可能性"]} +{"_id": "ff808081477bd84c014790a044b9346e", "question": "设每门高射炮击中敌机的概率为$$0.6$$,今欲以$$99\\%$$的把握击中敌机,则至少应配备几门高射炮同时射击?\n ", "answer": "$$6$$\n ", "Analysis": "如果只配一门高射炮,那么未击中的概率为$$0.4$$,\n 配备两门高射炮那么未击中的概率为$$0.4\\times 0.4=0.16$$,\n 如果配备三门高射炮,那么未击中的概率为$$0.4\\times 0.4\\times 0.4=0.064$$,\n 如果配备四门高射炮,那么未击中的概率为$$0.4\\times 0.4\\times 0.4\\times 0.4=0.0256$$,\n 如果配备五门高射炮,那么未击中的概率为$$0.4\\times 0.4\\times 0.4\\times 0.4\\times 0.4=0.01024$$,\n 如果配备六门高射炮,那么未击中的概率为$${{0.4}^{6}}=0.004096$$.\n 所以至少配备$$6$$门高射炮,同时射击.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "统计与概率", "概率基本概念", "概率"]} +{"_id": "ff808081477bd88b01479415b1a12e58", "question": "从连续自然数$$1$$,$$2$$,$$3$$,...,$$2014$$中取出$$n$$个数,使这$$n$$个数满足:任意取其中两个数,不会有一个数是另一个数的$$5$$倍.试求$$n$$的最大值,并说明理由.\n ", "answer": "$$1679$$\n ", "Analysis": "尽可能多取数($$1$$)$$2014\\div 5=402\\cdots 4$$,从$$2014$$取到$$403$$,有$$2014-402=1612$$个数;($$2$$)$$402\\div5=80\\cdots 2$$,$$402$$到$$81$$不取;($$3$$)$$80\\div 5=16$$,从$$80$$取到$$17$$,有$$80-16=64$$个数;($$4$$)$$16\\div 5=3\\cdots 1$$,$$16$$到$$4$$不取;($$5$$)最后取$$3$$、$$2$$、$$1$$;$$n=1612+64+3=1679$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["因数与倍数基础", "数论模块", "因数与倍数"]} +{"_id": "ff808081477bd88b01479417a3132e84", "question": "小明拿着$$100$$元人民币去商店买文具,回来后数了数找回来的人民币有$$4$$张不同面值的纸币,$$4$$枚不同的硬币.纸币面值大于等于一元,硬币的面值小于一元,并且所有纸币的面值和以“元”为单位可以被$$3$$整除,所有硬币的面值的和以“分”为单位可以被$$7$$整除,问小明最多用了多少钱?(注:商店有面值为$$100$$元、$$50$$元、$$20$$元、$$10$$元、$$5$$元和$$1$$元纸币,面值为$$5$$角、$$1$$角、$$5$$分、$$2$$分和$$1$$分的硬币找零)\n ", "answer": "$$63.37$$\n ", "Analysis": "找的纸币是$$50$$、$$20$$、$$10$$、$$5$$、$$1$$元中的四种,找的硬币是$$50$$、$$10$$、$$5$$、$$2$$、$$1$$分中的四种,$$50+20+10+5+1=86$$,$$86-m\\equiv 0(\\bmod 3)$$,最大$$m=50$$,$$50+10+5+2+1=68$$,$$68-n\\equiv0(\\bmod 7)$$,最大$$n=5$$,所以找回的一共是$$(86-50)+(68-5)\\div 100=36.63$$,一共花了$$100-36.63=63.37$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "枚举法综合", "付钱的方法", "枚举法", "付钱方法枚举"]} +{"_id": "ff808081477bd88b0147a943a2764c4a", "question": "$$14$$个大、中、小号钢珠共重$$100$$克,大号钢珠每个重$$12$$克,中号钢珠每个重$$8$$克,小号钢珠每个重$$5$$克.问:大、中、小号钢珠各有多少个?\n ", "answer": "大、中、小号钢珠分别有$$3$$个、$$3$$个和$$8$$个.\n ", "Analysis": "设大、中、小号钢珠分别有$$x$$个,$$y$$个和$$z$$个,则:$$\\left\\{ \\begin{align}& x+y+z=14\\cdots \\cdots \\cdots \\cdots (1)\\\\ & 12x+8y+5z=100\\cdots \\cdot (2) \\\\ \\end{align} \\right.$$    $$(2)-(1)\\times 5$$,得$$7x+3y=30$$.可见$$7x$$是$$3$$的倍数,又是$$7$$的倍数,且小于$$30$$,所以只能为$$21$$,故$$x=3$$,代入得$$y=3$$,$$z=8$$.所以大、中、小号钢珠分别有$$3$$个、$$3$$个和$$8$$个.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "不定方程解应用题", "列方程解应用题"]} +{"_id": "ff808081477bd88b0147a943cb774c4c", "question": "每辆大汽车能容纳$$54$$人,每辆小汽车能容纳$$36$$人.现有$$378$$人,要使每个人都上车且每辆车都装满,需要大、小汽车各几辆?\n ", "answer": "大汽车$$1$$辆,小汽车$$9$$辆;或大汽车$$3$$辆,小汽车$$6$$辆;或大汽车$$5$$辆,小汽车$$3$$辆;或大汽车$$7$$辆.\n ", "Analysis": "设需要大、小汽车分别为$$x$$辆、$$y$$辆,则有:$$54x+36y=378$$,可化为$$3x+2y=21$$.\n 可以看出$$y$$是$$3$$的倍数,又不超过$$10$$,所以$$y$$可以为$$0$$、$$3$$、$$6$$或$$9$$,将$$y=0$$、$$3$$、$$6$$、$$9$$分别代入可知有四组解:$$\\left\\{ \\begin{align}& x=1 \\\\ & y=9 \\\\ \\end{align} \\right.$$;或$$\\left\\{\\begin{align}& x=3 \\\\ & y=6 \\\\ \\end{align} \\right.$$;或$$\\left\\{\\begin{align}& x=5 \\\\ & y=3 \\\\ \\end{align} \\right.$$;或$$\\left\\{\\begin{align}& x=7 \\\\ & y=0 \\\\ \\end{align} \\right.$$\n 即需大汽车$$1$$辆,小汽车$$9$$辆;或大汽车$$3$$辆,小汽车$$6$$辆;或大汽车$$5$$辆,小汽车$$3$$辆;或大汽车$$7$$辆.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "不定方程解应用题", "列方程解应用题"]} +{"_id": "ff808081477bd88b0147af0875ff61f0", "question": "某商品按照零售价$$10$$元卖出$$20$$件所得到的利润和按照零售价$$9$$元卖出$$30$$件所得到的利润相等,求该商品的进货价.\n ", "answer": "该商品的进货价$$7$$元.\n ", "Analysis": "该商品按照零售价$$10$$元所得利润和按照$$9$$元所得的利润之比为$$30:20=3:2$$,\n 所以按照第一种方式得利润为$$\\left(10-9 \\right)\\div \\left( 3-2 \\right)\\times 3=3$$元,\n 该商品的进货价为$$10-3=7$$元.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["售价、利润、成本关系的问题", "经济问题", "应用题", "综合与实践"]} +{"_id": "ff808081477bd88b0147b35e0bec67c7", "question": "某商店卖出一支钢笔的利润是$$9$$元,一个小熊玩具的进价为$$2$$元.一次,商家采取“买$$4$$支钢笔赠送一个小熊玩具”的打包促销,共获利润$$1922$$元.问这次促销最多卖出了 ___          ___ 支钢笔.\n", "answer": "$$226$$", "Analysis": "$$1922\\div (4\\times 9-2)=56\\cdots 18$$;$$56\\times 4+18\\div9=226$$(支).\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["复杂的经济问题", "应用题模块", "经济问题"]} +{"_id": "ff80808147c465b80147c6859e880373", "question": "某商品按每个$$5$$元的利润卖出$$4$$个的钱数,与按每个$$20$$元的利润卖出$$3$$个的钱数一样多,这种商品每个成本是多少元?\n ", "answer": "$$40$$\n ", "Analysis": "解法一:根据题意存在下面的关系($$5$$元$$+$$成本)$$\\times4=($$$$20$$元$$+$$成本)$$\\times3$$,经过倒推可以列式子为:$$\\left( 20\\times 3-5\\times 4 \\right)\\div \\left( 4-3 \\right)=40$$(元),所以成本为$$40$$元.\n\n解法二:成本不变,每件利润多$$20-5=15$$(元),$$3$$件多$$15\\times 3=45$$(元),多与少恰好相等,少卖$$1$$个少$$45$$元,原价利润$$5$$元$$+$$成本,成本为$$45-5=40$$(元).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["已知售价利润求成本", "应用题模块", "基本经济概念", "经济问题"]} +{"_id": "ff8080814613dd5801461f0054600c07_1", "question": "计算:\n \n小明有$$10$$块糖,每天至少吃$$1$$块,$$8$$天吃完,共有多少种不同吃法?\n ", "answer": "$$36$$\n ", "Analysis": "将$$10$$拆成$$8$$个自然数的和,\n 有两种拆法,$$10=1+1+1+1+1+1+1+3=1+1+1+1+1+1+2+2$$.\n 若$$8$$天中有$$7$$天每天吃一块,另外一天吃三块,有$$8$$种吃法.\n 若$$8$$天中有$$6$$天每天吃一块,另外$$2$$天每天吃两块,有$$8×7÷2=28$$种吃法.\n $$8+28=36$$,所以共有$$36$$种吃法.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "至少1个", "抽象概括", "计数模块", "插板法", "组合", "能力", "对应思想", "排列组合"]} +{"_id": "ff8080814613dd5801461f0054600c07_2", "question": "计算:\n \n小明有$$10$$块糖,每天至少吃$$1$$块,$$8$$天或$$8$$天之内吃完,共有多少种吃法?\n ", "answer": "$$502$$\n ", "Analysis": "考虑有n块糖,每天至少吃$$1$$块,n天之内吃完的情况.将n块糖排成一行,这样在n块糖之间就产生了n-$$1$$个空隙.可以在这些空隙中插入竖线,如果一条竖线都没有插,就代表着$$1$$天把所有的糖吃完.如果每个空隙都插入竖线,就代表着每天吃一块糖,n天吃完.每个空隙都可以选择插或者不插,这样每一种插法都代表着一种吃法.由于每个空隙都有插或者不插两个选择,所以n-$$1$$个空隙就有$$2n-1$$种插法,即n块糖每天至少吃$$1$$块,一共有$$2n-1$$种不同的吃法.当有$$10$$块糖时,$$10$$天之内吃完共有$$29=512$$种吃法.\n $$10$$块糖$$9$$天吃完时,其中$$1$$天要吃$$2$$块,其余$$8$$天每天吃$$1$$块,共有$$9$$种吃法.$$10$$块糖$$10$$天吃完时,每天吃$$1$$块,有$$1$$种吃法.$$512-9-1=502$$,所以$$10$$块糖$$8$$天或$$8$$天之内吃完,共有$$502$$种吃法.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "至少1个", "抽象概括", "计数模块", "插板法", "组合", "能力", "对应思想", "排列组合"]} +{"_id": "ff80808146233fe101462754e6010419", "question": "在周长为$$200$$米的圆形跑道—条直径的两端,甲、乙两人分别以$$6$$米/秒,$$5$$米/秒的骑车速度同时同向出发,沿跑道行驶.问:$$16$$分钟内,甲追上乙多少次?\n ", "answer": "$$5$$次.\n", "Analysis": "甲、乙二人第一次相遇时,一共走过的路程是$$\\frac{{200}}{2}=100$$(米).所需要的时间是$$\\frac{{100}}{{11}}$$(秒)以后,两人每隔$$\\frac{{200}}{2}$$(秒)相遇一次因为$$1 + \\frac{{60 \\times 16 - \\frac{{100}}{{11}}}}{{\\frac{{200}}{{11}}}}=53.3$$,\n\n$$16$$分钟内二人相遇$$53$$次.\n\n甲第一次追上乙,需要比乙多跑半圈;以后每次追上乙需要比乙多跑$$1$$圈.\n\n第一次追上用时,$$200\\div 2\\div \\left( 6-5 \\right)=100$$(秒);\n\n以后每次追上用时,$$200\\div \\left( 6-5 \\right)=200$$(秒);\n\n$$\\left( 16\\times 60-100 \\right)\\div 200+1=5.3$$,所以$$16$$分钟内能追上$$5$$次.\n\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "环形追及同时同地出发", "环形跑道", "环形跑道中的追及"]} +{"_id": "ff8080814623402701462cc5f4130c31", "question": "学校合唱团要从$$6$$个班中补充$$8$$名同学,每个班至少$$1$$名,共有多少种抽调方法?\n ", "answer": "$$21$$\n ", "Analysis": "插板法,$$8$$名同学之间有$$7$$个空,插$$5$$块板,一共有$$\\text{C}_{7}^{5}=\\text{C}_{7}^{2}=\\frac{7\\times 6}{2\\times 1}=21$$(种)方法.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["至少1个", "计数模块", "插板法", "组合", "排列组合"]} +{"_id": "ff8080814623402701462cc8546a0ce9", "question": "大于$$2000$$小于$$3000$$的四位数中数字和等于$$9$$的数共有多少个?\n ", "answer": "$$36$$\n ", "Analysis": "大于$$2000$$小于$$3000$$的四位数,首位数字只能为$$2$$,所以后三位数字之和为$$7$$,后三位数字都有可能为$$0$$,为使用隔板法,先将它们变成至少为$$1$$的数,可以将每个数都加上$$1$$,这样它们的和为$$10$$,且每个数都至少为$$1$$,那么采用隔板法,相当于在$$9$$个间隔中选择$$2$$个插入隔板,有$$\\text{C}_{9}^{2}=36$$种方法,所以满足题意的四位数有$$36$$个.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["无限制", "计数模块", "插板法", "组合", "排列组合"]} +{"_id": "ff80808146ec1d880147094f79ad1a34", "question": "用$$4$$个数码$$4$$和一些加、减、乘、除号和小括号,写出值分别等于$$2$$、$$3$$、$$4$$、$$5$$、$$6$$的五个算式.\n ", "answer": "$$4\\div 4+4\\div 4=2$$;$$(4+4+4)\\div4=3$$;$$4+(4-4)\\times 4=4$$;$$(4\\times 4+4)\\div 4=5$$;$$4+(4+4)\\div4=6$$.\n ", "Analysis": "难度不是很大,就是要学会多尝试.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["等式填符号", "必填符号型", "数字谜", "组合模块", "巧填算符"]} +{"_id": "ff80808147248448014724de517a015b", "question": "不为零的自然数$$n$$既是$$2010$$个数字和相同的自然数之和,也是$$2012$$个数字和相同的自然数之和,还是$$2013$$个数字和相同的自然数之和,那么$$n$$最小是多少?\n ", "answer": "$$6036$$ .\n", "Analysis": "一个整数能被$$3$$整除的判断方法:若某数的各个数位上的数字和能被$$3$$整除,则此数就能被$$3$$整除.\n\n既然$$n$$是$$2010$$个数字和相同的自然数之和,那么,所有这些数的和也就是$$n$$必可被$$3$$整除,因为,我们在算这$$2010$$个自然数的数字和时,只需要用$$2010$$乘那个相同的数字和就可以了,而$$2010$$的数字和为$$3$$,是可以被$$3$$整除的,故,这$$2010$$个自然数之和也是能被$$3$$整除的.这是关键性的一步,也是出题者用心良苦所设的一个不大不小的陷阱$$----$$综合观察思考能力.注意到$$2013$$也能被$$3$$整除,而$$2012$$不能被$$3$$整除,故,我们从$$2012$$着手分析.由于$$n$$也是$$2012$$个数字和相同的自然数之和,因此,$$2012$$个数字和相同的自然数之和也能被$$3$$整除,因$$2012$$不能被$$3$$整除,故只能是那个“相同的数字和”能被$$3$$整除,故$$n$$最小只可能是$$2012$$个$$3$$之和,也就是$$n=2012\\times 3=6036$$,不可能更小了.接下来要验证的是$$6036$$也能表示成$$2010$$个及$$2013$$个数字和相同的自然数之和,如果$$6036$$不行,那么$$n$$必为$$6036$$的整数倍,再换成它的$$2$$倍、$$3$$倍等去试.这个,只要我们能具体构造出来就解决问题了.\n\n由于有了目标$$n=6036$$,故$$2013$$个数字和相同的自然数的数字和取为$$1$$好一点,$$2010$$个的数字和取为$$2$$.\n\n于是问题转化为是否存在$$2010$$个数字和为$$2$$的自然数之和等于$$6036$$,及是否存在$$2013$$个数字和为$$1$$的自然数之和等于$$6036$$.\n\n为了使问题简单化,我们先尝试一下由$$x$$个$$20$$,$$y$$个$$2$$能否组成$$6036$$,可列方程如下:\n\n$$\\begin{cases}x+y=2010 \\\\ 20x+2y=6036\\end{cases}$$\n\n解之得:$$x=112$$,$$y=1898$$,也就是$$6036$$可由$$112$$个$$20$$与$$1898$$个$$2$$相加得到.\n\n如果上述方程组无自然数解怎么办?可以假设有一个数是$$2000$$等等去尝试,其实,能组成$$6036$$的上述答案不是唯一的.\n\n同样道理,我们来看看$$2013$$个数字和为$$1$$的自然数的情况:设共有$$x$$个$$10$$,$$y$$个$$1$$,于是\n\n$$\\begin{cases}x+y=2013 \\\\ 10x+y=6036\\end{cases}$$\n\n解之得:$$x=447$$,$$y=1566$$,也就是$$6036$$可由$$447$$个$$10$$与$$1566$$个$$1$$相加得到.\n\n由于都能构造出来,说明满足条件的最小$$n=6036$$是对的.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整除特征", "和系整除特征应用", "数论模块", "整除"]} +{"_id": "ff808081475cebd301476123b51e0908", "question": "一瓶黑墨水,一瓶红墨水,一样多.从黑墨水瓶中取一滴黑墨水滴入红墨水瓶中,混合均匀,再从红墨水瓶中取同样多的一滴滴入黑墨水瓶中.问,黑墨水瓶中的红墨水多,还是红墨水瓶中的黑墨水多?\n ", "answer": "一样多.\n ", "Analysis": "首先,显然最后黑墨水和红墨水中的溶液都是一瓶.而两瓶中墨水的总量在这个过程中并没有变化,所以黑墨水中的水与红墨水中的水合起来仍然是一瓶,那么红墨水中的水与黑墨水的水是一样多的.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["浓度问题", "应用题模块", "抓不变量"]} +{"_id": "ff808081477bd88b01479417a41d2e88", "question": "一个四位数与它的反序数之差可否为$$1008$$?请说明理由.\n ", "answer": "不能.设四位数为$$\\overline{abcd}$$,$$\\overline{abcd}-\\overline{dcba}=1008$$.则$$a>d$$,$$a+8=d+10$$,$$a=d+2$$,按照减法继续十位运算可得,$$c-1=b$$,继续百位运算可得$$b=c$$.矛盾.\n", "Analysis": "不能.反证法.设四位数为$$\\overline{abcd}$$,$$\\overline{abcd}-\\overline{dcba}=1008$$.则$$a>d$$,$$a+8=d+10$$,$$a=d+2$$,按照减法继续十位运算可得,$$c-1=b$$,继续百位运算可得$$b=c$$.矛盾.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["位值原理运用", "位值原理与进制", "位值原理的完全拆分", "数论模块"]} +{"_id": "ff80808147c465b80147c6874e65037a", "question": "某公司要到外地去推销产品,产品每件成本$$3000$$元.从公司到外地的距离是$$400$$千米,运费为每件产品每运$$1$$千米收$$1.5$$元.如果在运输及销售过程中产品的损耗是$$10\\%$$,那么公司要想实现$$25\\%$$的利润率,零售价应是每件多少元?\n", "answer": "零售价应是每件$$5000$$元.\n", "Analysis": "以$$1$$件商品为例,成本为$$3000$$元,运费为$$1.5\\times 400=600$$(元),则成本为$$3000+600=3600$$(元),\n\n要想实现$$25\\%$$的利润率,应收入$$3600\\times (1+25\\%)=4500$$(元);\n\n由于损耗,实际的销售产品数量为$$1\\times (1-10\\%)=90\\% $$,\n\n所以实际零售价为每千克$$4500\\div 90\\%=5000$$(元).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["复杂的经济问题", "应用题模块", "经济问题"]} +{"_id": "ff80808147c465b80147c687def20387", "question": "“新新”商贸服务公司,为客户出售货物收取销售额的$$3\\%$$作为服务费,代客户购买物品收取商品定价的$$2\\%$$作为服务费.今有一客户委托该公司出售自产的某种物品和代为购置新设备,已知该公司共扣取了客户服务费$$264$$元,客户恰好收支平衡.问所购置的新设备花费了多少元?\n ", "answer": "所购置的新设备花费了$$5121.6$$元.\n ", "Analysis": "“该客户恰好收支平衡”,这表明该客户出售物品的销售额的$$1-3\\%=97\\%$$,\n\n恰好用来支付了设备与代为购买设备的服务费,\n\n��等于所购置新设备费用的$$(1+2\\%)=102\\%$$,\n\n从而求得出售商品所得与新设备价格之比;\n\n再以新设备价格为“$$1$$”,可求出两次服务费相当于新设备的多少,\n\n从而可解得新设备价格.出售商品所得的$$1-3\\%=97\\%$$等于新设备价格的$$(1+2\\%)=102\\%$$.\n\n设新设备价格为“$$1$$”,则出售商品所得相当于$$102\\%\\div 97\\%=4\\frac{102}{97}$$.\n\n该公司的服务费为$$\\frac{102}{97}\\times 3\\%+1\\times 2\\%=\\frac{5}{97}$$,\n\n故而新设备花费了$$264\\div \\frac{5}{97}=5121.6$$(元).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["复杂的经济问题", "应用题模块", "经济问题"]} +{"_id": "ff80808147c465b80147c68a0a8e039f", "question": "果品公司购进苹果$$ 5.2$$万千克,每千克进价是$$0.98$$元,付运费等开支$$1840$$元,预计损耗为$$1\\%$$,如果希望全部进货销售后能获利$$17\\%$$,每千克苹果零售价应当定为 ___          ___ 元.\n", "answer": "$$1.2$$", "Analysis": "成本是$$0.98 \\times 5.2 \\times 10000 + 1840 = 52800$$(元),\n\n损耗后的总量是$$5.2 \\times 10000 \\times (1 - 1\\% ) = 51480$$(千克),\n\n所以,最后定价为$$52800 \\times (1 + 17\\% ) \\div 51480 = 1.2$$(元).\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "基本经济概念", "经济问题", "损耗问题"]} +{"_id": "ff80808147c465b80147c68a456503b0", "question": "王老板以$$2$$元/个的成本买入菠萝若干个,按照定价卖出了全部菠萝的$$\\frac{{4}}{{5}}$$后,被迫降价为:$$5$$个菠萝只卖$$2$$元,直至卖完剩下的菠萝,最后一算,发现居然不亏也不赚,那么王老板一开始卖出菠萝的定价为 ___          ___ 元/个.\n ", "answer": "$$2.4$$", "Analysis": "降价后$$5$$个菠萝卖$$2$$元,相当于每个菠萝卖$$0.4$$元,\n\n则降价后每个菠萝亏$$2 - 0.4 = 1.6$$(元),\n\n由于最后不亏也不赚,所以开始按定价卖出的菠萝赚得的与降价后亏损的相等,\n\n而开始按定价卖出的菠萝的量为降价后卖出的菠萝的$$4$$倍,\n\n所以按定价卖出的菠萝每个菠萝赚:$$1.6 \\div 4 = 0.4$$(元),\n\n开始的定价为:$$2 + 0.4 = 2.4$$(元/个).\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["复杂的经济问题", "应用题模块", "经济问题"]} +{"_id": "ff80808147c465b80147c68a95bc03be", "question": "甲的$$\\frac{4}{5}$$等于乙的$$\\frac{3}{7}$$,甲是乙的几分之几?\n ", "answer": "$$\\frac{{15}}{{28}}$$\n", "Analysis": "由条件可得等式:甲$$\\times$$$$\\frac{4}{5}$$$$=$$乙$$\\times$$$$\\frac{3}{7}$$\n\n方法$$1$$:等式两边同除以$$\\frac{4}{5}$$得:甲$$ \\times \\frac{4}{5} \\div \\frac{4}{5}$$$$=$$乙$$ \\times \\frac{3}{7} \\div \\frac{4}{5}$$,甲$$=$$乙$$ \\times \\frac{{15}}{{28}}$$\n\n方法$$2$$:根据比例的基本性质得:甲∶乙$$=$$$$\\frac{3}{7}$$∶$$\\frac{4}{5}$$\n\n化简得:甲∶乙$$=15$$:$$28$$,即甲是乙的$$\\frac{{15}}{{28}}$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["求分率", "应用题模块", "分百应用题"]} +{"_id": "ff80808147c465b80147c68a974303c4", "question": "兄弟两人各有人民币若干元,其中弟弟的钱数是哥哥的$$\\frac{4}{5}$$,若弟弟给哥哥$$4$$元,则弟弟的钱数是哥哥的$$\\frac{2}{3}$$,求兄弟两人原来各有多少元?\n", "answer": "弟弟$$40$$元、哥哥$$50$$元.\n", "Analysis": "兄弟两人的总钱数是不变量,把它看作单位“$$1$$”,原来弟弟的钱数占两人总钱数的$$\\frac{4}{{4 + 5}}$$,后来弟弟的钱数占两人总钱数的$$\\frac{2}{{2 + 3}}$$,则两人的总钱数为:$$4 \\div (\\frac{4}{{4 + 5}} - \\frac{2}{{2 + 3}}) = 90$$(元).\n\n弟弟原来的钱数为:$$90 \\times \\frac{4}{{4 + 5}}{ = }40$$(元).\n\n哥哥原来的钱数为:$$90-40=50$$(元).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["量率对应求单位一", "分数百分数应用题", "量率对应求单位1", "分百应用题", "应用题模块", "应用题", "综合与实践"]} +{"_id": "ff80808147c465b80147c68a97c303c6", "question": "男生人数是女生人数的$$\\frac{4}{5}$$,男生人数是学生总人数的几分之几?\n ", "answer": "$$\\frac{4}{9}$$\n ", "Analysis": "男生人数��女生的$$\\frac{4}{5}$$,是将女生人数看作单位“$$1$$”,平均分成$$5$$份,男生是这样的$$4$$份,学生总人数为这样的$$(4+5)$$份,求男生人数是学生总人数的几分之几?就是求$$4$$份是$$(4+5)$$份的几分之几?$$4 \\div (4{ + }5){ = }\\frac{4}{9}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["求分率", "应用题模块", "分百应用题"]} +{"_id": "ff80808147d3f3210147d8e9855f08af", "question": "食品店上午卖出每千克为$$20$$元、$$25$$元、$$30$$元的$$3$$种糖果共$$100$$千克,共收入$$2570$$元.已知其中售出每千克$$25$$元和每千克$$30$$元的糖果共收入了$$1970$$元,那么,每千克$$25$$元的糖果售出了多少千克?\n ", "answer": "每千克$$25$$元的糖果售出了$$26$$千克.\n ", "Analysis": "每千克$$25$$元和每千克$$30$$元的糖果共收入了$$1970$$元,则每千克$$20$$元的收入:$$2570-1970=600$$(元),\n\n所以卖出:$$600\\div 20=30$$(千克),\n\n所以卖出每千克$$25$$元和每千克$$30$$元的糖果共$$100-30=70$$(千克),\n\n相当于将题目转换成:\n\n卖出每千克$$25$$元和每千克$$30$$元的糖果共$$70$$千克,收入$$1970$$元,问:每千克$$25$$元的糖果售出了多少千克?\n\n转换成了最基本的鸡兔同笼问题.\n\n假设全是每千克$$25$$元的,$$\\left( 1970-25\\times 70 \\right)\\div \\left( 30-25\\right)=44$$(千克),\n\n所以$$30$$元的是$$44$$千克,所以$$25$$元的有:$$70-44=26$$(千克).\n\n关键:将三种以及更多的动物/东西,转化为两种最基本模型,即:抓住转化后的“头”与“脚”.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["鸡兔同笼问题", "应用题模块", "假设法解鸡兔同笼", "基本型", "变型题"]} +{"_id": "ff80808147d924de0147e67f62fd0d5a", "question": "一水库原有存水量一定,河水每天均匀入库.$$5$$台抽水机连续$$20$$天可抽干;$$6$$台同样的抽水机连续$$15$$天可抽干.若要求$$6$$天抽干,需要多少台同样的抽水机?\n ", "answer": "$$12$$台.\n ", "Analysis": "水库原有的水与$$20$$天流入的水可供多少台抽水机抽$$1$$天?$$20 \\times 5 = 100$$$$($$台$$)$$.\n 水库原有的水与$$15$$天流入的水可供多少台抽水机抽$$1$$天?$$6 \\times 15 = 90$$$$($$台$$)$$.\n 每天流入的水可供多少台抽水机抽$$1$$天?$$(100 - 90) \\div (20 - 15) = 2$$$$($$台$$)$$.\n 原有的水可供多少台抽水机抽$$1$$天?$$100 - 20 \\times 2 = 60$$$$($$台$$)$$.\n 若$$6$$天抽完,共需抽水机多少台?$$60 \\div 6 + 2 = 12$$$$($$台$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["淘水问题", "牛吃草转化型", "生活中的牛吃草", "牛吃草问题", "应用题模块"]} +{"_id": "ff80808147d924de0147e67f821b0d5c", "question": "北京密云水库建有$$10$$个泄洪洞,现在水库的水位已经超过安全线,并且水量还在以一个不变的速度增加,为了防洪,需要调节泄洪的速度,假设每个闸门泄洪的速度相同,经测算,若打开一个泄洪闸,$$30$$个小时以后水位降至安全线;若同时打开两个泄洪闸,$$10$$个小时后水位降至安全线.根据抗洪形势,需要用$$2$$个小时使水位降至安全线以下,则至少需要同时打开泄洪闸的数目为多少个?\n ", "answer": "$$8$$个.\n ", "Analysis": "此题是牛吃草问题的变形,假设每个泄洪洞每小时泄洪的量为$$1$$,则水库每小时增加的水量为$$(1\\times 30-2\\times 10)\\div (30-10)=0.5$$,原有的水量超过安全线的部分有$$(1-0.5)\\times 30=15$$.如果要用$$2$$个小时使水位降至安全线以下,至少需要开$$15\\div 2+0.5=8$$个泄洪闸.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["其他问题", "牛吃草转化型", "生活中的牛吃草", "牛吃草问题", "应用题模块"]} +{"_id": "ff80808147e703690147f35d30d03425", "question": "三位数中,有些数本身是该数的数字和的$$19$$倍,如$$190=19\\times (1+9+0)$$,请写出所有这样的三位数.\n ", "answer": "$$114$$,$$133$$,$$152$$,$$171$$,$$190$$,$$209$$,$$228$$,$$247$$,$$266$$,$$285$$,$$399$$.\n ", "Analysis": "设三位数是$$\\overline{abc}=19\\times (a+b+c)$$,整理可得$$81a-9b-18c=9(9a-b-2c)=0$$,\n 当$$a=1$$ 时,$$\\left\\{ \\begin{matrix}c=4 \\\\ b=1 \\\\\\end{matrix} \\right.$$,$$\\left\\{ \\begin{matrix}c=3\\\\ b=3 \\\\\\end{matrix} \\right.$$,$$\\left\\{ \\begin{matrix}c=2 \\\\ b=5 \\\\\\end{matrix} \\right.$$,$$\\left\\{ \\begin{matrix}c=1\\\\ b=7 \\\\\\end{matrix} \\right.$$,$$\\left\\{ \\begin{matrix}c=0 \\\\ b=9 \\\\\\end{matrix} \\right.$$.\n 当$$a=2$$时,$$\\left\\{ \\begin{matrix}c=9 \\\\ b=0 \\\\\\end{matrix} \\right.$$ ,$$\\left\\{ \\begin{matrix}c=8\\\\ b=2 \\\\\\end{matrix} \\right.$$ ,$$\\left\\{ \\begin{matrix}c=7 \\\\ b=4 \\\\\\end{matrix} \\right.$$ ,$$\\left\\{ \\begin{matrix}c=6\\\\ b=6 \\\\\\end{matrix} \\right.$$ ,$$\\left\\{ \\begin{matrix}c=5 \\\\ b=8 \\\\\\end{matrix} \\right.$$.\n 当$$a=3$$时,$$\\left\\{ \\begin{matrix}c=9 \\\\ b=9 \\\\\\end{matrix} \\right.$$.\n \n设三位数为$$\\overline{abc}$$.所以有$$\\overline{abc}=19\\times \\left( a+b+c \\right)$$,化简可得$$b+2c=9a$$.\n\n①当$$a$$等于$$1$$时,$$b+2c=9$$,\n\n则有$$\\begin{cases}b=1 \\\\ c=4 \\\\\\end{cases}$$,$$\\begin{cases}b=3 \\\\ c=3 \\\\\\end{cases}$$,$$\\begin{cases}b=5 \\\\ c=2 \\\\\\end{cases}$$,$$\\begin{cases}b=7 \\\\ c=1 \\\\\\end{cases}$$,$$\\begin{cases}b=9 \\\\ c=0 \\\\\\end{cases}$$.\n\n②当$$a$$等于$$2$$时,$$b+2c=18$$,\n\n则有$$\\begin{cases}b=0 \\\\ c=9 \\\\\\end{cases}$$,$$\\begin{cases}b=2 \\\\ c=8 \\\\\\end{cases}$$,$$\\begin{cases}b=4 \\\\ c=7 \\\\\\end{cases}$$,$$\\begin{cases}b=6 \\\\ c=6 \\\\\\end{cases}$$,$$\\begin{cases}b=8 \\\\ c=5 \\\\\\end{cases}$$.\n\n③当$$a$$等于$$3$$时,$$b+2c=27$$,\n\n则有$$\\begin{cases}b=9 \\\\ c=9 \\\\\\end{cases}$$.\n\n当$$a$$大于等于$$4$$时,$$b$$和$$c$$无符合题意的解.\n\n故答案为:三位数为$$114$$,$$133$$,$$152$$,$$171$$,$$190$$,$$209$$,$$228$$,$$247$$,$$266$$,$$285$$,$$399$$,共$$11$$个.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["位值原理运用", "位值原理与进制", "位值原理的综合应用", "数论模块"]} +{"_id": "ff80808147e705d80147f0f405711529", "question": "菜地里黄瓜获得丰收,收下全部的$$\\frac{3}{8}$$时,装满了$$4$$筐还多$$36$$千克,收完其余的部分时,又刚好装满$$8$$筐,求共收黄瓜多少千克?\n ", "answer": "共收黄瓜$$576$$千克.\n ", "Analysis": "其余部分装满$$8$$筐,所以每筐是总数的$$(1-\\frac{3}{8})\\div8$$.装满了$$4$$筐还多$$36$$千克,即这$$36$$千克占总数的$$\\frac{3}{8}-(1-\\frac{3}{8})\\div8\\times4=\\frac{1}{16}$$,所以共收黄瓜:\n $$36\\div[\\frac{3}{8}-(1-\\frac{3}{8})\\div8\\times4]=576($$千克$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "量率对应求单位1", "分百应用题"]} +{"_id": "ff80808147e705d80147f0f40e47152b", "question": "食堂有一桶油,第一天吃掉一半多$$1$$千克,第二天吃掉剩下的油的一半多$$2$$千克,第三天又吃掉剩下的油的一半多$$3$$千克,最后桶里还剩下$$2$$千克油,问桶里原有油多少千克?\n ", "answer": "这桶油共有$$50$$千克.\n ", "Analysis": "第三天吃掉一半多$$3$$千克,还剩$$2$$千克.所以第二天吃掉后还剩$$(2+3)\\div\\frac{1}{2}$$,这又是第一天吃掉后剩下的一半少$$2$$千克,所以第一天吃掉后剩下$$[(2+3)\\div\\frac{1}{2}+2]\\div\\frac{1}{2}$$,这又是这桶油的一半少$$1$$千克,从而这桶油共有:\n $${[(2+3)\\div\\frac{1}{2}+2]\\div\\frac{1}{2}+1}\\div\\frac{1}{2}=50$$(千克).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["量率对应求单位一", "分数百分数应用题", "量率对应求单位1", "分百应用题", "应用题模块", "应用题", "综合与实践"]} +{"_id": "ff80808147e705d80147f0f47c231532", "question": "甲、乙、丙三人合作生产一批机器零件,甲生产的零件数量的一半与乙生产的零件的$$\\frac{3}{5}$$相等,又等于丙生产零件数量的四分之三,已知乙比丙多生产$$50$$个零件,求这批零件共有多少个?\n ", "answer": "这批零件共有$$750$$个.\n ", "Analysis": "用转化法统一单位“1”.\n\n根据已知条件和分数乘、除法的意义可得.\n\n$$甲\\times \\frac{1}{2}=乙\\times \\frac{3}{5}=丙\\frac{3}{4}$$,$$乙=\\frac{5}{6}甲$$,$$丙=\\frac{4}{6}甲$$\n\n根据“量率”对应关系列式为\n\n$$50\\div(\\frac{5}{6}-\\frac{4}{6})=300$$(个)    甲\n\n$$300\\times\\frac{5}{6}=250$$(个)      乙\n\n$$300\\times\\frac{4}{6}=200$$(个)     丙\n\n$$300+250+200=750$$(个) .\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["量率对应已知单位1", "量率对应求单位一", "分数百分数应用题", "分百应用题", "应用题模块", "应用题", "综合与实践"]} +{"_id": "ff80808147e705d80147f0f496c61535", "question": "两班共有$$96$$人,选出甲班人数的$$\\frac{1}{4}$$和乙班人数的$$\\frac{1}{5}$$,组成$$22$$人的数学兴趣小组,问甲、乙两班原来各有多少人?\n ", "answer": "甲班$$56$$,乙班$$40$$.\n ", "Analysis": "假设两班都选出$$\\frac{1}{4}$$,则选出$$96\\times \\frac{1}{4}=24$$(人),假设比实际多选出$$24-22=2$$(人).\n 调整:这是因为把选出乙班人数的$$\\frac{1}{5}$$假设为选出$$\\frac{1}{4}$$,多算了$$\\frac{1}{4}-\\frac{1}{5}=\\frac{1}{20}$$,由此可先算出乙班原来的人数.$$(96\\times \\frac{1}{4}-22)\\div (\\frac{1}{4}-\\frac{1}{5})=40$$(人)甲班原来的人数:$$96-40=56$$(人).\n \n解:设甲班有$$x$$人,乙班有$$\\left( 96-x \\right)$$人,\n\n$$\\frac{1}{4}x+\\frac{1}{5}(96-x)=22$$,解得$$x=56$$.\n\n则乙班有$$96-56=40$$(人).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["方程法解鸡兔同笼", "一元一次方程解应用题", "应用题模块", "应用题", "以鸡兔同笼形式运用方程解应用题", "列方程解应用题", "综合与实践"]} +{"_id": "ff80808147e705d80147f0ff931615c4", "question": "有一项工程,有三个工程队来争夺施工权利,已知甲、乙、丙三个工程队都是按工作时间长短来付费的,甲、乙两队合作,$$10$$天可以全部完工,共需要支付$$18000$$元,由乙、丙两队合作,$$20$$天可以完工,共需要支付$$12000$$元,由甲、丙两队合作,$$12$$天可以完成,共需要支付$$15000$$元.如果该工程只需要一个工程队承建,如果只能一个队伍单独施工,那么最快的比最慢的会早完工 ___          ___ 天,需要支付速度最快的队伍 ___          ___ 元.\n", "answer": "$$45$$\n$$18375$$", "Analysis": "甲乙丙的工效和为$$\\left(\\frac{1}{10}+\\frac{1}{12}+\\frac{1}{20} \\right)\\div 2=\\frac{7}{60}$$,所以甲的工效为$$\\frac{7}{60}-\\frac{1}{20}=\\frac{1}{15}$$,乙的工效为$$\\frac{7}{60}-\\frac{1}{12}=\\frac{1}{30}$$,丙的工效为$$\\frac{7}{60}-\\frac{1}{10}=\\frac{1}{60}$$,所以从时间上考虑,应该选择甲,会比丙早完工$$60-15=45$$天,同样的道理,甲乙丙的每日工资之和是 $$(\\frac{18000}{10}+\\frac{12000}{20}+\\frac{15000}{12})\\div2=1825$$(元),所以甲的每日费用为$$1825-600=1225$$(元),乙的费用为$$1825-1250=575$$(元),丙的费用为$$1825-1800=25$$(元),所以需要支付速度最快的队伍$$1225\\times 15=18375$$(元).\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多人合作", "合作工程问题", "已知工时反推", "应用题模块", "工程问题"]} +{"_id": "ff80808147e705d80147f0ff93ae15c6", "question": "放满一个水池,如果同时打开$$1$$,$$2$$,$$3$$号阀门,则$$20$$分钟可以完成;如果同时打开$$2$$,$$3$$,$$4$$阀门,则$$21$$分钟可以完成;如果同时打开$$1$$,$$3$$,$$4$$号阀门,则$$28$$分钟可以完成;如果同时打开$$1$$,$$2$$,$$4$$号阀门,则$$30$$分钟可以完成.问:如果同时打开$$1$$,$$2$$,$$3$$,$$4$$号阀门,那么多少分钟可以完成?\n ", "answer": "$$18$$分钟.\n ", "Analysis": "根据条件,列表如下(画○表示阀门打开,画×表示阀门关闭):\n
1号 2号 3号 4号 工作效率
× $$\\frac{1}{20}$$\n
× $$\\frac{1}{21}$$\n
× $$\\frac{1}{28}$$\n
× $$\\frac{1}{30}$$\n
从表中可以看出,每个阀门都打开了三次,所以这$$4$$个阀门的工作效率之和为:\n $$\\left(\\frac{1}{20}+\\frac{1}{21}+\\frac{1}{28}+\\frac{1}{30} \\right)\\div 3=\\frac{1}{18}$$,那么同时打开这$$4$$个阀门,需要$$1\\div\\frac{1}{18}=18$$(分钟).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "分干合想问题", "工程问题"]} +{"_id": "ff80808147e705d80147f0ff957415cb", "question": "一个蓄水池,每分钟流入$$4$$立方米水.如果打开$$5$$个水龙头,$$2$$小��半就把水池水放空,如果打开$$8$$个水龙头,$$1$$小时半就把水池水放空.现在打开$$13$$个水龙头,问要多少时间才能把水放空?\n ", "answer": "$$54$$分钟.\n ", "Analysis": "先计算$$1$$个水龙头每分钟放出水量.$$2$$小时半比$$1$$小时半多$$60$$分钟,多流入水$$4 \\times 60= 240$$(立方米).时间都用分钟作单位,$$1$$个水龙头每分钟放水量是$$240\\div(5\\times150-8 \\times90)=8$$(立方米),$$8$$个水龙头$$1$$个半小时放出的水量是$$8\\times8\\times90$$,其中 $$90$$分钟内流入水量是$$ 4\\times90$$,因此原来水池中存有水$$ 8\\times8\\times90-4\\times90= 5400$$(立方米).打开$$13$$个水龙头每分钟可以放出水$$8\\times13$$,除去每分钟流入$$4$$,其余将放出原存的水,放空原存的$$5400$$,需要$$5400\\div(8\\times13-4)=54$$(分钟).所以打开$$13$$个龙头,放空水池要$$54$$分钟.水池中的水,有两部分,原存有水与新流入的水,就需要分开考虑,解本题的关键是先求出池中原存有的水.这在题目中却是隐含着的.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "进水与排水问题", "工程问题"]} +{"_id": "ff80808147e705d80147f0ffef8615de", "question": "修筑一条高速公路.若甲、乙、丙合作,$$90$$天可完工:若甲、乙、丁合作,$$120$$天可完工;若丙、丁合作,$$180$$天可完工,若甲、乙合作$$36$$天后,剩下的工程由甲、乙、丙、丁合作.还需多少天可完工?\n ", "answer": "还需$$60$$天可完工.\n ", "Analysis": "设这项工程为单位“$$1$$”. 则甲$$+$$乙$$+$$丙的工作效率为$$\\frac{1}{{90}}$$,甲$$+$$乙$$+$$丁的工作效率为$$\\frac{1}{{120}}$$,丙$$+$$丁的工作效率为$$\\frac{1}{{180}}$$.\n 那么甲$$+$$乙的工作效率为$$(\\frac{1}{{90}} + \\frac{1}{{120}} - \\frac{1}{{180}}) \\div 2 = \\frac{1}{{144}}$$,\n 甲$$+$$乙$$+$$丙$$+$$丁的工作效率为$$\\frac{1}{{180}} + \\frac{1}{{144}} = \\frac{1}{{80}}$$.\n 因此剩下的工程还需要$$(1 - \\frac{1}{{144}} \\times 36) \\div \\frac{1}{{80}} = 60$$(天).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多人合作", "合作工程问题", "已知工时反推", "应用题模块", "工程问题"]} +{"_id": "ff80808147e705d80147f100339415f6", "question": "某工程如果由第一、二、三小队合干需要$$12$$天才能完成;如果由第一、三、五小队合干需要$$7$$天才能完成;如果由第二、四、五小队合干需要$$8$$天才能完成;如果由第一、三、四小队合干需要$$42$$天才能完成.那么这五个小队一起合干需要多少天才能完成这项工程?\n ", "answer": "这五个小队一起合干需要$6$天才能完成这项工程.\n ", "Analysis": "首先将各个小队之间的组合列成表:\n\n\n\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\n
\n\t\t\t$$1$$队\n\n\t\t\t$$2$$队\n\n\t\t\t$$3$$队\n\n\t\t\t$$4$$队\n\n\t\t\t$$5$$队\n\n\t\t\t工作效率\n
\n\t\t\t√\n\n\t\t\t√\n\n\t\t\t√\n  \n\t\t\t$$\\frac{1}{12}$$\n
\n\t\t\t√\n \n\t\t\t√\n \n\t\t\t√\n\n\t\t\t$$\\frac{1}{7}$$\n
 \n\t\t\t√\n \n\t\t\t√\n\n\t\t\t√\n\n\t\t\t$$\\frac{1}{8}$$\n
\n\t\t\t√\n \n\t\t\t√\n\n\t\t\t√\n \n\t\t\t$$\\frac{1}{42}$$\n
\n\t\t\t$$3$$次\n\n\t\t\t$$2$$次\n\n\t\t\t$$3$$次\n\n\t\t\t$$2$$次\n\n\t\t\t$$2$$次\n 
\n从表中可以看出,一队、三队在表中各出现$$3$$次,二队、四队、五队各出现$$2$$次,\n\n那么,如果将第二、四、五小队的组合计算两次,\n\n那么各种组队的工作效率和中$$5$$个小队都被计算了$$3$$次.\n\n所以五个小队的工作效率之和为:$$\\left( {\\frac{1}{{12}} + \\frac{1}{7} + \\frac{1}{8} \\times 2 + \\frac{1}{{42}}} \\right) \\div 3 = \\frac{1}{6}$$,\n\n五个小队一起合干需要$$1 \\div \\frac{1}{6} = 6$$天.\n\n答:五个小队各做要$$6$$天完成.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "分干合想问题", "工程问题"]} +{"_id": "ff80808147e705d80147f10034c315fa", "question": "抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相当甲、乙每天工作效率和的$$\\frac{1}{5}$$.如果$$3$$人合抄只需$$8$$天就完成了,那么乙一人单独抄需要多少天才能完成?\n ", "answer": "乙一人单独抄需要$$24$$天才能完成.\n ", "Analysis": "已知甲、乙、丙合抄一天完成书稿的$$\\frac{1}{8}$$,\n 又已知甲每天抄写量等于乙、丙两人每天抄写量之和,\n 因此甲两天抄写书稿的$$\\frac{1}{8}$$,即甲每天抄写书稿的$$\\frac{1}{16}$$;\n 由于丙抄写$$5$$天相当于甲乙合抄一天,从而丙$$6$$天抄写书稿的$$\\frac{1}{8}$$,\n 即丙每天抄写书稿的$$\\frac{1}{48}$$;\n 于是可知乙每天抄写书稿的$$\\frac{1}{8}-$$$$\\frac{1}{16}-$$$$\\frac{1}{48}$$=$$\\frac{1}{24}$$.\n 所以乙一人单独抄写需要$$1\\div$$$$\\frac{1}{24}$$$$=24$$天才能完成.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "合干分想问题", "工程问题"]} +{"_id": "ff80808147e705d80147f100382a1601", "question": "一项工程,甲、乙合作需要$$9$$天完成,乙、丙合作需要$$12$$天,由丙单独做需要$$36$$天完成,那么如果甲、丙合作,完成这项工程需要多少天?\n ", "answer": "甲、丙合作,完成这项工程需要$$12$$天.\n ", "Analysis": "我们可以有:甲$$+$$乙$$ = \\frac{1}{9}$$,乙$$+$$丙 $$= \\frac{1}{{12}}$$,丙$$ = \\frac{1}{{36}}$$,\n\n不难求得,乙的工作效率为$$\\frac{1}{{12}} - \\frac{1}{{36}} = \\frac{1}{{18}}$$,\n\n因此甲的工作效率为$$\\frac{1}{9} - \\frac{1}{{18}} = \\frac{1}{{18}}$$,从而甲丙合作的工作效率为$$\\frac{1}{{36}} + \\frac{1}{{18}} = \\frac{1}{{12}}$$,\n\n即甲丙合作$$12$$天能完成.\n\n仍然观察上面那三个等式,我们能否不求出每个人的工作效率,\n\n而通过整体的运算直接得到“甲$$+$$丙”的值呢?\n\n不难发现,我们只要把乙消掉就可以了;\n\n因此我们有:(甲$$+$$乙$$+$$丙$$\\times2$$)$$-$$(乙$$+$$丙)$$=$$ 甲$$+$$丙,\n\n也就是说:甲$$+$$丙$$ = \\frac{1}{9} + \\frac{1}{{36}} \\times 2 - \\frac{1}{{12}} = \\frac{1}{{12}}$$,所以甲丙合作$$12$$天能完成.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多人合作", "合作工程问题", "已知工时反推", "应用题模块", "工程问题"]} +{"_id": "ff80808147e705d80147f10038de1603", "question": "一项工程,甲、乙合作需要$$20$$天完成,乙、丙合作需要$$15$$天完成,由乙单独做需要$$30$$天完成.如果甲、乙、丙合作,那么完成这项工程需要多少天?\n", "answer": "甲、乙、丙合作,完成这项工程需要$$12$$天\n", "Analysis": "如果将整个工程的工作量看做单位“$$1$$”,\n\n从条件中我们很容易看出:甲$$+$$乙$$ = \\frac{1}{{20}}$$,乙$$+$$丙$$ = \\frac{1}{{15}}$$,乙$$ = \\frac{1}{{30}}$$,\n\n因此不难得到丙的工作效率为$$\\frac{1}{{15}} - \\frac{1}{{30}} = \\frac{1}{{30}}$$,\n\n因此三个人的工作效率之和为$$\\frac{1}{{20}} + \\frac{1}{{30}} = \\frac{1}{{12}}$$,也就是说,三个人合作需要$$12$$天可以完成.\n\n本题也可以分别求出甲和丙的工作效率,再将三人的工作效率相加,得到三人合作的总工效.\n\n但是这样做比较麻烦,事实上只要将甲、乙工效和加上丙的工效就可以了.\n\n甲、乙的工作效率和加乙、丙的工作效率和等于甲、乙、丙的工作效率和再加一个乙的工作效率,只要把乙的工作效率减去,就是甲、乙、丙三人的工作效率和.\n\n甲、乙、丙的工作效率和:\n\n$$\\frac{1}{20}+\\frac{1}{15}-\\frac{1}{30}=\\frac{1}{12}$$;甲、乙、丙合作需要多少天:$$1\\div \\frac{1}{12}=12$$(天).\n\n答:甲、乙、丙合作完成这项工程需要$$12$$天.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "分干合想问题", "工程问题"]} +{"_id": "ff80808147e705d80147f10059561627", "question": "一池水,甲、乙两管同时开,$$5$$小时灌满;乙、丙两管同时开,$$4$$小时灌满.现在先开乙管$$6$$小时,还需甲、丙两管同时开$$2$$小时才能灌满.乙单独开几小时可以灌满?\n ", "answer": "$$20$$.\n", "Analysis": "由于甲、乙和乙、丙的工作效率之和都知道了,\n\n根据“现在先开乙管$$6$$小时,还需甲、丙两管同时开$$2$$小时灌满”,\n\n我们可以把乙管的$$6$$小时分成$$3$$个$$2$$小时,第一个$$2$$小时和甲同时开,第二个$$2$$小时和丙同时开,第三个$$2$$小时乙管单独开.\n\n这样就变成了甲、乙同时开$$2$$小时,乙、丙同时开$$2$$小时,乙单独开$$2$$小时,正好灌满一池水.\n\n可以计算出乙单独灌水的工作量为$$1 - \\frac{1}{5} \\times 2 - \\frac{1}{4} \\times 2 = \\frac{1}{{10}}$$,\n\n所以乙的工作效率为:$$\\frac{1}{{10}} \\div (6 - 2 - 2) = \\frac{1}{{20}}$$,\n\n所以整池水由乙管单独灌水,需要$$1 \\div \\frac{1}{{20}} = 20$$(时).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多人合作", "合作工程问题", "已知工时反推", "应用题模块", "工程问题"]} +{"_id": "ff808081481177070148126867e1014a", "question": "一个长方体的长、宽、高是连续的$$3$$个自然数,它的体积是$$39270$$立方厘米,那么这个长方体的表面积是多少平方厘米?\n ", "answer": "$$6934$$\n ", "Analysis": "$$39270=2\\times3\\times5\\times7\\times11\\times17$$,为三个连续自然数的乘积,而$$34\\times34\\times34$$最接近$$39270$$,$$39270$$的约数中接近或等于$$34$$的有$$35$$、$$34$$、$$33$$,有$$33\\times34\\times35=39270$$.所以$$33$$、$$34$$、$$35$$为满足题意的长、宽、高.则长方体的表面积为:$$2\\times($$长$$\\times$$宽$$+$$宽$$\\times$$高$$+$$高$$\\times$$长$$)=2\\times(33\\times34+34\\times35+35\\times33)=6934($$平方厘米$$)$$.\n\n方法二:$$39270=2\\times3\\times5\\times7\\times11\\times17$$,为三个连续自然数的乘积,考虑质因数$$17$$,如果$$17$$作为长、宽或高显然不满足.\n\n当$$17$$与$$2$$结合即$$34$$作为长方体一条边的长度时有可能成立,再考虑质因数$$7$$,与$$34$$接近的数$$32$$~$$36$$中,只有$$35$$含有$$7$$,于是$$7$$与$$5$$的乘积作为长方体的一条边的长度.\n\n而$$39270$$的质因数中只剩下了$$3$$和$$11$$,所以这个长方体的大小为$$33\\times34\\times35$$.\n\n长方体的表面积为$$2\\times($$$$\\frac{39270}{33}$$+$$\\frac{39270}{34}$$+$$\\frac{39270}{35}$$$$)=2\\times(1190+1155+1122)=2\\times3467=6934($$平方厘米$$)$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分解质因数(式)", "数论模块", "分解质因数"]} +{"_id": "ff80808148117715014812e90c2402b4", "question": "今年兄弟俩人的岁数加起来是$$55$$岁,曾经有一年,哥哥的岁数是今年弟弟的岁数,那时哥哥的岁数恰好是弟弟的两倍,问哥哥和弟弟今年年龄分别是多大?\n ", "answer": "哥哥今年$$33$$岁,弟弟今年$$22$$岁.\n ", "Analysis": "设今年哥哥$$x$$岁,则今年弟弟是$$(55-x)$$岁.\n 过去某年哥哥岁数是$$(55-x)$$岁,那时弟弟岁数是$$(x-55-x)$$岁,\n 即$$2x-55$$年前,当时弟弟岁数是$$(55-x-2x-55)$$岁,即$$110-3x$$.列方程为:\n $$55-x=2110-3x$$\n $$55-x=220-6x$$\n $$5x=165$$ \\\\\n $$x=33$$\n $$55-33=22$$(岁)\n 答:哥哥今年$$33$$岁,弟弟今年$$22$$岁.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["方程法解其他问题", "应用题模块", "列方程解应用题", "一元一次方程解应用题"]} +{"_id": "ff8080814815760201481b09bdcd0998", "question": "王师傅驾车从甲地开往乙地交货.如果他往返都以每小时$$60$$千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到���地的速度只有每小时$$55$$千米.如果他想按时返回甲地,他应以多大的速度往回开?\n ", "answer": "$$66$$千米/小时.\n ", "Analysis": "设甲地到乙地的路程为单位“1”,那么按时的往返一次需时间$$\\frac{2}{{60}}$$,现在从甲到乙花费了时间$$1 \\div 55{ = }\\frac{1}{{55}}$$千米,所以从乙地返回到甲地时所需的时间只能是$$\\frac{2}{{60}} - \\frac{1}{{55}} = \\frac{1}{{66}}$$.即如果他想按时返回甲地,他应以每小时$$66$$千米的速度往回开.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "路程速度时间", "直线型行程问题", "单人简单行程问题"]} +{"_id": "ff8080814815760201481b09bf0b099c", "question": "赵兵骑自行车去某地,一天平均每小时行$$36$$里.已知他上午平均每小时行$$40$$里,骑了$$3$$小时;下午平均每小时行$$33$$里,他下午骑了几小时?\n ", "answer": "$$4$$小时\n ", "Analysis": "上午三小时共比平均速度多走$$(40 - 36) \\times 3 = 12$$(里),需要下午走$$12 \\div (36 - 33) = 4$$(小时)才可以.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "公式法", "路程速度时间", "平均速度"]} +{"_id": "ff8080814815760201481b09c04709a0", "question": "汽车往返于$$A$$,$$B$$两地,去时速度为$$40$$千米/时,要想来回的平均速度为$$48$$千米/时,回来时的速度应为多少?\n", "answer": "$$60$$千米/时.\n", "Analysis": "① 参数法:设$$A$$、$$B$$两地相距$$S$$千米,列式为$$S\\div(2S\\div48-S\\div40)=60$$千米.\n\n② 最小公倍法:路程$$2$$倍既是$$48$$的倍数又是$$40$$的倍数,所以可以假设路程为$$\\left[ 48,40 \\right]=240$$千米.根据公式变形可得$$240\\div2\\div(240\\div48-240\\div2\\div40)=60$$千米/时.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "路程速度时间", "平均速度", "设数法"]} +{"_id": "ff808081481c1eb501481ef1e0a100d3", "question": "某快递公司对从$$\\text{A}$$地发往$$\\text{B}$$地的快件的运费收费标准是:快件重量如果未超过$$10$$千克,每千克收费$$8$$元;如果超过$$10$$千克,超出部分按每千克$$5$$元收费.已知甲、乙二人向该公司各投递一个快件,甲比乙多交了$$34$$元,求甲、乙的快件的重量.(甲、乙的快件的重量都是整数千克)\n", "answer": "$$12;7$$.\n", "Analysis": "因为$$34$$不是$$5$$的倍数也不是$$10$$的倍数,可知两人的快件重量分别处在两个范围内,乙的快件不超过$$10$$千克,甲的快件超过$$10$$千克.$$34=3\\times 8+2\\times 5$$,所以甲的快件的重量为$$10+2=12$$(千克),乙的快件重量为$$10-3=7$$(千克).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "分段计价问题", "经济问题"]} +{"_id": "ff808081481c1eb501481ef70f6b00dc", "question": "有一杯子装满了浓度为$$15\\%$$的盐水,有大、中、小铁球各一个,它们的体积比为$$10:5:3$$.首先将小球沉入盐水杯中,结果盐水溢出$$10\\%$$,取出小球;其次把中球沉入盐水杯中,又将它取出;接着将大球沉入盐水杯中后取出;最后在杯中倒入纯水至杯满为止,此时杯子盐水的浓度是多少?\n", "answer": "$$10\\%$$.\n", "Analysis": "大、中、小球体积比为$$10:5:3$$,盐水的$$10\\%$$对应小球“$$3$$份”体积,则大球“$$10$$份”体积对应盐水的$$10 \\% \\div 3\\times 10=\\frac{1}{3}$$,因此最终溢出的盐水量为杯子容积的$$\\frac{1}{3}$$,此时杯中盐水的浓度为$$15\\%\\times (1-\\frac{1}{3})\\div 1=10\\%$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["浓度问题", "应用题模块", "已知溶质溶液求浓度", "浓度基本题型"]} +{"_id": "ff808081481c1eb501481eff536b00f1", "question": "一辆汽车从甲地开往乙地,若车速提高$$20\\%$$,可提前$$25$$分钟到达;若以原速行驶$$100$$千米,再将车速提高$$25\\%$$,可提前$$10$$分钟到达.求甲乙两地的距离.\n ", "answer": "$$150$$\n ", "Analysis": "车速提高$$20\\%$$,也就是变成原来的$$\\frac{6}{5}$$,则时间变成原来的$$\\frac{5}{6}$$,减少$$25$$分钟,原定时间为$$25\\times 6=150$$分钟��车速提高$$25$$\\\\%,也就是变成原来的$$\\frac{5}{4}$$,则时间变成原来的$$\\frac{4}{5}$$,减少$$10$$分钟,则这段路程的原定时间为$$10\\div \\frac{1}{5}=50$$分钟.因此,原速行驶$$100$$千米需要$$150-50=100$$分钟,距离为$$150\\div100\\times 100=150$$千米.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "路程速度时间", "直线型行程问题", "单人变速问题"]} +{"_id": "ff808081481c1eb501481f72c92e01d3", "question": "大强参加$$6$$次测验,第三、四次的平均分比前两次的平均分多$$2$$分,比后两次的平均分少$$2$$分.如果后三次的平均分比前三次的平均分多$$3$$分,那么第四次比第三次多得多少分?\n ", "answer": "$$1$$分\n", "Analysis": "设第三次分数是$$a$$分,第四次的分数为$$a+x$$分,\n\n则前两次的分数之和($$2a+x-4$$)分,最后两次的分数之和($$2a+x+4$$)分,\n\n有$$2a+x+4+a+x=2a+x-4+a+9$$,解得$$x=1$$,\n\n即第四次比第三次多得$$1$$分.\n\n$$a$$作为一个辅助的未知数,能够帮助我们理解题目从而顺利地列出方程,\n\n而在解的过程中$$a$$消去,也不用求$$a$$的值,这就是我们说的“设而不求法”.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["综合题", "应用题模块", "综合题普通型", "平均数问题"]} +{"_id": "ff808081481c1eb501481f7303f70206", "question": "甲、乙、丙共有$$100$$本课外书.甲的本数除以乙的本数,丙的本数除以甲的本数,商都是$$5$$,而且余数也都是$$1$$乙有书 ___          ___ 本.\n ", "answer": "$$3$$", "Analysis": "方法一:\n\n设乙有课外书$$x$$本,则甲有课外书$$5x+1$$本,丙有课外书$$5(5x+1)+1=25x+6$$(本),\n\n于是有$$5x+1+x+25x+6=100$$,即$$31x=93$$,解得$$x=3$$.\n\n方法二:\n\n丙的本数超过乙的$$25=5\\times 5$$倍,所以乙至多有$$3$$本书.\n\n显然乙的书至少$$2$$本,如果乙有$$2$$本书,\n\n那么甲有$$5\\times 2+1=11$$(本),丙有$$5\\times 11+1=56$$(本),三人共有的书不到$$100$$本,所以乙有书$$3$$本.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "列方程解应用题", "一元一次方程解应用题"]} +{"_id": "ff808081481c1eb501481f7305e8020c", "question": "甲、乙两车先后以相同的速度从$$A$$站开出,$$10$$点整甲车距$$A$$站的距离是乙车距$$A$$站距离的三倍,$$10$$点$$10$$分甲车距$$A$$站的距离是乙车距$$A$$站距离的二倍.问:甲车是何时从$$A$$站出发的?\n ", "answer": "甲车是从$$A$$站出发的时间是$$9$$点$$30$$分.\n ", "Analysis": "因为两车速度相同,故甲、乙两车距$$A$$站的距离之比等于甲、乙两车行驶的时间之比.\n\n设$$10$$点时乙车行驶了$$x$$分,甲车行驶了$$3x$$分,据题意有$$2(x+10)=3x+10$$,\n\n解得$$x=10$$,所以甲车是从$$A$$站出发的时间是$$9$$点$$30$$分.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "行程中的正比例", "方程解行程问题", "比例解行程问题", "一元一次方程解行程问题"]} +{"_id": "ff808081481c1eb5014820c82ef903e9", "question": "甲、乙、丙、丁$$4$$人去钓鱼,共钓到$$25$$条鱼,按数量从多到少的排名是甲、乙、丙、丁.又知甲钓到鱼的条数是乙和丙钓到鱼的条数的和,乙钓到鱼的条数是丙和丁钓到鱼的条数的和.那么,甲、乙、丙、丁各钓到几条鱼?\n ", "answer": "$$11$$、$$7$$、$$4$$、$$3 $$\n ", "Analysis": "设丁钓到$$x$$条鱼,丙钓到$$y$$条鱼,则乙钓到$$x+y$$条鱼,甲钓到$$x+2y$$条鱼,\n\n则$$x+y+x+y+x+2y=25=3x+4y$$\n\n$$x$$,$$y$$均为整数,且$$x<y$$\n\n得:$$x=3$$,$$y=4$$\n\n所以甲钓了$$11$$条鱼,乙钓了$$7$$条鱼,丙钓了$$4$$条鱼,丁钓了$$3$$条鱼.\n\n由已知,有:甲$$+$$乙$$+$$丙$$+$$丁$$=$$(乙$$+$$丙)$$+$$乙$$+$$丙$$+$$丁\n\n$$=$$2乙$$+$$2丙$$+$$丁\n\n$$=$$2(丙$$+$$丁)$$+$$2丙$$+$$丁\n\n$$=$$4丙$$+$$3丁\n\n$$=$$25\n\n满足丙>丁的整数解只有:丙$$=4$$,丁$$=3$$.所以,乙$$=4+3=7$$,甲$$=7+4=11$$.\n\n即甲钓到$$11$$条鱼,乙钓到$$7$$条鱼,丙钓到$$4$$条鱼,丁钓到$$3$$条鱼.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "不定方��解应用题", "列方程解应用题"]} +{"_id": "ff808081481c1eb501482cfd68c60fc6", "question": "两个不同的三位自然数$$\\overline{x0y}$$和$$\\overline{y0x}$$除以$$7$$都余$$3$$,求$$\\overline{x0y}$$和$$\\overline{y0x}$$的和.\n", "answer": "$$909$$ .\n", "Analysis": "不妨设$$x$$>$$y$$.$$\\overline{x0y}$$和$$\\overline{y0x}$$除以$$7$$都余$$3$$,说明这两个数的差是$$7$$的倍数,即$$\\overline{x0y}-\\overline{y0x}$$能被$$7$$整除.\n\n$$\\overline{xoy}-\\overline{y0x}=100x+y-100y-x=99\\left(x-y \\right)$$.因为$$99$$与$$7$$互质,所以$$x-y$$是$$7$$的倍数.因为都只能是一位数,所以$$x=8$$或$$x=9$$.\n\n若$$x=8$$,则$$\\overline{x0y}=801,801\\div 7=114\\cdots\\cdots 3$$,成立.若$$x=9$$,则$$\\overline{x0y}=902,902\\div7=128\\cdots\\cdots 6$$,不成立.所以两个数的和是:$$\\overline{x0y}+\\overline{y0x}=801+108=909$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["同余", "余数问题", "同余方程", "数论模块"]} +{"_id": "ff8080814830aa3e01483ec1a9b51924_1", "question": "小明绕操场跑一周用$$5$$分钟,妈妈绕操场跑一周用$$3$$分钟.\n \n如果小明和妈妈从同一起点同时同向出发,多少分钟后两人再次同时到达起点?此时妈妈和小明各跑了几圈?\n ", "answer": "$$15;3$$\n ", "Analysis": "同到七点需要时间:$$\\left[ 5,3 \\right]=15$$分钟;小明跑了:$$15\\div5=3$$(圈);妈妈跑了$$15\\div 3=5$$(圈).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "课内题型", "最小公倍数", "直线型行程问题", "倍数", "课内知识点", "运算求解", "数的认识", "同时同地出发折返相遇", "两数的最小公倍数", "七大能力", "相遇问题", "逻辑分析", "路程=速度×时间", "公倍数与最小公倍数", "应用题", "式与方程", "两人相遇与追及问题", "同时出发", "行程模块", "追及问题", "因数与倍数", "数论模块", "知识标签", "综合与实践", "数量关系", "行程应用题", "数的特征", "公式法求相遇时间", "对应思想", "公因数与公倍数", "数学思想", "学习能力"]} +{"_id": "ff8080814830aa3e01483ec1a9b51924_2", "question": "小明绕操场跑一周用$$5$$分钟,妈妈绕操场跑一周用$$3$$分钟.\n \n如果小明和妈妈同一起点同时同向出发,多少分钟后妈妈第一次追上小明?\n ", "answer": "$$7.5$$\n ", "Analysis": "$$15$$分钟后妈妈比小明多跑了$$2$$圈,所以多跑$$1$$圈用时:$$15\\div 2=7.5$$(分钟).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "课内题型", "最小公倍数", "直线型行程问题", "倍数", "课内知识点", "运算求解", "数的认识", "同时同地出发折返相遇", "两数的最小公倍数", "七大能力", "相遇问题", "逻辑分析", "路程=速度×时间", "公倍数与最小公倍数", "应用题", "式与方程", "两人相遇与追及问题", "同时出发", "行程模块", "追及问题", "因数与倍数", "数论模块", "知识标签", "综合与实践", "数量关系", "行程应用题", "数的特征", "公式法求相遇时间", "对应思想", "公因数与公倍数", "数学思想", "学习能力"]} +{"_id": "ff8080814830aa3e01483ec1a9b51924_3", "question": "小明绕操场跑一周用$$5$$分钟,妈妈绕操场跑一周用$$3$$分钟.\n \n如果小明和妈妈同一起点同时反向出发,多少分钟后两人第四次相遇?\n ", "answer": "$$7.5$$\n ", "Analysis": "两人$$15$$分钟后共跑了$$8$$圈,共跑$$4$$圈的时候用时:$$15\\div 2=7.5$$(分钟).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "课内题型", "最小公倍数", "直线型行程问题", "倍数", "课内知识点", "运算求解", "数的认识", "同时同地出发折返相遇", "两数的最小公倍数", "七大能力", "相遇问题", "逻辑分析", "路程=速度×时间", "公倍数与最小公倍数", "应用题", "式与方程", "两人相遇与追及问题", "同时出发", "行程模块", "追及问题", "因数与倍数", "数论模块", "知识标签", "综合与实践", "数量关系", "行程应用题", "数的特征", "公式法求相遇时间", "对应思想", "公因数与公倍数", "数学思想", "学习能力"]} +{"_id": "ff8080814830aa3e01483ec1e03f192a_1", "question": "甲、乙、丙三辆车同时从$$A$$地去$$B$$地.甲车的速度是$$60$$千米/时,乙车的速度是$$48$$千米/时.与此同��,一辆卡车从$$B$$地去$$A$$地,卡车在出发后$$6$$小时、$$7$$小时、$$8$$小时的时刻分别与甲、乙、丙三车相遇.\n 求:甲车与卡车相遇时,\n \n甲车与乙车的距离.\n ", "answer": "$$72\\text{km}$$.\n", "Analysis": "甲车与卡车相遇时,甲车与乙车的距离等于甲车与乙车$$6$$小时的路程差:$$(60-48)\\times 6=72(\\text{km})$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "多人相遇问题", "直线型行程问题", "课内知识点", "运算求解", "实践应用", "七大能力", "相遇问题", "逻辑分析", "路程=速度×时间", "多人相遇与追及问题", "式与方程", "两人相遇与追及问题", "行程模块", "同时出发相向而行", "知识标签", "数量关系", "对应思想", "数学思想", "学习能力"]} +{"_id": "ff8080814830aa3e01483ec1e03f192a_2", "question": "甲、乙、丙三辆车同时从$$A$$地去$$B$$地.甲车的速度是$$60$$千米/时,乙车的速度是$$48$$千米/时.与此同时,一辆卡车从$$B$$地去$$A$$地,卡车在出发后$$6$$小时、$$7$$小时、$$8$$小时的时刻分别与甲、乙、丙三车相遇.\n 求:甲车与卡车相遇时,\n \n卡车的速度.\n ", "answer": "$$24\\text{km/h}$$.\n", "Analysis": "卡车与甲车相遇后还需要$$1$$小时与乙车相遇,所以由($$1$$)知卡车和乙车的速度和为$$72\\div 1=72(\\text{km/h})$$,卡车的速度为$$72-48=24(\\text{km/h})$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "多人相遇问题", "直线型行程问题", "课内知识点", "运算求解", "实践应用", "七大能力", "相遇问题", "逻辑分析", "路程=速度×时间", "多人相遇与追及问题", "式与方程", "两人相遇与追及问题", "行程模块", "同时出发相向而行", "知识标签", "数量关系", "对应思想", "数学思想", "学习能力"]} +{"_id": "ff8080814830aa3e01483ec1e03f192a_3", "question": "甲、乙、丙三辆车同时从$$A$$地去$$B$$地.甲车的速度是$$60$$千米/时,乙车的速度是$$48$$千米/时.与此同时,一辆卡车从$$B$$地去$$A$$地,卡车在出发后$$6$$小时、$$7$$小时、$$8$$小时的时刻分别与甲、乙、丙三车相遇.\n 求:甲车与卡车相遇时,\n \n丙车的速度.\n ", "answer": "$$39\\text{km/h}$$.\n", "Analysis": "由($$1$$)($$2$$)得$$A、B$$两地的距离为$$(60+24)\\times6=504(\\text{km})$$,丙的速度$$504\\div 8-24=39(\\text{km/h})$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "多人相遇问题", "直线型行程问题", "课内知识点", "运算求解", "实践应用", "七大能力", "相遇问题", "逻辑分析", "路程=速度×时间", "多人相遇与追及问题", "式与方程", "两人相遇与追及问题", "行程模块", "同时出发相向而行", "知识标签", "数量关系", "对应思想", "数学思想", "学习能力"]} +{"_id": "ff8080814830aa3e01483ec1ea65192c", "question": "某天$$M$$市大雾天气,只能看清楚$$100$$米内的物体,甲、乙两人在一条平直马路边的$$A$$点反向同时出发,甲乙两人的速度分别是$$4$$米/秒,$$6$$米/秒.$$1$$分钟后,甲走到$$B$$点,乙走到$$C$$点,然后甲乙同时掉头往回走,多长时间后甲乙就能彼此看见?此时,甲乙分别离$$A$$多少米?\n ", "answer": "甲离$$A$$$$40$$米,乙离$$A$$$$60$$米.\n ", "Analysis": "$$1$$分钟后,$$2$$人相距$$(4+6)\\times60=600$$(米),两人回头合走$$500$$米就可以彼此看见,需时$$500\\div (4+6)=50$$(秒),$$4\\times (60-50)=40$$(米),$$6\\times (60-50)=60$$(米).\n 此时甲距$$A$$地$$40$$米,乙距$$A$$地$$60$$米.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "相遇问题", "同时出发相向而行", "两人相遇与追及问题"]} +{"_id": "ff8080814830aa3e01483f855d961a2d", "question": "金瑟往返于相距$$36$$里的东西两地,由东地去西地每小时走$$7.2$$里,从西地回东地比来时少用一小时,他往返的平均速度是多少?\n ", "answer": "每小时$$8$$里.\n ", "Analysis": "由东地去西地速度$$36 \\div 7.2 = 5$$(小时),由西地回东地共$$5 - 1 = 4$$(小时)平均速度$$36 \\times 2 \\div (5{ + }4) = 8$$(里).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["求平均速度", "行程应用题", "应用题", "综合与实践"]} +{"_id": "ff8080814845103c01484da9549c0a5e_1", "question": "王师傅原计划从周长为$$400$$米的环形路面上的$$A$$点处开始,每隔$$50$$米安装一盏路灯,每盏路灯都需要挖一个洞,用它埋灯柱,\n \n按照原计划,王师傅需要挖多少个洞?\n ", "answer": "王师傅需要挖$$8$$个洞.\n ", "Analysis": "环形植树问题,棵树$$=$$段数,王师傅需要挖$$400\\div 50=8$$(个)洞.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "能力", "运算求解", "应用题模块", "封闭型", "封闭植树类型问题(段数小于等于10)", "对应思想", "间隔问题", "封闭型植树问题", "实践应用"]} +{"_id": "ff808081485991d9014867da61700b4d", "question": "将$$100$$个棱长为$$1$$的立方体堆放成一个长方体,将可能堆成的长方体的表面积按从小到大排列,求开始的$$6$$个.\n", "answer": "$$130$$,$$160$$,$$208$$,$$240$$,$$250$$,$$258$$.\n ", "Analysis": "要使堆成的长方体表面积尽量小,长、宽、高的差要尽量小,所以有$$100=4\\times 5\\times 5=2\\times 5\\times10=2\\times 2\\times 25=1\\times 10\\times 10=1\\times 5\\times20=1\\times 4\\times 25$$,表面各依次为$$130$$,$$160$$,$$208$$,$$240$$,$$250$$,$$258$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["长方体与正方体", "几何图形", "小立方体组合、堆叠的最值问题", "空间与图形"]} +{"_id": "ff808081485991d9014879d7a7a12f35_1", "question": "今年是公元$$2013$$年.观察$$2013$$这个数,它是由四个连续的自然数组成的四位数.我们将满足这样条件的年份称为“如意年”.\n \n下一个“如意年”,是公元哪一年?\n ", "answer": "下一个是$$2031$$最近.\n ", "Analysis": "若要保持$$“20”$$打头,则年份必由$$0$$、$$1$$、$$2$$、$$3$$组成,$$2013$$之后,下一个是$$2031$$最近.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "排列的基本应用", "有序枚举", "抽象概括", "计数模块", "课内知识点", "排列数", "排列", "学习能力", "枚举思想", "枚举法综合", "枚举法", "对应思想", "数学思想", "排列组合", "数学广角", "知识标签"]} +{"_id": "ff808081485991d9014879d7a7a12f35_2", "question": "今年是公元$$2013$$年.观察$$2013$$这个数,它是由四个连续的自然数组成的四位数.我们将满足这样条件的年份称为“如意年”.\n \n从公元$$1000$$年到公元$$2012$$年,共经历了多少个“如意年”?\n ", "answer": "$$12$$个.\n ", "Analysis": "$$“1”$$打头的“如意年”,后三位数字可能是$$0$$、$$2$$、$$3$$,也可能是$$2$$、$$3$$、$$4$$;两种情况分别有$$\\text{A}_{3}^{3}=6$$种,故共有$$6+6=12$$种,枚举如下:\n $$1023$$、$$1032$$、$$1203$$、$$1230$$、$$1302$$、$$1320$$、$$1234$$、$$1243$$、$$1324$$、$$1342$$、$$1423$$、$$1432$$\n $$“2”$$打头的如意年最小就是$$2013$$年,但题目要求到$$2012$$年,故知$$“2”$$打头的没有;综上,答案为$$12$$种.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "七大能力", "排列的基本应用", "有序枚举", "抽象概括", "计数模块", "课内知识点", "排列数", "排列", "学习能力", "枚举思想", "枚举法综合", "枚举法", "对应思想", "数学思想", "排列组合", "数学广角", "知识标签"]} +{"_id": "ff808081488801c601488c21647d0d05", "question": "小红放学后沿着公共汽车的线路以$$4$$千米/时的速度往家走,一边走一边数来往的公共汽车.到家时迎面来的公共汽车数了$$11$$辆,后面追过的公共汽车数了$$9$$辆.如果公共汽车按相等的时间间隔发车,那么公共汽车的平均速度是多少?\n ", "answer": "$$40$$千米/小时.\n ", "Analysis": "可以假设小红放学走到家共用$$99$$分钟,那么条件就可以转化为:“每隔$$9$$分钟就有辆公共汽车迎面开来,每隔$$11$$分钟就有辆公共汽车从后面超过他”.根据汽车间隔一定,可得:间隔$$=11\\times $$(车速$$-$$步速)$$=9\\times $$(车速$$+$$步速),化简可得:车速$$=10$$倍的步速.所以车速为$$10\\times 4=40$$(千米/时).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "发车问题", "求车速"]} +{"_id": "ff808081488801c601488c2166790d0b", "question": "小明骑自行车到朋友家聚会,一路上他注意到每隔$$12$$分钟就有一辆公交车从后边追上他,小明骑着骑着突然车胎爆了,小明只好以原来骑车三分之一的速度推着车往回走,这时他发现公交车以每隔$$4$$分钟一辆的频率迎面开过来,公交车站发车的间隔时间到底为多少?\n ", "answer": "$$4.8$$分钟.\n ", "Analysis": "设公交车之间的间距为一个单位距离,设自行车的速度为x,汽车的速度为y,根据汽车空间和时间间距与车辆速度的关系得到关系式:$$12\\times (y-x)=4(y+\\frac{1}{3}x)$$,化简为$$3y=5x$$.即$$\\frac{y}{x}=\\frac{5}{3}$$,而公交车与自行车的速度差为$$\\frac{1}{12}$$,由此可得到公交车的速度为$$\\frac{5}{24}$$,自行车的速度为$$\\frac{1}{8}$$,因此公交车站发车的时间间隔为$$24\\div 5=4.8$$分钟.\n \n设小明走路速度为$$1$$,骑车速度为$$3$$,电车速度为$$v$$;\n\n根据车距相等列式:$$12(v-3)=4(v+1)\\Rightarrow v=5$$;\n\n则车距为:$$12\\times (5-3)=24$$,发车时间间隔为:$$24\\div 5=4.8$$(分钟).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "求发车时间间隔", "发车问题"]} +{"_id": "ff808081488801c601488c2175870d1b", "question": "某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔$$15$$分钟有一辆公共汽车追上他;每隔$$10$$分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?\n ", "answer": "$$12$$\n ", "Analysis": "这类问题一般要求两个基本量:相邻两电车间距离、电车的速度.是人与电车的相遇与追及问题,他们的路程和(差)即为相邻两车间距离,设两车之间相距S,\n 根据公式得$$S=({{V}_{人}}+{{V}_{车}})\\times 10\\min $$,$$S=({{V}_{车}}-{{V}_{人}})\\times15\\min $$,\n 那么$$({{V}_{人}}+{{V}_{车}})\\times 10=({{V}_{车}}-{{V}_{人}})\\times 15$$,解得$${{V}_{车}}=5{{V}_{人}}$$,\n 所以发车间隔T =$$\\frac{S}{{{V}_{车}}}=\\frac{({{V}_{人}}+{{V}_{车}})\\times10}{{{V}_{车}}}=\\frac{(\\frac{1}{5}{{V}_{车}}+{{V}_{车}})\\times10}{{{V}_{车}}}=12\\frac{{{V}_{车}}}{{{V}_{车}}}=12$$\n \n设人的速度为$$1$$,公共汽车速度为$$v$$;根据车距相等列式:$$15(v-1)=10(v+1)$$,解得$$v=5$$;则车距为:$$15\\times (5-1)=60$$;发车时间间隔为$$60\\div 5=12$$分钟.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "求发车时间间隔", "发车问题"]} +{"_id": "ff808081488801c601488c21797b0d24", "question": "甲、乙两站从上午$$6$$时开始每隔$$8$$分同时相向发出一辆公共汽车,汽车单程运行需$$45$$分.有一名乘客乘坐$$6$$点$$16$$分从甲站开出的汽车,途中他能遇到几辆从乙站开往甲站的公共汽车?\n ", "answer": "$$8$$辆.\n ", "Analysis": "提示:这名乘客$$7$$点$$01$$分到达乙站时,乙站共开出$$8$$辆车.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人追及问题", "直线型行程问题", "多人相遇与追及问题"]} +{"_id": "ff80808147c465b80147c6890014039a", "question": "银行整存整取的年利率是:二年期为$$11.7\\%$$,三年期为$$12.24\\%$$,五年期为$$13.86\\%$$.如果甲、乙二人同时各存入一万元,甲先存二年期,到期后连本带利改存三年期;乙存五年期.五年后,二人同时取出,那么谁的收益多,多多少元?\n", "answer": "$$58.752$$.\n", "Analysis": "甲存二年期,则两年后获得利息为:$$1\\times11.7\\%\\times2=0.234$$(万元),\n\n再存三年期则为:($$1+0.234$$)$$\\times12.24\\%\\times3=0.4531248$$(万元),\n\n共$$0.234+0.4531248=0.6871248$$(万元),\n\n乙存五年期,则五年后获得$$1\\times13.86\\%\\times5=0.693($$万元),\n\n所以乙比甲多,$$0.693-0.6871248=0.0058752$$(万元).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "利息问题", "经济问题"]} +{"_id": "ff80808147c465b80147c68a943903b9", "question": "某家商店决定将一批苹果的价格降到原价的$$70\\%$$卖出,这样所得利润就只有原计划的$$\\frac{1}{3}$$.已知这批苹果的进价是每千克$$6$$元$$6$$角,原计划���获利润$$2700$$元,那么这批苹果共有多少千克?\n ", "answer": "这批苹果共有$$500$$千克.\n", "Analysis": "原价的$$30\\% $$相当于原利润的$$\\frac{2}{3}$$,所以原利润相当于原价的$${30}\\%  \\div \\frac{2}{3} = {45}\\% $$,\n\n则原价与原利润的比值为$$20:9$$,因此原利润为每千克$$6.6 \\times \\frac{9}{{20 - 9}} = 5.4$$元;\n\n又原计划获利$$2700$$元,则这批苹果共有$$2700 \\div 5.4 = 500$$千克.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["售价、利润、成本关系的问题", "经济问题", "应用题", "综合与实践"]} +{"_id": "ff80808147c465b80147c68a953b03bc", "question": "五$$(2)$$班有学生$$54$$人,男生人数的$$75\\%$$和女生人数的$$80\\%$$都参加了课外兴趣小组,而未参加课外兴趣小组的男、女生人数刚好相等,这个班男、女生各有多少人?\n ", "answer": "女生$$30$$、男生$$24$$.\n ", "Analysis": "由条件可得等式:\n 男生人数×$$(1-75\\%)$$=女生人数×$$(1-80\\%)$$\n 男生人数∶女生人数=$$4:5$$\n 就是男生人数是女生人数的$$\\frac{4}{5}$$.\n 女生人数:$$54 \\div (1 + \\frac{4}{5}) = 30$$(人)\n 男生人数:$$54-30=24$$(人).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "量率对应求单位1", "分百应用题"]} +{"_id": "ff80808147c465b80147c68a963e03c0", "question": "某工厂计划一月份生产一批零件,由于改进生产工艺,结果上半月生产了计划的$$\\frac{3}{5}$$,下半月比上半月多生产了$$\\frac{1}{5}$$,这样全月实际生产了$$1980$$个零件,一月份计划生产多少个?\n ", "answer": "$$1500$$个.\n ", "Analysis": "$$\\frac{1}{5}$$是以上半月的产量为“1”,下半月比上半月多生产$$\\frac{1}{5}$$,即下半月生产了计划的$$\\frac{3}{5} \\times (1 + \\frac{1}{5}) = \\frac{{18}}{{25}}$$.则计划的$$(\\frac{3}{5}{ + }\\frac{{18}}{{25}})$$为$$1980$$个,计划生产个数为:$$1980 \\div [\\frac{3}{5} + \\frac{3}{5} \\times (1 + \\frac{1}{5})] = 1500$$(个).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "量率对应求单位1", "分百应用题"]} +{"_id": "ff80808147e705d80147f0fff16915e1", "question": "一项工程,甲单独完成需要$$12$$天,乙单独完成需要$$9$$天.若甲先做若干天后乙接着做,共用$$10$$天完成,问甲做了几天?\n ", "answer": "$$4$$天.\n", "Analysis": "根据题意可知,甲的工作效率为$$\\frac{1}{{12}}$$,乙的工作效率为$$\\frac{1}{{9}}$$,\n\n采用鸡兔同笼问题的假设法,可知甲做了$$(\\frac{1}{9} \\times 10 - 1) \\div (\\frac{1}{9} - \\frac{1}{{12}}) = 4$$(天).\n\n设甲工作了$$x$$天,那么乙工作了$$\\left( 10-x \\right)$$天.两人的工作效率分别为$$\\frac{1}{12}$$和$$\\frac{1}{9}$$,因此可列等式:$$\\frac{1}{12}x+\\frac{1}{9}(10-x)=1$$,解得$$x=4$$,即甲工作了$$4$$天.\n\n(假设法):运用鸡兔同笼的解题思路,假设全是甲做的,那么甲可以做全部工程的几分之几,然后找到它与“$$1$$”的差,再求出甲、乙的工作效率差,进而求出甲、乙各做几天.假设甲做了$$10$$天,做了全部工程的几分之几:$$\\frac {1}{12}\\times 10=\\frac {5}{6}$$;甲、乙的工作效率差:$$\\frac {1}{9}-\\frac {1}{12}=\\frac {1}{36}$$,因为每把一天的乙计算成甲就会少算$$\\frac {1}{36}$$,所以乙做了$$\\left(1-\\frac {5}{6} \\right)\\div \\frac {1}{36}=6$$(天);甲做了$$10-6=4$$(天).\n\n答:甲做了$$4$$天.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "接力施工问题", "工程问题"]} +{"_id": "ff80808147e705d80147f1005bb2162e", "question": "一项工程,甲单独做需要$$21$$天时间,甲、乙合作需要$$12$$天时间,如果乙单独做需要多少时间.\n ", "answer": "乙单独做需要$$28$$天完成.\n ", "Analysis": "将整个工程的工作量看“$$1$$”个单位,\n\n那么甲每天完成总量的$$\\frac{1}{{21}}$$,甲、乙合作每天完成总量的$$\\frac{1}{{12}}$$,\n\n乙单独做每天能完成总量的$$\\frac{1}{{12}} - \\frac{1}{{21}} = \\frac{1}{{28}}$$,\n\n所以乙单独做$$28$$天能完成.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["工程应用题", "两人合作求一人工作效率", "应用题", "综合与实践"]} +{"_id": "ff808081481c1eb501481f72a3ae01b4", "question": "甲乙两商场推出迎新年优惠活动,甲商场规定:“每满$$200$$元减$$101$$元.”乙商场规定:“每满$$101$$元减$$50$$元.”小明的爸爸看中了一双票价$$699$$的运动鞋和一件票价$$910$$元的羊毛衫,这两类商品在这两个商场都有销售.问:怎么买更便宜呢?共需要多少钱?请说明理由.\n ", "answer": "全部在甲商店买,总共花$$699+910=1609$$,所以可以节省:$$101\\times8=808$$(元),实际花:$$1609-808=801$$(元).\n", "Analysis": "如果全部在甲商店买,总共花$$699+910=1609$$,所以可以节省:$$101\\times8=808$$(元),实际花:$$1609-808=801$$(元).\n\n如果全部在乙商店买,总共花$$699+910=1609$$,所以可以节省:$$50\\times15=750$$(元),实际花:$$1609-750=859$$(元).\n\n所以全部在甲店购买更便宜.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["购物方案中两个价钱对比", "生活实践", "设计方案", "综合与实践"]} +{"_id": "ff8080814830a86f01484078f72a118a_1", "question": "李叔叔承包了$$12$$亩水稻田,亩产量是$$660$$千克,林阿姨比李叔叔少承包$$2$$亩水稻田,水稻的总产量比李叔叔少$$420$$千克,问:\n \n李叔叔的水稻总产量是多少千克?\n ", "answer": "$$7920$$\n ", "Analysis": "李叔叔的水稻总产量:$$660\\times 12=7920$$(千克).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "除法的实际应用", "课内知识点", "运算求解", "实践应用", "七大能力", "逻辑分析", "乘法的实际应用", "乘法应用(顺口溜)", "归一归总问题", "乘除法应用", "除法应用", "知识标签", "整数的简单实际问题", "数的运算的实际应用(应用题)", "数与运算", "应用题模块", "对应思想", "数学思想", "学习能力"]} +{"_id": "ff8080814830a86f01484078f72a118a_2", "question": "李叔叔承包了$$12$$亩水稻田,亩产量是$$660$$千克,林阿姨比李叔叔少承包$$2$$亩水稻田,水稻的总产量比李叔叔少$$420$$千克,问:\n \n李叔叔的水稻亩产量比林阿姨的少多少千克?\n ", "answer": "$$90$$\n ", "Analysis": "林阿姨总产量:$$7920-420=7500$$(千克)\n 林阿姨承包亩数:$$12-2=10$$(亩)\n 林阿姨水稻亩产量:$$7500\\div 10=750$$(千克)\n 所以李叔叔的水稻亩产量比林阿姨的少$$750-660=90$$(千克).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "除法的实际应用", "课内知识点", "运算求解", "实践应用", "七大能力", "逻辑分析", "乘法的实际应用", "乘法应用(顺口溜)", "归一归总问题", "乘除法应用", "除法应用", "知识标签", "整数的简单实际问题", "数的运算的实际应用(应用题)", "数与运算", "应用题模块", "对应思想", "数学思想", "学习能力"]} +{"_id": "ff808081488801c601488c2192540d3d", "question": "小明和小红两人在长$$100$$米的直线跑道上来回跑步,做体能训练,小明的速度为$$6$$米/秒,小红的速度为$$4$$米/秒.他们同时从跑道两端出发,连续跑了$$12$$分钟.在这段时间内,他们迎面相遇了多少次?\n ", "answer": "$$36$$次.\n ", "Analysis": "第一次相遇时,两人共跑完了一个全程,所用时间为:$$100 \\div (6 + 4) = 10$$(秒).此后,两人每相遇一次,就要合跑$$2$$倍的跑道长,也就是每$$20$$秒相遇一次,除去第一次的$$10$$秒,两人共跑了$$12 \\times 60 - 10 = 710$$(秒).求出$$710$$秒内两人相遇的次数再加上第一次相遇,就是相遇的总次数.列式计算为:$$100 \\div (6 + 4) = 10$$(秒),$$(12 \\times 60 - 10) \\div (10 \\times 2) = 35 \\cdots 10$$,共相遇$$35 + 1 = 36$$(次).注:解决问题的关键是弄清他们首次相遇以及以后每次相遇两人合跑的路程长.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多次相遇和追及", "直线型行程问题", "往返相遇"]} +{"_id": "ff808081488801c601488c2193030d3f_1", "question": "甲、乙二人进行游泳追逐赛,规定两人分别从游泳池$$50$$米泳道的两端同时开始游,直到一方追上另一方为止,追上者为胜.已知甲、乙的速度分别为$$1.0$$米/秒和$$0.8$$米/秒.问:\n \n比赛开始后多长时间甲追上乙?\n ", "answer": "$$250$$秒.\n ", "Analysis": "$$50÷(1.0-0.8)=250$$(秒).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "行程模块", "直线型行程问题", "逻辑分析", "追及与相遇结合", "能力", "运算求解", "对应思想", "两人相遇与追及问题", "实践应用"]} +{"_id": "ff808081488801c601488c2193030d3f_2", "question": "甲、乙二人进行游泳追逐赛,规定两人分别从游泳池$$50$$米泳道的两端同时开始游,直到一方追上另一方为止,追上者为胜.已知甲、乙的速度分别为$$1.0$$米/秒和$$0.8$$米/秒.问:\n \n甲追上乙时两人共迎面相遇了几次?\n ", "answer": "$$4$$次.\n ", "Analysis": "甲、乙分别游了$$5$$个和$$4$$个单程,故迎面相遇$$4$$次.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "行程模块", "直线型行程问题", "逻辑分析", "追及与相遇结合", "能力", "运算求解", "对应思想", "两人相遇与追及问题", "实践应用"]} +{"_id": "ff808081488801c601488c2194520d43", "question": "甲、乙两车分别从$$A,B$$两地出发,并在$$A,B$$两地间不断往返行驶.已知甲车的速度是$$15$$千米/时,乙车的速度是$$25$$千米/时,甲、乙两车第三次相遇地点与第四次相遇地点相差$$100$$千米.求$$A,B$$两地的距离.\n ", "answer": "$$200$$千米.\n ", "Analysis": "第一次相遇时,两车共走$$1$$个单程,其中乙车占$$\\frac{{15}}{{15 + 25}} = \\frac{3}{8}$$.第三次相遇时,两车共走$$5$$个单程,乙车走了$$5 \\times \\frac{3}{8} = 1\\frac{7}{8}$$(个)单程;第四次相遇时,两车共走$$7$$个单程,乙车走了$$7 \\times \\frac{3}{8} = 2\\frac{5}{8}$$(个)单程;因为第三次、四次相遇地点相差$$\\frac{7}{8} + \\frac{5}{8} - 1 = \\frac{1}{2}$$(个)单程,所以A,B两地相距$$100 \\div \\frac{1}{2} = 200$$(千米).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "相遇问题求路程和", "直线型行程问题", "行程应用题", "多次相遇和追及", "往返相遇", "应用题", "综合与实践"]} +{"_id": "ff808081488801c601488c2195ae0d46", "question": "$$A、B$$两地相距$$2400$$米,甲从$$A$$地、乙从$$B$$地同时出发,在$$A、B$$间往返长跑.甲每分钟跑$$300$$米,乙每分钟跑$$240$$米,在$$30$$分钟后停止运动.甲、乙两人在第几次相遇时$$A$$地最近?最近距离是多少米?\n ", "answer": "第$$2$$次,$$800$$米.\n", "Analysis": "$$30×(300+240)÷2400=6.75$$个全程,相遇$$3$$次,把全程分成$$9$$份,第一次相遇,甲跑$$5$$份,第二次相遇甲跑$$15$$份,距离$$A 3$$份,第三次相遇甲跑$$25$$份距离$$A 7$$份,所以第二次相遇距离$$A$$最近,最近为$$2400÷9×3=800$$米.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多次相遇和追及", "直线型行程问题", "往返相遇"]} +{"_id": "ff808081488801c601488c2196590d48", "question": "甲、乙二人以均匀的速度分别从$$A、B$$两地同时出发,相向而行,他们第一次相遇地点离$$A$$地$$7$$千米,相遇后二人继续前进,走到对方出发点后立即返回,在距$$B$$地$$3$$千米处第二次相遇,求第三次相遇时共走了多少千米?\n ", "answer": "$$90$$千米.\n ", "Analysis": "第一次相遇两车共行了$$A,B$$间的一个单程,其中甲行了$$7$$千米;第二次相遇两车共行了$$A,B$$间的$$3$$个单程,乙行了$$7×3=21($$千米),甲行的路程又等于一个单程加$$3$$千米.\n
  甲\n 乙\n 合走\n
从开始到第一次相遇时\n $$7$$\n 一个全程$$-7$$\n 一个全程\n
从开始到第二次相遇时\n $$7×3$$=一个全程$$+3$$\n 两个全程$$-3$$\n 三个全程\n
故$$A,B$$间的距离为$$21-3=18($$千米).\n 故$$A,B$$间的距离为$$21-3=18($$千米).\n 第三次相遇共走$$5$$个全程,$$18×5=90$$(千米).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多次相遇和追及", "直线型行程问题", "往返相遇"]} +{"_id": "ff808081488801c601488c2197b50d4c", "question": "甲、乙两车同时从$$A,B$$两地相向而行,在距$$B$$地$$54$$千米处相遇.他们各自到达对方车站后立即返回原地,途中又在距$$A$$地$$42$$千米处相遇.求两次相遇地点的距离.\n ", "answer": "$$24$$千米.\n", "Analysis": "第一次相遇两车共行了$$A, B$$间的一个单程,其中乙行了$$54$$千米;第二次相遇两车共行了$$A,B$$间的$$3$$个单程,乙行了$$54×3=162($$千米),乙行的路程又等于一个单程加$$42$$千米.\n
甲\n 乙\n 合走\n
从开始到第一次相遇时\n 一个全程$$-54$$\n $$54$$\n 一个全程\n
从开始到第二次相遇时\n 两个全程$$-42$$\n $$54×3=$$一个全程$$+42$$\n 三个全程\n
故$$A,B$$间的距离为$$162-42=120($$千米).\n 第一次相遇地点离$$A$$地$$120-54=66($$千米).第一次相遇地点距$$A$$地$$42$$千米.\n 两次相遇地点的距离$$66-42=24($$千米).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多次相遇和追及", "直线型行程问题", "两次相遇"]} +{"_id": "ff808081488801c601488c21b4b50d4e", "question": "甲、乙二人以均匀的速度分别从$$A、B$$两地同时出发,相向而行,他们第一次相遇地点离$$A$$地$$18$$千米,相遇后二人继续前进,走到对方出发点后立即返回,在距$$B$$地$$13$$千米处第二次相遇,求$$AB$$两地之间的距离.\n ", "answer": "$$41$$千米.\n ", "Analysis": "根据题意可得,\n
  甲\n 乙\n 合走\n
从开始到第一次相遇时\n $$18$$\n 一个全程$$-18$$\n 一个全程\n
从开始到第二次相遇时\n $$18×3=$$一个全程$$+13$$\n 两个全程$$-13$$\n 三个全程\n
一个全程$$=54-13=41$$(千米).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "相遇问题求路程和", "直线型行程问题", "行程应用题", "多次相遇和追及", "应用题", "两次相遇", "综合与实践"]} +{"_id": "ff808081488801c601488c21ba240d5e", "question": "甲、乙两名同学在周长为$$300$$米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑$$3.5$$米,乙每秒钟跑$$4$$米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?\n ", "answer": "$$100$$米.\n ", "Analysis": "从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的$$10$$倍,为$$300 \\times 10{ = }3000$$米,\n\n因为甲的速度为每秒钟跑$$3.5$$米,乙的速度为每秒钟跑$$4$$米,\n\n所以这段时间内甲共行了$$3000 \\times \\frac{{3.5}}{{3.5 + 4}} = 1400$$米,\n\n也就是甲最后一次离开出发点继续行了$$200$$米,\n\n可知甲还需行$$300 - 200 = 100$$米才能回到出发点.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "行程应用题", "同时同地反向环形跑道相遇问题", "环形跑道", "应用题", "环形相遇同时同地出发", "环形跑道中的相遇", "综合与实践"]} +{"_id": "ff808081488801c601488c21e86e0d7b", "question": "大、小客车从甲、乙两地同时相向开出,大、小客车的速度比为$$4∶5$$,两车开出后$$60$$分相遇,并继续前进.问:大客车比小客车晚多少分到达目的地?\n ", "answer": "$$27$$分.\n ", "Analysis": "大客车还需$$60 \\times \\frac{5}{4} = 75$$(分)、小客车还需$$60 \\times \\frac{4}{5} = 48$$(分).大客车比小客车晚到$$75 - 48 = 27$$(分)\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "相遇问题", "同时出发相向而行", "两人相遇与追及问题"]} +{"_id": "ff808081488801c601488c21ee8c0d87", "question": "一辆货车从甲地开往乙地需要$$7$$小时,一辆客车从乙地开往甲地需要$$9$$小时,两车同时从两地相对开出.中途货车因故停车$$2$$小时,相遇时,客车比货车多行$$30$$千米.甲、乙两地相距多少千米?\n ", "answer": "$$240$$千米.\n ", "Analysis": "当货车因故停车$$2$$小时,客车单独开了$$2$$个小时,行了全程的$$\\frac{1}{9} \\times 2{ = }\\frac{2}{9}$$,两车相遇时货车行驶时间为$$(1 - \\frac{2}{9}) \\div (\\frac{1}{9} + \\frac{1}{7}) = \\frac{{49}}{{16}}$$(小时),相遇时,客车行驶了全程的$$\\frac{1}{9} \\times (2 + \\frac{{49}}{{16}}) = \\frac{9}{{16}}$$,所以甲乙两地相距$$30 \\div (\\frac{9}{{16}} - \\frac{7}{{16}}) = 240$$(千米).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "相遇问题", "同时出发相向而行", "两人相遇与追及问题"]} +{"_id": "ff808081488801c601488c21fb850d8b", "question": "猎狗追野兔.在相等的时间里,猎狗跳$$6$$次,野兔跳$$7$$次;而猎狗跳$$4$$次的距离等于野兔跳$$5$$次的距离.当猎狗发现野兔时,野兔已跳出离猎狗$$10$$步远的距离.问猎狗跳出多少次以后才能追上野兔?\n ", "answer": "即猎狗至少要跑$$120$$步才能追上兔子.\n ", "Analysis": "猎狗每步相当于$$5 \\div 4 = \\frac{5}{4}$$(兔步),猎狗的速度比兔子快$$(6 \\times \\frac{5}{4} - 7) \\div 6 = \\frac{1}{{12}}$$(兔步),$$10 \\div \\frac{1}{{12}} = 120$$(步),即猎狗至少要跑$$120$$步才能追上兔子.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "追及问题", "不同时出发", "两人相遇与追及问题"]} +{"_id": "ff808081488801c601488c22129d0d99", "question": "一辆汽车从甲地开往乙地,每分钟行$$750$$米,预计$$50$$分钟到达.但汽车行驶到路程$$\\frac{3}{5}$$时,出了故障,用$$5$$分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?\n", "answer": "$$250$$米.\n ", "Analysis": "当以原速行驶到全程的$$\\frac{3}{5}$$时,总时间也用了$$\\frac{3}{5}$$,所以还剩下$$50 \\times (1 - \\frac{3}{5}) = 20$$分钟的路程;修理完毕时还剩下$$20 - 5 = 15$$分钟,在剩下的这段路程上,预计时间与实际时间之比为$$20:15 = 4:3$$,所以相应的速度之比为$$4:3$$,因此每分钟应比原来快$$750 \\times \\frac{{4 - 3}}{3} = 250$$米.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "单人变速问题", "行程中的比例", "路程速度时间", "比例解行程问题"]} +{"_id": "ff808081488801c601488c2214240d9d", "question": "快车与慢车分别从甲、乙两地同时开出,相向而行,经过 $$5$$时相遇.已知慢车从乙地到甲地用$$12.5$$时,慢车到甲地停留$$1$$时后返回,快车到乙地停留$$2$$时后返回,那么两车从第一次相遇到第二次相遇共需多长时间?\n ", "answer": "$$11$$时$$36$$分.\n ", "Analysis": "快车$$5$$时行的路程慢车需行$$12.5-5=7.5($$时),所以快车与慢车的速度比为$$7.5∶5=3∶2.$$因为两车第一次相遇时共行甲、乙两地的一个单程,第二次相遇时共行三个单程,所以若两车都不停留,则第一次相遇到第二次相遇需$$10$$时.现在慢车停留$$1$$时,快车停留$$2$$时,所以第一次相遇后$$11$$时,两车间的距离快车还需行$$60$$分,这段距离两车共行需$$60 \\times \\frac{3}{{3 + 2}} = 36$$(分).第一次相遇到第二次相遇共需$$11$$时$$36$$分.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "相遇问题", "同时同地出发折返相遇", "两人相遇与追及问题"]} +{"_id": "ff808081488801c601488c2214ce0d9f", "question": "甲、乙两车分别同时从$$A,B$$两城相向行驶,$$6$$时后可在途中某处相遇.甲车因途中发生故障抛描��修理$$2.5$$时后才继续行驶,因此从出发到相遇经过$$7.5$$时.甲车从$$A$$城到$$B$$城共用多长时间?\n ", "answer": "$$12.5$$(时).\n", "Analysis": "由题意推知,两车相遇时,甲车实际行驶$$5$$时,乙车实际行驶$$7.5$$时.与计划的$$6$$时相遇比较,甲车少行$$1$$时,乙车多行$$1.5$$时.也就是说甲车行$$1$$时的路程,乙车需行$$1.5$$时.进一步推知,乙车行$$7.5$$时的路程,甲车需行$$5$$时.所以,甲车从$$A$$城到$$B$$城共用$$7.5+5=12.5($$时).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "相遇问题", "同时出发相向而行", "两人相遇与追及问题"]} +{"_id": "ff808081488801c601488c2218430da6", "question": "一列客车和一列货车同时从两地相向开出,经过$$18$$小时两车在某处相遇,已知客车每小时行$$50$$千米,货车每小时比客车少行$$8$$千米,货车每行$$3$$小时要停驶$$1$$小时.问:两地之间的铁路长多少千米?\n ", "answer": "$$1488$$千米.\n ", "Analysis": "车走了$$18$$个小时,货车走$$3$$小时停驶$$1$$小时,所以货车相遇时走了$$14$$小时,两地相距$$18 \\times 50{ + }14 \\times (50 - 8) = 1488$$(千米).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["相遇问题求路程和", "行程应用题", "应用题"]} +{"_id": "ff808081488801c601488c2238150daa", "question": "野兔逃出$$80$$步后猎狗才开始追,野兔跑$$7$$步的路程猎狗只需跑$$3$$步,野兔跑$$9$$步的时间猎狗只能跑$$5$$步.问:猎狗至少跑多少步才能追上野兔?\n ", "answer": "$$150$$步.\n ", "Analysis": "“野兔跑$$7$$步的路程猎狗只需跑$$3$$步,野兔跑$$9$$步的时间猎狗只能跑$$5$$步.”将条件转化为:“野兔跑$$35$$步的路程猎狗只需跑$$15$$步,野兔跑$$27$$步的时间猎狗只能跑$$15$$步.”在猎狗跑$$15$$步的时间内,猎狗比野兔多跑$$35-27=8$$(兔步). 猎狗追上野兔需跑:$$15\\times(80\\div8)=150$$(步).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "追及问题", "不同时出发", "两人相遇与追及问题"]} +{"_id": "ff808081488801c601488c2238ee0dac", "question": "猎犬发现在离它$$9$$步远的前方有一只奔跑的兔子,立刻追赶,猎犬步子大.它跑$$5$$步的路程,兔子跑$$9$$步,但兔子动作快,猎犬跑$$2$$步的时间,兔子跑$$3$$步,猎犬至少跑多少步才能追上兔子?\n ", "answer": "$$54$$步.\n ", "Analysis": "狗$$5$$步=兔子$$9$$步,步幅之比=$$9:5$$;狗$$2$$步时间=兔子$$3$$步时间,步频之比=$$2:3$$;则速度之比是$$ 9×2:5×3=6:5$$;这个$$9$$步是指狗的$$9$$步距离.$$6×9÷(6-5)=54$$步.\n \n兔子跑$$27$$步的路程猎狗只需跑$$15$$步,野兔跑$$27$$步的时间猎狗只能跑$$18$$步,猎狗跑$$15$$步的时间内,猎狗比野兔多跑$$18-15=3$$(狗步). 猎狗追上野兔需跑:$$9\\times \\left( 18\\div 3 \\right)=54$$(步).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "行程中的比例", "比例解行程问题"]} +{"_id": "ff808081488801c601488c223b010db1", "question": "一辆汽车从甲地出发到$$300$$千米外的乙地去,前$$120$$千米的平均速度为$$40$$千米/时,要想使这辆汽车从甲地到乙地的平均速度为$$50$$千米/时,剩下的路程应以什么速度行驶?\n", "answer": "$$60$$千米/时.\n ", "Analysis": "剩下的路程为:$$300-120=180$$(千米),计划总时间为:$$300÷50=6$$(小时),前$$120$$千米已用去$$120÷40=3($$小时),所以剩下路程的速度为: $$(300-120)÷(6-3)=60$$(千米/时).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "公式法", "路程速度时间", "平均速度"]} +{"_id": "ff808081488801c601488c223f360db8", "question": "汽车以$$72$$千米/时的速度从甲地到乙地,到达后立即以$$48$$千米/时的速度返回甲地.求该车的平均速度.\n ", "answer": "$$57.6$$千米/时.\n ", "Analysis": "$$2 \\div (\\frac{1}{{72}}{ + }\\frac{1}{{48}}{) = 57}{.6}$$千米/时.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 1, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["求平均速度", "行程模块", "直线型行程问题", "行程应用题", "路程速度时间", "平均速度", "设数法", "应用题", "综合与实践"]} +{"_id": "ff808081488801c601488c224aad0dba", "question": "胡老师骑自行车过一座桥,上桥速度为每小时$$12$$千米,下桥速度为每小时$$24$$千米,而且上桥与下桥所经过的路程相等,中间也没有停顿,问这个人骑车过这座桥的平均速度是多少?\n ", "answer": "$$16$$千米/时.\n ", "Analysis": "$$2 \\div (\\frac{1}{{12}}{ + }\\frac{1}{{24}}{ )= 16}$$(千米/时).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "路程速度时间", "平均速度", "设数法"]} +{"_id": "ff808081488801c601488c224ffb0dc7", "question": "甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是$$70$$分钟,如果在出发后$$45$$分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟?\n ", "answer": "$$126$$分钟.\n ", "Analysis": "甲行走$$45$$分钟,再行走$$70-45=25$$分钟即可走完一圈.而甲行走$$45$$分钟,乙行走$$45$$分钟也能走完一圈.所以甲行走$$25$$分钟的路程相当于乙行走$$45$$分钟的路程.甲行走一圈需$$70$$分钟,所以乙需$$70÷25×45=126$$分钟.即乙走一圈的时间是$$126$$分钟.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "行程应用题", "同时同地反向环形跑道相遇问题", "环形跑道", "应用题", "环形相遇同时同地出发", "环形跑道中的相遇", "综合与实践"]} +{"_id": "ff808081488801c601488c225f5c0dd2", "question": "有甲、乙、丙$$3$$人,甲每分钟行走$$120$$米,乙每分钟行走$$100$$米,丙每分钟行走$$70$$米.如果$$3$$个人同时同向,从同地出发,沿周长是$$300$$米的圆形跑道行走,那么多少分钟之后,$$3$$人又可以相聚在跑道上同一处?\n ", "answer": "$$30$$分.\n ", "Analysis": "由题意知道:甲走完一周需要时间为$$300 \\div 120{ = }\\frac{5}{2}$$(分);乙走完一周需要时间为$$300 \\div 100{ = }3$$丙走完一周需要时间为$$300 \\div 70{ = }\\frac{{30}}{7}$$,那么三个人想再次相聚在跑道同一处需要时间为:$$\\left[ {\\frac{5}{2},\\frac{{30}}{7},3} \\right] = \\frac{{\\left[ {5,30,3} \\right]}}{{\\left( {2,7,1} \\right)}} = \\frac{{30}}{1} = 30$$分.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人追及问题", "直线型行程问题", "多人相遇与追及问题"]} +{"_id": "ff808081488801c601488c2260b10dd5", "question": "甲、乙二人在操场的$$400$$米跑道上练习竞走,两人同时出发,出发时甲在乙后面,出发后$$6$$分甲第一次超过乙,$$22$$分时甲第二次超过乙.假设两人的速度保持不变,问:出发时甲在乙后面多少米?\n ", "answer": "$$150$$米.\n ", "Analysis": "甲第一次追上到第二次追上的时间:$$22-6=16$$(分);\n\n甲乙的速度差:$$400\\div 16=25$$(米/分);\n\n甲乙的路程差:$$6\\times 25=150$$(米).\n\n$$22-6=16$$(分)甲比乙多走一个全程,那么甲比乙的速度每分钟快$$400\\div 16=25$$米,那么出发时,甲在乙后面$$6\\times 25=150$$米.\n\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "环形追及同时同地出发", "环形跑道", "环形跑道中的追及"]} +{"_id": "ff808081488801c601488c2239960dae", "question": "猎狗前面$$26$$步远有一只野兔,猎狗追之. 兔跑$$8$$步的时间狗跑$$5$$步,兔跑$$9$$步的距离等于狗跑$$4$$步的距离.问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少步?\n ", "answer": "兔跑$$144$$步后被猎狗抓获.此时猎狗跑了$$90$$步.\n ", "Analysis": "方法一:“猎狗前面$$26$$步$$\\cdots$$”显然指的是猎狗的$$26$$步.因为题目中出现“兔跑$$8$$步的时间$$\\cdots$$”和“兔跑$$9$$步的距离$$\\cdots$$”,$$8$$与$$9$$的最小公倍数是$$72$$,所以可以统一在“兔跑$$72$$步”这个情况下考虑.兔跑$$72$$步的时间狗跑$$45$$步,兔跑$$72$$步的距离等于狗跑$$32$$步距离,所以在兔跑$$72$$步的时间里,狗比兔多跑了$$45$$—$$32=13($$步$$)$$的路程,这个$$13$$步是猎狗的$$13$$步. 由此推知,要追上$$26($$狗$$)$$步,兔跑了$$72\\times(26\\div13)=144($$步$$)$$,此时猎狗跑了$$5\\times(144\\div8)=90($$步$$)$$.\n 方法二:设狗跑一步为$$1$$个长度单位,则兔跑一步为$$\\frac{4}{9}$$个长度单位;在相同时间内,狗的速度为$$5 \\times 1 = 5$$,兔的速度为$$8 \\times \\frac{4}{9} = \\frac{{32}}{9}$$,根据题意有$$26 \\div (5 - \\frac{{32}}{9}) = 18$$$$($$个单位时间$$)$$.猎狗追上兔时跑了$$5 \\times 18 = 90$$$$($$个单位长度$$)$$,所以狗跑了$$90 \\div 1 = 90$$$$($$步$$)$$,此时兔跑了$$\\frac{{32}}{9} \\times 18 = 64$$$$($$个单位长度$$)$$,故兔跑了$$64 \\div \\frac{4}{9} = 144$$$$($$步$$)$$.\n 方法三:统一为“兔跑$$72$$步”的情况:兔跑$$72$$步的时间里狗比兔多跑了$$5 \\times 9 - 4 \\times 8 = 13$$$$($$步$$)$$的路程,这里的步是狗步.由此推知,要追上$$26$$狗步,兔跑了$$72 \\times (26 \\div 13) = 144$$$$($$步$$)$$,此时猎狗跑了$$5 \\times (144 \\div 8) = 90$$$$($$步$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "追及问题", "两人相遇与追及问题", "同时出发"]} +{"_id": "ff808081488801c601488c226e660ddf", "question": "两名运动员在湖的周围环形道上练习长跑.甲每分钟跑$$250$$米,乙每分钟跑$$200$$米,两人同时同地同向出发,经过$$45$$分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?\n", "answer": "$$5$$分钟.\n ", "Analysis": "在封闭的环形道上同向运动属追及问题,反向运动属相遇问题.同地出发,其实追及路程或相隔距离就是环形道一周的长.这道题的解题关键就是先求出环形道一周的长度.环形道一周的长度可根据两人同向出发,$$45$$分钟后甲追上乙,由追及问题,两人速度差为:$$250 - 200 = 50$$$$($$米/分$$)$$,所以路程差为:$$50 \\times 45 = 2250$$$$($$米$$)$$,即环形道一圈的长度为$$2250$$米.所以反向出发的相遇时间为:$$2250 \\div (250 + 200)= 5$$$$($$分钟$$)$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "行程应用题", "同时同地同向环形跑道追及问题", "环形跑道", "环形跑道中的追及", "应用题", "环形追及同时同地出发", "综合与实践"]} +{"_id": "ff808081488801c601488c22710b0de4", "question": "上海小学有一长$$300$$米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑$$6$$米,小胖每秒钟跑$$4$$米,小亚第一次追上小胖时两人各跑了多少米?小亚第二次追上小胖两人各跑了多少圈?\n ", "answer": "第一次追上时,小胖跑了$$2$$圈,小亚跑了$$3$$圈,所以第二次追上时,小胖跑$$4$$圈,小亚跑$$6$$圈.\n ", "Analysis": "第一次追上时,小亚多跑了一圈,所以需要$$300 \\div (6 - 4) = 150$$秒,小亚跑了$$6 \\times 150 = 900$$(米).小胖跑了$$4 \\times 150 = 600$$(米);第一次追上时,小胖跑了$$2$$圈,小亚跑了$$3$$圈,所以第二次追上时,小胖跑$$4$$圈,小亚跑$$6$$圈.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程应用题", "应用题", "同时同地同向环形跑道追及问题", "综合与实践"]} +{"_id": "ff808081488801c601488c227a010de7", "question": "一个圆形操场跑道的周长是$$500$$米,两个学生同时同地背向而行.黄莺每分钟走$$66$$米,麻雀每分钟走$$59$$米.经过几分钟才能相遇?\n ", "answer": "$$4$$分钟.\n ", "Analysis": "黄莺和麻雀每分钟共行$$66 + 59 = 125$$(千米),那么周长跑道里有几个$$125$$米,就需要几分钟,即$$500 \\div (66 + 59) = 500 \\div 125 = 4$$(分钟).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["同时同地反向环形跑道相遇问题", "行程应用题", "应用题", "综合与实践"]} +{"_id": "ff808081488801c601488c227c0e0deb", "question": "甲、乙、丙三辆车同时从$$A$$地出发到$$B$$地去,甲、乙两车的速度分别为$$60$$千米/时和$$48$$千米/时.有一辆迎面开来的卡车分别在他们出发后 $$6$$时、$$7$$时、$$8$$时先后与甲、乙、丙三辆车相遇.求丙车的速度.\n ", "answer": "$$39$$千米/时.\n ", "Analysis": "先利用甲、乙两车的速度及与迎面开来的卡车相遇的时间,求出卡车速度为$$24$$千米/时.\n \n甲遇到卡车时,甲、乙相距$$(60-48)\\times 6=72$$千米,这也是乙���与卡车在接下来的$$7-6=1$$小时内的相遇路程,则可知卡车速度是$$72\\div 1-48=24$$千米/时;乙车与卡车相遇时,乙、丙相距$$\\left( 48-{{v}_{丙}} \\right)\\times 7$$千米,这也是丙与卡车在接下来的$$8-7=1$$小时内的相遇路程$$(24+{{v}_{丙}})\\times 1$$,可得方程:$$\\left( 48-{{v}_{丙}} \\right)\\times 7=\\left( 24+{{v}_{丙}} \\right)\\times 1$$,解得$${{v}_{丙}}=39$$千米/时.\n\n说明:求出卡车速度后,也可以先求两地间距离,得$$\\left( 60+24 \\right)\\times 6=504$$千米,再求丙车的速度:$$504\\div 8-24=39$$千米/时.\n\n故答案为:$$39$$千米/时.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇问题", "直线型行程问题", "多人相遇与追及问题"]} +{"_id": "ff808081488801c601488c227cb60ded", "question": "甲、乙、丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走.已知甲每小时行$$7$$千米,乙每小时行$$5$$千米,$$1$$小时后甲、丙二人相遇,又过了$$10$$分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?\n", "answer": "$$7$$千米.\n ", "Analysis": "方法一:\n\n出发$$1$$小时后甲、丙相遇,这时甲领先乙$$\\left( {7 - 5} \\right) \\times 1 = 2$$千米;\n\n$$10$$分钟后丙、乙相遇,相向而行共行了$$2$$千米,\n\n其中乙行了$$5 \\times \\frac{{10}}{{60}} = \\frac{5}{6}$$千米,丙行了$$2 - \\frac{5}{6} = \\frac{7}{6}$$千米,\n\n丙每小时行$$\\frac{{7 \\times 60}}{{6 \\times 10}} = 7$$千米,\n\n所以甲、丙相遇时,丙行了$$7 \\times 1 = 7$$千米.\n\n方法二:\n\n丙$$1$$小时$$10$$分钟(与乙相遇)行的距离与$$1$$小时(与甲相遇)行的距离之差恰好等于甲$$1$$小时行与乙$$1$$小时$$10$$分钟行的距离之差,\n\n所以丙的速度等于$$\\left( {7 \\times 1 - 5 \\times \\frac{{70}}{{60}}} \\right) \\div \\left( {\\frac{{70}}{{60}} - 1} \\right) = 7$$千米/小时,\n\n丙与甲相遇时,丙行了$$7 \\times 1 = 7$$千米.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "环形跑道中的相遇", "环形相遇同时同地出发", "环形跑道"]} +{"_id": "ff808081488801c601488c227d600def", "question": "甲、乙、丙三人行路,甲每分钟走$$50$$米,乙每分钟走$$60$$米,丙每分钟走$$70$$米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过$$2$$分钟与甲相遇,求东西两镇间的路程有多少米?\n", "answer": "$$3120$$\n", "Analysis": "那$$2$$分钟是甲和丙相遇,所以距离是$$(50+70)\\times2=240$$米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间$$=240\\div(60-50)=24$$分钟,所以路程$$=24\\times(60+70)=3120$$米.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇追及问题", "直线型行程问题", "多人相遇与追及问题"]} +{"_id": "ff808081488801c601488c227e0d0df1", "question": "甲、乙、丙三人行路,甲每分钟走$$60$$米,乙每分钟走$$67$$.$$5$$米,丙每分钟走$$75$$米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过$$2$$分钟与甲相遇,求东西两镇间的路程有多少米?\n ", "answer": "$$5130$$\n ", "Analysis": "那$$2$$分钟是甲和丙相遇,所以距离是$$(60+75)\\times2=270$$米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间$$=270\\div(67.5-60)=36$$分钟,所以路程$$=36\\times(67.5+75)=5130$$米.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇问题", "相遇问题求路程和", "直线型行程问题", "行程应用题", "应用题", "多人相遇与追及问题", "综合与实践"]} +{"_id": "ff808081488801c601488c227f940df5", "question": "甲、乙、丙三辆车同时从$$A$$ 地出发到$$B$$地去,甲、乙两车的速度分别为$$60$$千米/时和 $$48$$千米/时.有一辆迎面开来的卡车分别在他们出发后$$5$$小时、$$6$$小时、$$8$$小时先后与甲、乙、丙三辆车相遇.求丙车的速度.\n", "answer": "$$33$$千米/时.\n\n", "Analysis": "甲车每小时比乙车快$$60 - 48 = 12$$$$($$千米$$)$$.则$$5$$小时后,甲比乙多走的路程为$$12 \\times 5 = 60$$$$($$千米$$)$$.也即在卡车与甲相遇时,卡车与乙的距离为$$60$$千米,又因为卡车与乙在卡车与甲相遇的$$6 - 5 = 1$$小时后相遇,所以,可求出卡车的速度为$$60 \\div 1 - 48 = 12$$$$($$千米/小时$$)$$,卡车在与甲相遇后,再走$$8 - 5 = 3$$$$($$小时$$)$$才能与丙相遇,而此时丙已走了$$8$$个小时,因此,卡车$$3$$小时所走的路程与丙$$8$$小时所走的路程之和就等于甲$$5$$小时所走的路程.由此,丙的速度也可求得,应为:$$60 \\times 5 - 12 \\times 3 \\div 8 = 33$$$$($$千米/小时$$)$$.\n \n设卡车的速度为$$x$$千米/时,则:\n\n$$\\left( 60+x \\right)\\times 5=\\left( 48+x \\right)\\times 6$$,解得:$$x=12$$\n\n代入得:三辆车出发时离卡车的距离为$$\\left( 60+12 \\right)\\times 5=360$$千米,\n\n因此丙车与卡车的速度和为$$360\\div 8=45$$千米/时,\n\n因此丙车速度为$$45-12=33$$千米/时.\n\n$$5$$小时甲比乙多走的路程为$$12\\times 5=60$$千米,\n\n即卡车与甲相遇时,卡车与乙的距离为$$60$$千米,\n\n又因为卡车与乙在卡车与甲相遇的$$6-5=1$$小时后相遇,\n\n所以,可求出卡车的速度为$$60\\div 1-48=12$$千米/小时,\n\n此时由甲与卡车可求出全程为$$(60+12)\\times 5=360$$千米,\n\n再由卡车与丙的相遇时间为$$8$$小时的速度和为$$360\\div 8=45$$千米/小时,\n\n所以丙的速度为$$45-12=33$$千米/小时.\n\n设卡车的速度为$${{v}_{卡}}$$,全程为$$s$$,则可列方程组:\n\n$$\\begin{cases}(60+{{v}_{卡}})\\cdot 5=s \\\\ (48+{{v}_{卡}})\\cdot 6=s \\\\\\end{cases}$$,解之得:$$\\begin{cases}{{v}_{卡}}=12 \\\\ s=360 \\\\\\end{cases}$$,\n\n所以丙的速度为$$360\\div 8-12=33$$千米/小时.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇问题", "直线型行程问题", "行程应用题", "相遇问题求某方速度", "应用题", "多人相遇与追及问题", "综合与实践"]} +{"_id": "ff808081488801c601488c2296bf0df9", "question": "小轿车、面包车和大客车的速度分别为$$60$$千米/时、$$48$$千米/时和$$42$$千米/时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后$$30$$分又遇到大客车.问:甲、乙两地相距多远?\n ", "answer": "$$270$$千米.\n ", "Analysis": "先求出面包车与小轿车相遇时,大客车与小轿车的距离(相遇问题),再求出从出发到面包车与小轿车相遇经过的时间(追及问题),最后求甲、乙两地的距离(相遇问题).\n\n$$(48+42)\\times 0.5=45$$(千米),\n\n$$45\\div (60-42)=2.5$$(小时),\n\n$$2.5\\times (60+48)=270$$(千米).\n\n故答案为:$$270$$米.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇追及问题", "直线型行程问题", "多人相遇与追及问题"]} +{"_id": "ff808081488801c601488c2297780dfb", "question": "甲、乙、丙三辆车同时从$$A$$地出发驶向$$B$$地,依次在出发后$$5$$小时、$$5\\frac{5}{{12}}$$小时、$$6\\frac{1}{2}$$小时与迎面驶来的一辆卡车相遇.已知甲、乙两车的速度分别是$$80$$千米/时和$$70$$千米/时,求丙车和卡车的速度.\n ", "answer": "丙车和卡车的速度均是$$50$$千米/时.\n ", "Analysis": "甲车与卡车相遇时,甲乙两车相距$$5 \\times (80 - 70) = 50$$千米,所以乙车与卡车相距$$50$$千米,乙车和$$5\\frac{5}{{12}} - 5{ = }\\frac{5}{{12}}$$(小时)走了$$50$$千米,卡车与乙车的速度和,$$50 \\div \\frac{5}{{12}}{ = }120$$(千米/小时),卡车速度为$$120 - 70{ = }50$$(千米/小时),所以开始相距$$80{ + }50 \\times 5{ = }650$$(千米),两车速度和为$$650 \\div 6\\frac{1}{2}{ = }100$$(千米/小时),所以丙车速度为$$100 - 50{ = }50$$(千米/小时)所以丙车和卡车的速度均是$$50$$千米/时.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇问题", "直线型行程问题", "多人相遇与追及问题"]} +{"_id": "ff808081488801c601488c2299770e01", "question": "甲从$$A$$地出发前往$$B$$地,$$1$$小时后,乙也从$$A$$地出发前往$$B$$地,又过$$1$$小时,丙从$$B$$地出发前往$$A$$地,结果甲和丙相遇在$$C$$地,乙和丙相遇在$$D$$地.已知乙和丙的速度相同,丙的速度是甲的$$2$$倍,$$C、D$$两地之间的距离是$$50$$千米.求乙出发$$1$$小时后距$$B$$地多少千米?\n", "answer": "$$300$$千米.\n", "Analysis": "根据题意可知:甲出发两小时后,甲乙在同一地点,假设此时距$$B$$为$$“1”,C、D$$两地之间的距离=$$\\frac{{1}}{{6}}$$,$${50} \\div \\frac{{1}}{{6}}{ = 50} \\times {6 = 300}$$千米.\n \n根据题意可知:甲出发$$2$$小时后,甲、乙在同一地点,此时丙从$$B$$地出发.从此时开始算起,甲和丙相遇时两人的路程比为$$1:2$$,乙和丙相遇时两人的路程比为$$1:1$$.假设此时距$$B$$为“$$1$$”,则$$C$$地距$$B$$地$$\\frac{2}{3}$$,$$D$$地距$$B$$地$$\\frac{1}{2}$$,$$C$$、$$D$$两地之间的距离$$=\\frac{2}{3}-\\frac{1}{2}=\\frac{1}{6}$$,$$50\\div \\frac{1}{6}=50\\times 6=300$$千米.\n\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇问题", "直线型行程问题", "多人相遇与追及问题"]} +{"_id": "ff808081488801c601488c2298cd0dff_1", "question": "甲、乙、丙三人在学校到体育场的路上练习竞走,甲每分比乙多走$$10$$米,比丙多走$$31$$米.上午$$9$$点三人同时从学校出发,上午$$10$$点甲到达体育场后立即返回学校,在距体育场$$310$$米处遇到乙.\n \n从学校到体育场的距离是多少?\n ", "answer": "$$9300$$米;\n ", "Analysis": "从出发到甲、乙相遇,甲比乙多走了$$620$$米,又甲比乙每分多走$$10$$米,所以从出发到甲、乙相遇共用$$62$$分.甲从体育场返回到与乙相遇用了$$62-60=2$$(分),从而可求出甲每分走$$310\\div2=155$$(米),$$155\\times 60=9300$$(米).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "行程模块", "直线型行程问题", "多人相遇追及问题", "逻辑分析", "能力", "运算求解", "对应思想", "多人相遇与追及问题", "实践应用"]} +{"_id": "ff808081488801c601488c2298cd0dff_2", "question": "甲、乙、丙三人在学校到体育场的路上练习竞走,甲每分比乙多走$$10$$米,比丙多走$$31$$米.上午$$9$$点三人同时从学校出发,上午$$10$$点甲到达体育场后立即返回学校,在距体育场$$310$$米处遇到乙.\n \n甲与丙何时相遇(精确到秒)?\n ", "answer": "$$10$$时$$6$$分$$40$$秒.\n ", "Analysis": "从出发到甲、乙相遇,甲比乙多走了$$620$$米,又甲比乙每分多走$$10$$米,所以从出发到甲、乙相遇共用$$62$$分.甲从体育场返回到与乙相遇用了$$62-60=2$$(分),从而可求出甲每分走$$310\\div2=155$$(米),乙每分钟走$$155-10=145$$(米),丙每分钟走$$155-31=124$$(米).$$9300-124\\times 60=1860$$(米),$$1860\\div (155+124)=\\frac{20}{3}$$(分钟),$$\\frac{20}{3} \\times 60= 400$$(秒)$$=6$$分钟$$40$$秒.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "行程模块", "直线型行程问题", "多人相遇追及问题", "逻辑分析", "能力", "运算求解", "对应思想", "多人相遇与追及问题", "实践应用"]} +{"_id": "ff808081488801c601488c229b7f0e07", "question": "甲乙丙三人同时从东村去西村,甲骑自行车每小时比乙快$$12$$公里,比丙快$$15$$公里,甲行$$3.5$$小时到达西村后立刻返回.在距西村$$30$$公里处和乙相聚,问:丙行了多长时间和甲相遇?\n ", "answer": "$$5.6$$小时.\n ", "Analysis": "在距西村$$30$$公里处和乙相聚,则甲比乙多走$$60$$公里,而甲骑自行车每小时比乙快$$12$$公里,所以,甲乙相聚时所用时间是$$60 \\div 12 = 5$$(小时),所以甲从西村到和乙相聚用了$$5 - 3.5 = 1.5$$(小时),所以,甲速是$$30 \\div 1.5 = 20$$(公里/小时),所以,丙速是$$20 - 15 = 5$$(公里/小时),东村到西村的距离是:$$20 \\times 3.5 = 70$$(公里),所以,甲丙相遇时间是:$$\\left( {2 \\times 70} \\right) \\div \\left( {20 + 5} \\right) = 5.6$$$$($$小时$$)$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇问题", "直线型行程问题", "多人相遇与追及问题"]} +{"_id": "ff808081488801c601488c22a5ee0e0b", "question": "甲、乙、丙三辆车同时从$$A$$地出发到$$B$$地去,出发后$$6$$分钟甲车超过了一名长跑运动员,$$2$$分钟后乙车也超过去了,又过了$$2$$分钟丙车也超了过去.已知甲车每分钟走$$1000$$米,乙车每分钟走$$800$$米,丙车每分钟走多少米?\n", "answer": "$$680$$米/分\n", "Analysis": "根据题意可知,甲车走了$$1000\\times6=6000$$米.\n\n乙车走了$$800\\times8=6400$$米.\n\n长跑运动员的速度$$(6400-6000)\\div2=200$$米/分.\n\n丙车速度$$(200\\times2+6400)\\div10=680$$���/分.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人追及问题", "直线型行程问题", "多人相遇与追及问题"]} +{"_id": "ff808081488801c601488c22a9b60e15", "question": "甲、乙、丙三人行路,甲每分钟走$$80$$米,乙每分钟走$$90$$米,丙每分钟走$$100$$米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过$$5$$分钟与甲相遇,求东西两镇间的路程有多少米?\n ", "answer": "$$17100$$\n ", "Analysis": "那$$5$$分钟是甲和丙相遇,所以距离是$$(80+100)×5=900$$米,这距离是乙丙相遇时间里甲乙的路程差.所以乙丙相遇时间$$=900÷(90-80)=90$$分钟,所以路程$$=90×(90+100)=17100$$米.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇问题", "相遇问题求路程和", "直线型行程问题", "行程应用题", "应用题", "多人相遇与追及问题", "综合与实践"]} +{"_id": "ff808081488801c601488c22aa620e17", "question": "甲、乙、丙三人行路,甲每分钟走$$60$$米,乙每分钟走$$65$$米,丙每分钟走$$70$$米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过$$1$$分钟与甲相遇,求东西两镇间的路程有多少米?\n ", "answer": "$$3510$$.\n", "Analysis": "那$$1$$分钟是甲和丙相遇,所以距离是$$(60+70)\\times1=130$$米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间$$=130\\div(65-60)=26$$分钟,所以路程$$=26\\times(65+70)=3510$$米.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇问题", "相遇问题求路程和", "直线型行程问题", "行程应用题", "应用题", "多人相遇与追及问题", "综合与实践"]} +{"_id": "ff808081488801c601488c22ac9d0e1d", "question": "在公路上,汽车$$A$$、$$B$$、$$C$$分别以$$80{\\text{km}}/{\\text{h}}$$,$$70{\\text{km}}/{\\text{h}}$$,$$50{\\text{km}}/{\\text{h}}$$的速度匀速行驶,若汽车$$A$$从甲站开往乙站的同时,汽车$$B$$、$$C$$从乙站开往甲站,并且在途中,汽车$$A$$在与汽车$$B$$相遇后的两小时又与汽车$$C$$相遇,求甲、乙两站相距多少千米?\n ", "answer": "$$1950$$\n ", "Analysis": "汽车$$A$$在与汽车$$B$$相遇时,汽车$$A$$与汽车$$C$$的距离为:$$(80 + 50) \\times 2 = 260$$千米,此时汽车$$B$$与汽车$$C$$的距离也是$$260$$千米,说明这三辆车已经出发了$$260 \\div (70 - 50) = 13$$小时,那么甲、乙两站的距离为:$$(80 + 70) \\times 13 = 1950$$千米.\n \n设$$A$$与$$B$$相遇用了$$t$$小时,那么$$A$$与$$C$$相遇用了$$t+2$$小时,\n\n$$\\left( 80+70 \\right)\\times t=\\left( 80+50 \\right)\\times \\left( t+2 \\right)$$,解得$$t=13$$,所以全程为$$t=150\\times 13=1950$$.\n\n故答案为:$$1950$$.\n\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇问题", "直线型行程问题", "多人相遇与追及问题"]} +{"_id": "ff808081488801c601488c22abc30e1b", "question": "甲、乙、丙三人每分钟分别行$$60$$米、$$50$$米和$$40$$米,甲从$$B$$地、乙和丙从$$A$$地同时出发相向而行,途中甲遇到乙后$$15$$分又遇到丙.求$$A$$,$$B$$两地的距离.\n", "answer": "$$16500$$.\n", "Analysis": "甲遇到乙后$$15$$分钟,甲遇到了丙,所以遇到乙的时候,甲和丙之间的距离为:$$(60+40)\\times15=1500$$(米),而乙丙之间拉开这么大的距离一共要$$1500\\div(50-40)=150$$(分),即从出发到甲与乙相遇一共经过了$$150$$分钟,所以$$A$$、$$B$$之间的距离为:$$(60+50)\\times150=16500$$(米).\n \n甲遇到乙后$$15$$分钟,甲遇到了丙,设甲、乙相遇用时$$t$$分钟,则甲、丙相遇用时($$t$$+$$15$$)分钟,再根据路程和相等,可列方程$$$$($$60$$+$$50$$)$$\\times t$$$$=$$$$$$($$60$$+$$40$$)$$\\times $$($$t$$+$$15$$)$$$$ 解出:$$t=150$$,所以$$A$$、$$B$$之间的距离为:$$$$($$60$$+$$50$$)$$\\times150$$$$=$$$$16500$$(米).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇问题", "相遇问题求路程和", "直线型行程问题", "行程应用题", "应用题", "多人相遇与追及问题", "综合与实践"]} +{"_id": "ff808081488801c601488c22b8470e21", "question": "有甲、乙、丙$$3$$人,甲每分钟走$$100$$米,乙每分钟走$$80$$米,丙每分钟走$$75$$米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇$$6$$分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?\n ", "answer": "$$37800$$米.\n ", "Analysis": "甲、丙$$6$$分钟相遇的路程:$$\\left( {100 + 75} \\right) \\times 6 = 1050$$$$($$米$$)$$;\n 甲、乙相遇的时间为:$$1050 \\div \\left( {80 - 75} \\right) = 210$$$$($$分钟$$)$$;\n 东、西两村之间的距离为:$$\\left( {100 + 80} \\right) \\times 210 = 37800$$$$($$米$$)$$.\n \n设甲乙$$t$$分钟相遇,$$\\left( 100+80 \\right)\\times t=\\left( 100+75 \\right)\\times \\left( t+6 \\right)$$,$$t=210$$,两村之间的距离是$$180\\times 210=37800$$米.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇问题", "相遇问题求路程和", "直线型行程问题", "行程应用题", "应用题", "多人相遇与追及问题", "综合与实践"]} +{"_id": "ff808081488801c601488c22da0c0e35", "question": "甲、乙二人分别从$$A$$、$$B$$两地同时出发,相向而行,于$$C$$地相遇后,甲继续向$$B$$地行走,乙则休息$$14$$分钟后再继续向$$A$$地行走,甲和乙各自到达$$B$$地和$$A$$地后立即折返,又在$$C$$地相遇,已知甲每分钟走$$60$$米,乙每分钟走$$80$$米,则$$A$$、$$B$$两地相距多少米?\n ", "answer": "$$1680$$.\n", "Analysis": "甲、乙两人速度比为$$3:4$$,全长分为$$7$$份,相遇时甲走$$3$$份,乙走$$4$$份.乙休息时,甲走了$$60\\times 14=840$$(米),然后两人再同时走到相遇,这一段时间甲走了$$6$$份,根据速度比得乙走$$6\\div 4\\times 3=4.5$$份,由于甲连同$$14$$分钟的路程一共走$$8$$份,因此$$860$$米为$$8-4.5=3.5$$(份),全长$$840\\times7\\div 3.5=1680$$(米).\n \n甲每分钟行$$60$$米,乙每分钟行$$80$$米,于$$C$$处相遇时,$$C$$处与$$A$$、$$B$$两地的距离比是$$60:80=3:4$$.\n\n设$$A$$、$$B$$相距$$7x$$米,则第一次相遇时,甲行了$$3x$$米,乙行了$$4x$$米.\n\n第二次相遇时,甲行了$$(7x+4x)$$米,乙行了$$(7x+3x)$$米,甲比乙多用了$$14$$分钟,\n\n则$$\\frac{7x+4x}{60}=\\frac{7x+3x}{80}+14$$,解得$$x=240$$,\n\n$$7x=7\\times 240=1680$$.\n\n答:$$A$$、$$B$$两地相距$$1680$$米.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "相遇问题求路程和", "直线型行程问题", "行程应用题", "相遇问题", "应用题", "同时同地出发折返相遇", "两人相遇与追及问题", "综合与实践"]} +{"_id": "ff808081488801c601488c22d7380e2d", "question": "快艇从$$A$$码头出发,沿河顺流而下,途经$$B$$码头后继续顺流驶向$$C$$码头,到达$$C$$码头后立即反向驶回到$$B$$码头,共用$$10$$小时.若$$A、B$$相距$$20$$千米,快艇在静水中航行的速度是$$40$$千米/时,河水的流速是$$10$$千米/时,求$$B、C$$间的距离.\n", "answer": "$$180$$\n ", "Analysis": "(1)$$A$$到$$B$$用时:$$20\\div \\left( 40+10 \\right)=0.4$$(时),则$$B、C$$间往返用时:$$10-0.4=9.6$$(时).\n (2)设$$B、C$$顺流用时$$x$$小时,则逆流时间为$$\\left( 9.6-x \\right)$$小时.列方程得:\n $$\\left( 40+10 \\right)x=\\left( 9.6-x\\right)\\times \\left( 40-10 \\right)$$,解得:$$x=3.6$$.\n (3)$$B、C$$距离:$$50\\times 3.6=180$$(千米).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "四个速度", "流水行船问题", "基本行程", "基本流水行船问题"]} +{"_id": "ff808081488801c601488c235ecb0e7e", "question": "有一批货物,用$$28$$辆货车一次运走,货车有载量$$8$$吨和载量$$5$$吨的两种.若所有货车都满载,且载重$$8$$吨的货车运送货物的总重量比载重$$5$$吨的货车运送货物的总重量多$$3$$吨,则这些货物共多少吨?\n ", "answer": "$$173$$\n ", "Analysis": "假设有$$8$$吨的货车有$$x$$辆,则$$5$$吨的货车有$$\\left( 28-x \\right)$$辆,可列方程:\n\n$$8x-140+5x=3$$\n\n$$13x=143$$\n\n$$x=11$$\n\n\n这批货物有:$$11\\times 8+\\left( 28-11 \\right)\\times 5=173$$(吨).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["以文字题形式运用方程解应用题", "一元一次方程解应用题", "应用题模块", "应用题", "��方程解应用题", "综合与实践"]} +{"_id": "ff808081488801c601488c2633250ed8", "question": "某次演讲比赛,原定一等奖$$10$$人,二等奖$$20$$人,现将一等奖中的最后$$4$$人调整为二等奖,这样得二等奖的学生的平均分提高了$$1$$分,得一等奖的学生的平均分提高了$$3$$分,那么原来一等奖平均分比二等奖平均分多多少分?\n ", "answer": "原来一等奖平均分比二等奖平均分多$$10.5$$分.\n ", "Analysis": "设原来一等奖的平均分为$$x$$分,二等奖的平均分为$$y$$分,得:\n $$10x-(10-4)\\times(x+3)=(20+4)(y+1)-20y$$\n                 $$4x-18=4y+24$$\n                    $$4x=4y+42$$\n                     $$x=y+10.5$$,\n 即原来一等奖平均分比二等奖平均分多$$10.5$$分.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "不定方程解应用题", "列方程解应用题"]} +{"_id": "ff808081488801c601488c2632700ed6", "question": "有两个学生参加$$4$$次数学测验,他们的平均分数不同,但都是低于$$90$$分的整数.他们又参加了第$$5$$次测验,这样$$5$$次的平均分数都提高到了$$90$$分.求第$$5$$次测验两人的得分.(每次测验满分为$$100$$分)\n ", "answer": "第$$5$$次的得分分别为:$$98$$分;$$94$$分.\n ", "Analysis": "设某一学生前$$4$$次的平均分为$$x$$分,第$$5$$次的得分为$$y$$分,则其$$5$$次总分为$$4x+y=90\\times 5=450$$,于是$$y=450-4x$$.显然$90,故$$90<450-4x<100$$,解得$$87.5< x<90$.\n\n由于$$x$$为整数,可能为$$88$$和$$89$$,而且这两个学生前$$4$$次的平均分不同,所以他们前$$4$$次的平均分分别为$$88$$分和$$89$$分,那么他们第$$5$$次的得分分别为:$$450-88\\times 4=98$$分;$$450-89\\times 4=94$$分.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "不定方程解应用题", "列方程解应用题"]} +{"_id": "ff808081488801c601488c2633d20eda", "question": "庙里有若干个大和尚和若干个小和尚,已知$$7$$个大和尚每天共吃$$41$$个馒头,$$29$$个小和尚每天共吃$$11$$个馒头,平均每个和尚每天恰好吃一个馒头.问:庙里至少有多少个和尚?\n ", "answer": "至少有$$556$$个和尚.\n ", "Analysis": "设庙里有$$7x$$个大和尚,$$29y$$个小和尚,则共吃$$\\left( 41x+11y \\right)$$个馒头.由“平均每个和尚每天恰好吃一个馒头”,可列方程:$$7x+29y=41x+11y$$,化简为$$17x=9y$$.当$$x=9$$,$$y=17$$时和尚最少,有$$7\\times 9+29\\times 17=556$$$$($$个$$)$$和尚.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "不定方程解应用题", "列方程解应用题"]} +{"_id": "ff808081488801c601488c26369a0ee0", "question": "某服装厂有甲、乙两个生产车间,甲车间每天能生产上衣$$16$$件或裤子$$20$$件;乙车间每天能生产上衣$$18$$件或裤子$$24$$件.现在要上衣和裤子配套,两车间合作$$21$$天,最多能生产多少套衣服?\n ", "answer": "最多可以生产出$$408$$套衣服.\n ", "Analysis": "假设甲、乙两个车间用于生产上衣的时间分别为$$x$$天和$$y$$天,则他们用于生产裤子的天数分别为$$(21-x)$$天和$$(21-y)$$天,那么总共生产了上衣$$(16x+18y)$$件,生产了裤子\n $$20\\times (21-x)+24\\times(21-y)=924-20x-24y$$件.\n 根据题意,裤子和上衣的件数相等,所以$$16x+18y=924-20x-24y$$,即$$6x+7y=154$$,即$$x=\\frac{154-7y}{6}$$.那么共生产了$$16x+18y=16\\times \\frac{154-7y}{6}+18y=410\\frac{2}{3}-\\frac{2}{3}y$$套衣服.要使生产的衣服最多,就要使得$$y$$最小,则$$x$$应最大,而$$x$$最大为$$21$$,此时$$y=4$$.故最多可以生产出$$410\\frac{2}{3}-\\frac{2}{3}\\times 4=408$$套衣服.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "不定方程解应用题", "列方程解应用题"]} +{"_id": "ff808081488801c601488c2653ac0eed", "question": "已知练习本每本$$0.40$$元,铅笔每支$$0.32$$元,老师让小虎买一些练习本和铅笔,总价正好是老师所给的$$10$$元钱.但小虎将练习本的数量与铅笔的数量记混了,结果找回来$$0.56$$元,那么老师原来打算让小虎买多少本练习本?\n ", "answer": "老师原打算让小虎买$$17$$本练习本.\n ", "Analysis": "设老师原本打算让小虎买$$x$$本练习本和$$y$$支铅笔,则由题意可列方程组:\n $$\\left\\{ \\begin{align}& 0.4x+0.32y=10\\\\ & 0.4y+0.32x=10-0.56 \\\\ \\end{align} \\right.$$,整理得$$\\left\\{\\begin{align}& 40x+32y=1000 \\\\ & 40y+32x=944 \\\\ \\end{align} \\right.$$,即$$\\left\\{\\begin{align}& 5x+4y=125\\cdots \\cdots (1) \\\\ & 5y+4x=118\\cdots \\cdots(2) \\\\ \\end{align} \\right.$$,\n 将两式相加,得$$9(x+y)=243$$,则$$x+y=27\\cdots \\cdots (3)$$,\n $$(2)-4\\times $$(3),得$$x=17$$.\n 所以,老师原打算让小虎买$$17$$本练习本.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数二元一次方程组解应用题"]} +{"_id": "ff808081488801c601488c2645000ee4", "question": "某次数学竞赛,分两种方法给分.一种是先给$$40$$分,每答对一题给$$4$$分,不答题不给分,答错扣$$1$$分,另一种是先给$$60$$分,每答对一题给$$3$$分,不答题不给分,答错扣$$3$$分,小明在考试中只有$$2$$道题没有答,以两种方式计分他都得$$102$$分,求考试一共有多少道题?\n ", "answer": "考试一共有$$16+2+2=20$$道题.\n ", "Analysis": "设小明答对了$$x$$道题,答错了$$y$$道题.由题目条件两种计分方式,他都得$$102$$分,可得到两条等量关系式:\n $$\\left\\{ \\begin{matrix}& 40+4x-y=102 \\\\ & 60+3x-3y=102 \\\\\\end{matrix}\\right.$$\n 解得$$\\left\\{ \\begin{align}& x=16 \\\\ & y=2 \\\\\\end{align}\\right.$$,所以考试一共有$$16+2+2=20$$道题.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数二元一次方程组解应用题"]} +{"_id": "ff808081488801c601488c26f0230f01", "question": "甲、乙、丙、丁、戊五人接受了满分为$$10$$分(成绩都是整数)的测验.已知:甲得了$$4$$分,乙得了最高分,丙的成绩与甲、丁的平均分相等,丁的成绩刚好等于五人的平均分,戊比丙多$$2$$分.求乙、丙、丁、戊的成绩.\n ", "answer": "丁得$$6$$分,则丙得$$5$$分,戊得$$7$$分,乙得$$8$$分.\n ", "Analysis": "法一:方程法.设丁的分数为$$x$$分,乙的分数为$$y$$分,那么丙的分数为$$\\frac{x+4}{2}$$分,戊的分数为$$\\frac{x+4}{2}+2=\\frac{x+8}{2}$$分,根据“丁的成绩刚好等于五人的平均分”,有$$5x=4+x+\\frac{x+4}{2}+\\frac{x+8}{2}+y$$,所以$$3x=10+y$$.因为$$x10+x$$,得到$$512$$,不满足.即$$n=4$$不可能.\n 方法二:$$C_{4}^{2}=6$$(场)$$6\\times 2=12$$(分).\n\n至少$$2$$分,$$4$$队,$$2+3+4+5=14>12$$(分),不可能.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["思想", "知识模块", "逐步调整思想", "转化与化归的思想", "能力", "运算求解", "对应思想", "体育比赛中的数学", "实践应用", "数学广角", "综合与实践"]} +{"_id": "ff80808148880257014888a877060570", "question": "有$$100$$根火柴,甲、乙两人轮流取,规定每次可以取$$1$$~$$10$$根火柴,谁取得最后一根火柴谁就获胜.如果甲先取,那么谁有必胜的策略?\n ", "answer": "甲.\n ", "Analysis": "甲有必胜的策略.他应该先取$$1$$根火柴,然后无论乙取多少根,甲只需保证自己取的根数与乙上次取的根数和为$$11$$就可胜.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["游戏策略", "抢占制胜点", "取火柴棒类游戏", "操作与策略", "组合模块"]} +{"_id": "ff80808148880257014888a879160574", "question": "一次,齐王与大将赛马.每人有四匹马,分为四等.田忌知道齐王这次比赛马的出场顺序依次为一等,二等,三等,四等,而且还���道这八匹马跑得最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等自己的四等.田忌有多少种方法安排自己的马出场顺序,保证自己至少能赢得两场比赛.\n", "answer": "$$12$$\n ", "Analysis": "第一场不管怎么样田忌都必输,田忌只可能在接下来的三场里赢得比赛,若三场全胜,则只有一种出场方法;若胜两场,则又分为三种情况:\n 二,三两场胜,此时只能是田忌的一等马赢得齐王的二等马,田忌的二等马赢齐王的三等马,只有这一种情况;\n 二,四两场胜,此时有三种情况;\n 三,四两场胜,此时有七种情况;\n 所以一共有$$1+1+3+7=12$$种方法.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["对称类游戏", "组合模块", "游戏策略", "操作与策略"]} +{"_id": "ff80808148880257014888a8dc5205a4", "question": "将两个不同的自然数中较大的数换成它们的差,称为一次操作,如此继续下去,直到这两个数相同为止.如对$$20$$和$$26$$进行这样的操作,过程如下:$$(20$$,$$26)\\to (20$$,$$6)\\to (14$$,$$6)\\to (8$$,$$6)\\to (2$$,$$6)\\to (2$$,$$4)\\to (2$$,$$2)$$.\n 对$$45$$和$$80$$进行上述操作.\n 若对两个四位数进行上述操作,最后得到的相同数是$$17$$,求这两个四位数的和的最大值.\n ", "answer": "$$19975$$.\n ", "Analysis": "$$\\left( 45,80 \\right)\\to \\left( 45,35 \\right)\\to\\left( 10,35 \\right)\\to \\left( 10,25 \\right)\\to \\left( 10,15 \\right)\\to \\left( 10,5\\right)\\to \\left( 5,5 \\right)$$.这就是用辗转相除法求最大公约数的运算,所以两个四位数的最大公约数为$$17$$,$$9999\\div 17=588\\cdots 3$$,所以最大的四位数是$$9999-3=9996$$,第二大的四位数是$$9996-17=9979$$,和为$$9996+9979=19975$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["操作问题", "组合模块", "数字操作", "操作与策略"]} +{"_id": "ff80808148880257014888a8dcff05a6", "question": "有$$8$$个足球队进行循环赛,胜队得$$1$$分,负队得$$0$$分,平局的两队各得$$0.5$$分.比赛结束后,将各队得分按从高到低排名后发现:各队得分互不相同,且第二名的得分与最后四名所得总分一样多,求这次比赛中,取得第二名的队的得分.\n ", "answer": "$$6$$\n ", "Analysis": "全胜的队得$$7$$分,而最后四队之间赛$$6$$场至少共得$$6$$分,所以第二名的队得分至少为$$6$$分.如果第一名全胜,则第二名只输给第一名,得$$6$$分;如果第二名得$$6.5$$分,则第二名$$6$$胜$$1$$负,第一名最好也只能是$$6$$胜$$1$$负,与题目中得分互不相同不符.所以,第二名得分为$$6$$分.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组合模块", "单循环赛", "体育比赛", "逻辑推理"]} +{"_id": "ff80808148880257014888abebe50783", "question": "在平面上画$$5$$个圆和$$1$$条直线,最多可把平面分成多少部分?\n ", "answer": "$$32$$\n ", "Analysis": "先考虑圆.$$1$$个圆将平面分成$$2$$个部分.这时增加$$1$$个圆,这个圆与原有的$$1$$个圆最多有两个交点,成为$$2$$条弧,每条弧将平面的一部分一分为二,增加了$$2$$个部分,所以$$2$$个圆最多将平面分成$$4$$个部分.当有$$3$$个圆时,第$$3$$个圆与原有的$$2$$个产生$$4$$个交点而增加$$4$$个部分,所以$$3$$个圆最多将平面分成$$8$$个部分.\n 同样的道理,$$5$$个圆最多将平面分成$$22$$个部分.\n 再考虑直线.直线与每个圆最多有$$2$$个交点,这样与$$5$$个圆最多有$$10$$个交点.它们将直线分成$$11$$条线段或射线,而每条线段又将平面的一部分一分为二,$$2$$条射线增加了一部分,因此$$5$$个圆和$$1$$条直线最多可将平面分成$$32$$个部分.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["归纳递推", "操作与策略", "线分面递推", "组合模块", "图形分面递推"]} +{"_id": "ff80808148880257014888ac0daf0798", "question": "$$A$$、$$B$$、$$C$$、$$D$$、$$E$$、$$F$$六人抽签推选代表,公证人一共制作了六枚外表一模一样的签,其中只有一枚刻着“中”,六人按照字母顺序先后抽取签,抽完不放回,谁抽到“中”字,即被推选为代表,那么这六人被抽中的概率分别为多少?\n ", "answer": "六个人抽中的概率相同为$$\\frac{1}{6}$$.\n ", "Analysis": "抽中的概率为$$\\frac{1}{6}$$,没抽到的概率为$$\\frac{5}{6}$$,如果$$A$$没抽中,那么$$B$$有$$\\frac{1}{5}$$的概率抽中,如果$$A$$抽中,那么$$B$$抽中的概率为$$0$$,所以$$B$$抽中的概率为$$\\frac{5}{6}\\times \\frac{1}{5}=\\frac{1}{6}$$.\n 同理,$$C$$抽中的概率为$$\\frac{5}{6}\\times \\frac{4}{5}\\times \\frac{1}{4}=\\frac{1}{6}$$,$$D$$抽中的概率为$$\\frac{5}{6}\\times\\frac{4}{5}\\times \\frac{3}{4}\\times \\frac{1}{3}=\\frac{1}{6}$$,\n $$E$$抽中的概率为$$\\frac{5}{6}\\times\\frac{4}{5}\\times \\frac{3}{4}\\times \\frac{2}{3}\\times \\frac{1}{2}=\\frac{1}{6}$$,$$F$$抽中的概率为$$\\frac{5}{6}\\times\\frac{4}{5}\\times \\frac{3}{4}\\times \\frac{2}{3}\\times \\frac{1}{2}\\times1=\\frac{1}{6}$$.\n 由此可见六人抽中的概率相等,与抽签的先后顺序无关.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "统计与概率", "加乘原理求概率", "概率"]} +{"_id": "ff80808148880257014888ac0e6b079a", "question": "在某次的考试中,甲、乙两人优秀(互不影响)的概率为$$0.5$$,$$0.4$$,考试结束后,只有乙优秀的概率为多少?\n ", "answer": "$$0.2$$\n ", "Analysis": "只有乙优秀的概率为$$0.4\\times \\left( 1-0.5 \\right)=0.2$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "统计与概率", "概率基本概念", "概率"]} +{"_id": "ff80808148880257014888ac18f8079d", "question": "从装有$$3$$个白球,$$2$$个黑球的口袋中任意摸出两球,全是白球的概率.\n ", "answer": "$$\\frac{3}{10}$$\n ", "Analysis": "法一:$$5$$个球任意取出两个有$$\\text{C}_{5}^{2}=\\frac{5\\times 4}{2\\times 1}=10$$种情况,互相之间都是互斥事件,且出现概率均等,而两个球都是白球有$$\\text{C}_{3}^{2}=\\frac{3\\times 2}{2\\times 1}=3$$种情况,全是白球的概率为$$\\frac{3}{10}$$.\n 法二:将摸出两个球视作两次行为,摸出第一个球是白球的概率为$$\\frac{3}{5}$$,再摸出一个白球的概率为$$\\frac{3-1}{5-1}=\\frac{1}{2}$$,所以两次摸出两个白球的概率为$$\\frac{3}{5}\\times\\frac{1}{2}=\\frac{3}{10}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["摸小球", "计数模块", "统计与概率", "概率", "典型问题"]} +{"_id": "ff80808148880257014888ac19ac079f", "question": "一张圆桌旁有四个座位,$$A$$、$$B$$、$$C$$、$$D$$四人随机坐到四个座位上,求$$A$$与$$B$$不相邻而坐的概率.\n ", "answer": "$$\\frac{1}{3}$$\n ", "Analysis": "四人入座的不同情况有$$4\\times 3\\times 2\\times 1=24$$种.\n $$A$$、$$B$$相邻的不同情况,首先固定$$A$$的座位,有$$4$$种,安排$$B$$的座位有$$2$$种,安排$$C$$、$$D$$的座位有$$2$$种,一共有$$4\\times2\\times 2=16$$种,所以$$A$$、$$B$$相邻而座的概率为$$16\\div 24=\\frac{2}{3}$$,那么$$A$$、$$B$$不相邻而座的概率为$$1-\\frac{2}{3}=\\frac{1}{3}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "统计与概率", "加乘原理求概率", "概率"]} +{"_id": "ff80808148880257014888ac1d2d07a7", "question": "甲、乙、丙、丁四人玩扑克,发牌以后每人拿到$$13$$张牌(整副牌共$$52$$张).结果甲、乙两人共拿了$$11$$张黑桃.请问:丙、丁两人恰好每人拿到$$1$$张黑桃的概率是多少?有一人拿到$$2$$张黑桃,另一人没有拿到黑桃的概率又是多少?\n", "answer": "$$\\frac{13}{25}$$,$$\\frac{12}{25}$$\n ", "Analysis": "如果丙有$$1$$张黑桃,那么剩余$$25$$张牌,丙还能拿到黑桃的概率为$$\\frac{12}{25}$$,拿不到的概率是$$\\frac{13}{25}$$,故各一张的概率是$$\\frac{13}{25}$$,一人有两张的概率是$$\\frac{12}{25}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "统计与概率", "计数求概率", "概率"]} +{"_id": "ff80808148880257014888ac1de607a9", "question": "一只普通的骰子有$$6$$个面,分别写有$$1$$、$$2$$、$$3$$、$$4$$、$$5$$、$$6.$$掷出这个骰子,它的任何一面朝上的概率都是六分之一.假设你将某一个骰子连续投掷了$$9$$次,每次的结果都是$$1$$点朝上.那么第十次投掷后,朝上的面上的点数恰好是奇数的概率是多少?\n ", "answer": "二分之一\n ", "Analysis": "共有$$6$$种可能,每种概率都是六分之一,其中是奇数的有$$3$$种,概率为二分之一.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "统计与概率", "概率", "掷骰子", "典型问题"]} +{"_id": "ff80808148880257014888ac1e9a07ab", "question": "在标准英文字典中,由$$2$$个不同字母组成的单词一共有$$55$$个.如果从$$26$$个字母中任取$$2$$个不同的排列起来,那么恰好能排拍成一个单词的概率是多少?\n ", "answer": "$$\\frac{11}{130}$$\n ", "Analysis": "如果从$$26$$个字母中任取$$2$$个不同的排列起来有$$\\text{A}_{26}^{2}=26\\times 25=650$$,恰好能排拍成一个单词的概率是$$55\\div650=\\frac{11}{130}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "统计与概率", "计数求概率", "概率"]} +{"_id": "ff80808148880257014888ac2b8907ae", "question": "小悦从$$1$$、$$2$$、$$3$$、$$4$$、$$5$$这$$5$$个自然数中任选一个数,冬冬从$$2$$、$$3$$、$$4$$、$$5$$、$$6$$、$$7$$这$$6$$个自然数中任选一个数.选出的两个数中,恰好有一个数是另一个数的倍数的概率是多少?\n ", "answer": "$$\\frac{7}{15}$$\n ", "Analysis": "从$$5$$个自然数选择一个数有$$\\text{C}_{5}^{1}=5$$(种)可能,从$$6$$个自然数选择一个数有$$\\text{C}_{6}^{1}=6$$(种)可能,选出两个数的可能是$$5\\times 6=30$$(种)\n 恰好有一个数是另一个数的倍数的有$$(1,2)(1,3)(1,4)(1,5)(1,6)(1,7)(2,2)(2,4)(2,6)(3,3)(3,6),(4,2)(4,4)(5,5)14$$种可能.\n 概率为$$\\frac{14}{30}=\\frac{7}{15}$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["计数模块", "统计与概率", "计数求概率", "概率"]} +{"_id": "ff80808148880257014888ac31b907b8", "question": "一个小方木块的六个面上分别写有数字$$2$$、$$3$$、$$5$$、$$6$$、$$7$$、$$9$$,小光、小亮两人随意往桌面上扔放这个木块.规定:当小光扔时,如果朝上的一面写的是偶数,得$$1$$分.当小亮扔时,如果朝上的一面写的是奇数,得$$1$$分.每人扔$$100$$次, ___          ___ 得分高的可能性比较大.\n ", "answer": "小亮", "Analysis": "因为$$2$$、$$3$$、$$5$$、$$6$$、$$7$$、$$9$$中奇数有$$4$$个,偶数只有$$2$$个,所以木块向上一面写着奇数的可能性较大,即小亮得分高的可能性较大.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["基本概率", "计数模块", "统计与概率", "概率", "可能性"]} +{"_id": "ff80808148880257014888ac64e107cc", "question": "求在$$1$$至$$100$$的自然数中能被$$3$$或$$7$$整除的数的个数.\n ", "answer": "$$43$$个.\n ", "Analysis": "记  $$A$$:1~$$100$$中$$3$$的倍数,$$100\\div3=33\\cdots  1$$,有$$33$$个;\n $$B$$:1~$$100$$中$$7$$的倍数,$$100\\div7=14\\cdots \\ 2$$,有$$14$$个;\n $$A\\bigcap B$$:1~$$100$$中$$3$$和$$7$$的公倍数,即$$21$$的倍数,$$100\\div21=4\\cdots \\cdots 16$$,有$$4$$个.\n 依据公式,$$1$$~$$100$$中$$3$$的倍数或$$7$$的倍数共有$$33+14-4=43$$个,则能被$$3$$或$$7$$整除的数的个数为$$43$$个.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整除特征", "整除特征综合", "数论模块", "整除"]} +{"_id": "ff80808148880257014888ac659a07ce", "question": "在从$$1$$至$$1000$$的自然数中,既不能被$$5$$除尽,又不能被$$7$$除尽的数有多少个?\n ", "answer": "$$686$$ .\n", "Analysis": "1~$$1000$$之间,$$5$$的倍数有$$\\left[\\frac{1000}{5} \\right]=200$$(个),7的倍数有$$\\left[ \\frac{1000}{7} \\right]=142$$(个),因为既是$$5$$的倍数,又是$$7$$的倍数的数一定是$$35$$的倍数,所以这样的数有$$\\left[\\frac{1000}{35} \\right]=28$$(个).\n\n所以既不能被$$5$$除尽,又不能被$$7$$除尽的数有$$1000-200-142+28=686$$(个).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整除特征", "整除特征综合", "数论模块", "整除"]} +{"_id": "ff80808148880257014888ac75b607da", "question": "某班有$$42$$人,其中$$26$$人爱打篮球,$$17$$人爱打排球,$$19$$人爱踢足球,$$9$$人既爱打篮球又爱踢足球,$$4$$人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?\n ", "answer": "$$7$$(人).\n", "Analysis": "由于全班$$42$$人没有一个人三种球都不爱好,所以全班至少爱好一种球的有$$42$$人.根据包含排除法,$$42=(26+17+19)-(9+4)-$$既爱打篮球又爱打排球的人数$$+0$$,得到既爱打篮球又爱打排球的人数为$$(26+17+19)-(9+4)=49$$(人),$$49-42=7$$(人).\n\n答:既爱打篮球又爱打排球的有$$7$$人.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["三量容斥", "计数模块", "容斥原理"]} +{"_id": "ff808081488cdfd401489836cf2e3f74", "question": "T$$109$$次列车$$19:33$$从北京出发,次日$$10:26$$到达上海;$$1461$$次列车$$11:58$$从北京出发,次日$$8:01$$到达上海.问这两次列车运行的时间相差多少分钟?\n ", "answer": "$$310$$ .\n", "Analysis": "T$$109$$次列车运行时间:$$10$$小时$$26$$分$$+$$$$24$$小时$$-$$$$19$$时$$33$$分$$=$$$$14$$小时$$53$$分;\n $$1461$$次列车运行时间:$$8$$小时$$1$$分$$+$$$$24$$小时$$-$$$$11$$时$$58$$分$$=$$$$20$$小时$$3$$分;\n 两次列车运行的时间相差:$$20$$小时$$3$$分$$-$$$$14$$小时$$53$$分$$=$$$$5$$小时$$10$$分$$=$$$$310$$分.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["时间问题", "组合模块", "时间计算"]} +{"_id": "ff808081488cdfd401489839af0440b3", "question": "甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长$$180$$米的火车以$$60$$千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔$$5$$分钟,若火车从追上到超过甲车用时$$30$$秒.从与乙车相遇到离开用时$$6$$秒,求乙车遇到火车后再过多少分钟与甲车相遇?\n ", "answer": "$$1.25$$分钟.\n ", "Analysis": "由火车与甲、乙两车的错车时间可知,甲车速度为$$60-180\\div30\\times 3.6=38.4$$千米/时.乙车速度为$$180\\div6\\times 3.6-60=48$$千米/时,火车追上甲车时,甲、乙两车相距$$(60+48)\\times \\frac{5}{60}=9$$千米.经过$$9\\div(38.4+48)\\times 60=6.25$$分钟相遇,那么乙车遇到火车后$$1.25$$分钟与甲车相遇.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "火车与人", "火车过二人", "火车问题"]} +{"_id": "ff808081472484480147301fb1b70bcf", "question": "甲、乙二人共存款$$100$$元,如果甲取出$$\\frac{4}{9}$$,乙取出$$\\frac{2}{7}$$,那么两人存款还剩$$60$$元.问甲、乙二人各有存款多少元?\n ", "answer": "甲存款$$72$$元,乙存款$$28$$元.\n ", "Analysis": "设甲存款$$x$$元,乙存款$$y$$元,根据题目条件有两条等量关系,一是两人存款加起来等于$$100$$元,二是取钱后两人存款加起来有$$60$$元.由此可列得方程组:\n $$\\left\\{ \\begin{align}& x+y=100 \\\\ &\\frac{4}{9}x+\\frac{2}{7}y=100-60 \\\\ \\end{align} \\right.$$\n 方程组最终解得$$\\left\\{ \\begin{align}& x=72 \\\\ & y=28 \\\\ \\end{align}\\right.$$,所以甲存款$$72$$元,乙存款$$28$$元.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数二元一次方程组解应用题"]} +{"_id": "ff808081488801c601488c21d9250d70", "question": "地铁有$$A,B $$两站,甲、乙二人都要在两站间往返行走.两人分别从$$A,B$$两站同时出发,他们第一次相遇时距$$A$$站$$800$$米,第二次相遇时距$$B$$站$$500$$米.问:两站相距多远?\n", "answer": "$$1900$$(米).\n", "Analysis": "从起点到第一次迎面相遇地点,两人共同完成$$1$$个全长,从起点到第二次迎面相遇地点,两人共同完成$$3$$个全长,一个全程中甲走$$1$$段$$800$$米,$$3$$个全程甲走的路程为$$3$$段$$800$$米. 画图可知,由$$3$$倍关系得到:$$A,B$$两站的距离为$$800\\times 3-500=1900 $$(米).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多次相遇和追及", "直线型行程问题", "往返相遇"]} +{"_id": "ff808081488801c601488c229c370e09_1", "question": "甲、乙、丙三人同时从$$A$$向$$B$$跑,当甲跑到$$B$$时,乙离$$B$$还有$$20$$米,丙离$$B$$还有$$40$$米;当乙跑到$$B$$时,丙离$$B$$还有$$24$$米.问:\n\n$$A$$, $$B$$两地相距多少米?\n", "answer": "$$120$$米.\n ", "Analysis": "方法一:乙跑最后$$20$$米时,丙跑了$$40-24=16($$米),\n\n丙的速度是乙的$$\\frac{{{16}}}{{{20}}}{ = }\\frac{{4}}{{5}}$$.\n\n因为乙到$$B$$时比丙多跑$$24$$米,\n\n所以$$A$$、$$B$$相距$${24} \\div ({1-}\\frac{{4}}{{5}}){ = 120}$$米.\n方法二:根据题意,设$$AB$$两处相距$$x$$米,乙的速度为$${{v}_{1}}$$,丙的速度为$${{v}_{2}}$$,根据甲步行到$$B$$处时,乙离$$B$$处还有$$20$$米,丙离$$B$$处还有$$40$$米”,可知这是三个人所行走的时间相等,列出一个方程,再根据“当乙步行到$$B$$处时,丙离$$B$$处还有$$24$$米”,可知这时两个人所行走的时间相等,再列出一个方程,进而列出一个方程组,解这个方程组,进一步得解.\n\n设$$AB$$两处相距米,乙的速度为$${{v}_{1}}$$,\n\n丙的速度为$${{v}_{2}}$$,由题意得$$\\left\\{ \\begin{array}{*{35}{l}} \\dfrac{x-20}{{{v}_{1}}}=\\dfrac{x-40}{{{v}_{2}}} \\\\\\dfrac{20}{{{v}_{1}}}=\\dfrac{40-24}{{{v}_{2}}} \\\\\\end{array} \\right.$$,\n\n解这个方程组,得\n\n$$x=120$$.\n\n答:$$A$$、$$B$$两处相距$$120$$米.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "行程模块", "逻辑分析", "行程中的比例", "能力", "运算求解", "对应思想", "比例解行程问题", "实践应用"]} +{"_id": "ff808081488801c601488c229c370e09_2", "question": "甲、乙、丙三人同时从$$A$$向$$B$$跑,当甲跑到$$B$$时,乙离$$B$$还有$$20$$米,丙离$$B$$还有$$40$$米;当乙跑到$$B$$时,丙离$$B$$还有$$24$$米.问:\n\n如果丙从$$A$$跑到$$B$$用$$24$$秒,那么甲的速度是多少?\n", "answer": "$$7.5$$米/秒.\n", "Analysis": "方法一:甲跑$$120$$米,丙跑$$120-40=80$$米,\n\n丙的速度是甲的$$\\frac{{{80}}}{{{120}}}{ = }\\frac{{2}}{{3}}$$\n\n甲的速度是$${120} \\div {24} \\div \\frac{{2}}{{3}}{ = 7}{.5}$$(米/秒).\n方法二:$${{v}_{2}}=120\\div 24=5$$(米$$/$$秒),\n\n甲的速度:$$120\\div (120-40)\\div 5=7.5$$(米$$/$$秒).\n\n答:甲的速度是$$7.5$$米$$/$$秒.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "思想", "行程模块", "逻辑分析", "行程中的比例", "能力", "运算求解", "对应思想", "比例解行程问题", "实践应用"]} +{"_id": "ff80808148880257014888a7e2ce04eb_1", "question": "如图,将$$1$$、$$2$$、$$3\\cdots$$按规律排成一个沙漏型的数表,那么,\n\n\n\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\n
\n\t\t\t$$12$$\n \n\t\t\t$$13$$\n \n\t\t\t$$14$$\n \n\t\t\t$$15$$\n\n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t上$$3$$行\n
 \n\t\t\t$$6$$\n \n\t\t\t$$7$$\n \n\t\t\t$$8$$\n \n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t上$$2$$行\n
  \n\t\t\t$$2$$\n \n\t\t\t$$3$$\n  \n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t上$$1$$行\n
   \n\t\t\t$$1$$\n   \n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t$$0$$行\n
  \n\t\t\t$$5$$\n \n\t\t\t$$4$$\n  \n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t下$$1$$行\n
 \n\t\t\t$$11$$\n \n\t\t\t$$10$$\n \n\t\t\t$$9$$\n \n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t下$$2$$行\n
\n\t\t\t$$19$$\n \n\t\t\t$$18$$\n \n\t\t\t$$17$$\n \n\t\t\t$$16$$\n\n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t下$$3$$行\n
  \n\t\t\t$$\\cdots $$\n    \n\t\t\t$$\\cdots \\cdots $$\n 
\n下$$5$$行从左向右数的第$$5$$个数是多少?\n ", "answer": "$$37$$\n ", "Analysis": "下$$n$$行从左向右第$$(n+1)$$个数(即最右数)为$${{(n+1)}^{2}}$$;故下$$5$$行从左向右第$$6$$个数为$$36$$,下$$5$$行从左向右第$$5$$个数为$$37$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "课内题型", "数表规律", "图形认知", "课内知识点", "七大能力", "逻辑分析", "数形结合思想", "数与图结合找规律(单图)", "数列规律", "数学广角", "知识标签", "数列与数表", "综合与实践", "数字排列规律", "计算模块", "智巧趣题", "对应思想", "数学思想", "学习能力", "找规律"]} +{"_id": "ff80808148880257014888a7e2ce04eb_2", "question": "如图,将$$1$$、$$2$$、$$3\\cdots$$按规律排成一个沙漏型的数表,那么,\n\n\n\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\n
\n\t\t\t$$12$$\n \n\t\t\t$$13$$\n \n\t\t\t$$14$$\n \n\t\t\t$$15$$\n\n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t上$$3$$行\n
 \n\t\t\t$$6$$\n \n\t\t\t$$7$$\n \n\t\t\t$$8$$\n \n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t上$$2$$行\n
  \n\t\t\t$$2$$\n \n\t\t\t$$3$$\n  \n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t上$$1$$行\n
   \n\t\t\t$$1$$\n   \n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t$$0$$行\n
  \n\t\t\t$$5$$\n \n\t\t\t$$4$$\n  \n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t下$$1$$行\n
 \n\t\t\t$$11$$\n \n\t\t\t$$10$$\n \n\t\t\t$$9$$\n \n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t下$$2$$行\n
\n\t\t\t$$19$$\n \n\t\t\t$$18$$\n \n\t\t\t$$17$$\n \n\t\t\t$$16$$\n\n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t下$$3$$行\n
  \n\t\t\t$$\\cdots $$\n    \n\t\t\t$$\\cdots \\cdots $$\n 
\n上$$6$$行最左边的数是多少?\n ", "answer": "$$42$$\n ", "Analysis": "上$$n$$行从左向右第$$1$$个数(即最左数)为$$n(n+1)$$;故上$$6$$行最左数为$$42$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "课内题型", "数表规律", "图形认知", "课内知识点", "七大能力", "逻辑分析", "数形结合思想", "数与图结合找规律(单图)", "数列规律", "数学广角", "知识标签", "数列与数表", "综合与实践", "数字排列规律", "计算模块", "智巧趣题", "对应思想", "数学思想", "学习能力", "找规律"]} +{"_id": "ff80808148880257014888a7e2ce04eb_3", "question": "如图,将$$1$$、$$2$$、$$3\\cdots$$按规律排成一个沙漏型的数表,那么,\n\n\n\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\n
\n\t\t\t$$12$$\n \n\t\t\t$$13$$\n \n\t\t\t$$14$$\n \n\t\t\t$$15$$\n\n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t上$$3$$行\n
 \n\t\t\t$$6$$\n \n\t\t\t$$7$$\n \n\t\t\t$$8$$\n \n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t上$$2$$行\n
  \n\t\t\t$$2$$\n \n\t\t\t$$3$$\n  \n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t上$$1$$行\n
   \n\t\t\t$$1$$\n   \n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t$$0$$行\n
  \n\t\t\t$$5$$\n \n\t\t\t$$4$$\n  \n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t下$$1$$行\n
 \n\t\t\t$$11$$\n \n\t\t\t$$10$$\n \n\t\t\t$$9$$\n \n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t下$$2$$行\n
\n\t\t\t$$19$$\n \n\t\t\t$$18$$\n \n\t\t\t$$17$$\n \n\t\t\t$$16$$\n\n\t\t\t$$\\cdots \\cdots $$\n\n\t\t\t下$$3$$行\n
  \n\t\t\t$$\\cdots $$\n    \n\t\t\t$$\\cdots \\cdots $$\n 
\n$$2013$$排在哪一行的从左向右数的第多少个?\n ", "answer": "上$$44$$行从左向右第$$34$$个.\n ", "Analysis": "上$$44$$行从左向右第$$1$$个数为$$44\\times  45=1980$$,故$$2013$$为上$$44$$行从左向右第$$2013-1980+1=34$$个数.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["拓展思维", "课内题型", "数表规律", "图形认知", "课内知识点", "七大能力", "逻辑分析", "数形结合思想", "数与图结合找规律(单图)", "数列规律", "数学广角", "知识标签", "数列与数表", "综合与实践", "数字排列规律", "计算模块", "智巧趣题", "对应思想", "数学思想", "学习能力", "找规律"]} +{"_id": "ff80808148880257014888a805630511", "question": "某学校的学生中,没有一个学生读过学校图书馆的所有图书,又知道图书馆内任何两本书都至少被一个同学都读过.问:能否找到两个学生甲、乙和三本书$$A$$、$$B$$、$$C$$,使得甲读过$$A$$、$$B$$,没读过$$C$$,乙读过$$B$$、$$C$$,没读过$$A$$?说明判断过程.\n ", "answer": "能\n ", "Analysis": "首先从读书数最多的学生中找一人甲.由题设,甲至少有一本书未读过,记为$$C$$.设$$B$$是甲读过的书中一本,由题意知,可找到学生乙,乙读过$$B$$、$$C$$.由于甲是读书数最多的学生之一,乙读书数不能超过甲的读书数,而乙读过$$C$$书,甲未读过$$C$$书,所以一定可以找出一本书$$A$$,使得甲读过而乙未读过,否则乙就比甲至少多读过一本书.这样一来,甲读过$$A$$、$$B$$,未读过$$C$$;乙读过$$B$$、$$C$$未读过A.因此可以找到满足要求的两个学生.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["抽屉原理", "构造型抽屉原理", "组合模块"]} +{"_id": "ff80808148880257014888aa23c606f0", "question": "黑板上写着$$1$$至$$2008$$共$$2008$$个自然数,小明每次擦去两个奇偶性相同的数,再写上它们的平均数,最后黑板上只剩下一个自然数,这个数可能的最大值和最小值的差是 ___          ___ .\n", "answer": "$$2005$$", "Analysis": "先求剩下数的最大值,那么擦去的数应该尽量小,找到规律:\n\n首先擦去$$1$$,$$3$$,写上$$2$$.\n\n擦去$$2$$,$$2$$,写上$$2$$.\n\n擦去$$2$$,$$4$$,写上$$3$$.\n\n擦去$$3$$,$$5$$,写上$$4$$.\n\n擦去$$4$$,$$6$$,写上$$5$$.\n\n$$ \\cdots  \\cdots $$\n\n擦去$$2006$$,$$2008$$,写上$$2007$$.\n\n所以剩下数的最大值为$$2007$$.\n\n同理可知剩下数的最小值为$$2$$.\n\n所以最大值和最小值的差是$$2005$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["奇数与偶数的应用", "奇数与偶数", "数论模块"]} +{"_id": "ff80808148c43ff50148c9712c8505ec", "question": "清明节,同学们乘车去烈士陵园扫墓.如果汽车行驶$$1$$个小时后,将车速提高五分之一,就可以比预定时间提前$$10$$分钟赶到;如果该车先按原速行驶$$60$$千米,再将速度提高三分之一,就可以比预定时间提前$$20$$分钟赶到.那么从学校到烈士陵园有多少千米?\n ", "answer": "$$180$$\n ", "Analysis": "比例法(1)原速:后速$$=5:6$$,原时:后时$$=6:5$$,原时$$=6\\times 10=60$$分$$=1$$小时,总时间为$$1+1=2$$小时;\n (2)原速:后速$$=3:4$$,原时:后时$$=4:3$$,原时$$4\\times 20=80$$分$$=1\\frac{1}{3}$$小时,按原速行驶$$72$$千米所用时间为$$2-1\\frac{1}{3}=\\frac{2}{3}$$小时;从学校到烈士陵园有$$60\\div\\frac{2}{3}\\times 2=180$$千米.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "行程中的比例", "比例解行程问题"]} +{"_id": "ff80808148c43ff50148c9712e9305f0", "question": "清明节,同学们乘车去烈士陵园扫墓.如果汽车行驶$$1$$个小时后,将车速提高五分之一,就可以比预定时间提前$$20$$分钟赶到;如果该车先按原速行驶$$72$$千米,再将速度提高三分之一,就可以比预定时间提前$$30$$分钟赶到.那么从学校到烈士陵园有多少千米?\n", "answer": "$$216$$\n ", "Analysis": "记原车速为$$v_0$$,以速度$$v_0$$走完全程的时间为$$t_0$$;\n\n第一种提速情形时提速后的速度为$$v_1$$,提速后到达目的地用时为$$t_1$$;\n\n第二种提速情形时提速后的速度为$$v_2$$,提速后到达目的地用时为$$t_2$$.\n\n则$$v_{0}: v _{1}=1:\\left(1+ \\frac{1}{5}\\right)=5:6$$,$$(t_0-1):t_1=6:5$$,\n\n所以$$t_{0}= \\frac{6 \\times 20}{60}+1=3$$(小时).\n\n类似地,$$v_0:v_{2}=1:\\left(1+ \\frac{1}{3}\\right)=3:4$$,$$\\left(t_{0}- \\frac{72}{v_{0}}\\right):t_{2}=4:3$$,\n\n所以后部分按原速走需用时$$\\frac{30 \\times 4}{60}=2$$(时).\n\n所以$$v_0=72$$(千米/时),全程的路长为$$72\\times3=216$$(千米).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "路程速度时间", "直线型行程问题", "单人变速问题"]} +{"_id": "ff80808148c43ff50148c971722c060e", "question": "一辆货车从甲地往乙地运货,然后空车返回,再继续运货.已知装满货物每时行$$50$$千米,空车每时行$$70$$千米.不计装卸货物时间,$$9$$时往返五次.求甲、乙两地的距离.\n ", "answer": "甲、乙两地相距$$52.5$$千米.\n", "Analysis": "因为满车与空车的速度比为$$50:70=5:7$$,\n\n所以$$9$$时中满车行的时间为的时间为$$9 \\times \\frac{7}{{5 + 7}} = \\frac{{21}}{4}$$(时),\n\n两地距离为$$50 \\times \\frac{{21}}{4} \\div 5 = 52.5$$(千米).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "路程速度时间", "直线型行程问题", "单人变速问题"]} +{"_id": "ff80808148c43ff50148c97176550616", "question": "甲、乙两人步行速度之比是$$3∶2$$,甲、乙分别由$$A$$,$$B$$两地同时出发,若相向而行,则$$1$$时后相遇.若同向而行,则甲需要多少时间才能追上乙?\n", "answer": "甲需要$$5$$小时才能追上乙.\n", "Analysis": "设甲、乙速度分别为$$3x$$千米/时和$$2x$$千米/时,\n 由题意可知 $$A$$,$$B$$两地相距$$(3x+2x)\\times1=5x$$(千米),追及时间为$$5x\\div(3x-2x)=5$$(小时).\n \n设两人速度为每小时$$3$$份和$$2$$份,则两人相距$$5$$份距离.同向而行,追及需要$$5\\div (3-2)=5$$(时).\n\n\n速度和与速度差之比为$$(3+2):(3-2)=5:1$$,相同的相遇(追及)路程,因此用时比为$$1:5$$,即$$5$$小时.\n\n故答案为:需要$$5$$小时.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "两人相遇与追及问题", "直线型行程问题", "追及与相遇结合"]} +{"_id": "ff80808148c43ff50148c971d3e10646", "question": "$$A$$,$$B$$两地相距$$1800$$米,甲、乙二人分别从$$A$$,$$B$$两地同时出发,相向而行,相遇后甲又走了$$8$$分到达$$B$$地,乙又走了$$18$$分到达$$A$$地.甲、乙二人每分钟各走多少米?\n", "answer": "甲每分走$$90$$米,乙每分走$$60$$米\n ", "Analysis": "$$18∶8=32∶22$$,所以甲的速度是乙的$$3\\div2=1.5$$(倍),\n 相遇时乙走了$$1800\\div(1+1.5)=720$$(米),\n 推知,甲每分走$$720\\div8=90$$(米),乙每分走$$90\\div1.5=60$$(米).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "相遇问题求路程和", "直线型行程问题", "行程应用题", "相遇问题", "应用题", "同时出发相向而行", "两人相遇与追及问题", "综合与实践"]} +{"_id": "ff80808148c43ff50148c971d4a40648", "question": "甲、乙两辆车分别同时从 $$A$$, $$B$$两地相向而行,相遇后甲又经过$$15$$分到达$$B$$地,乙又经过$$1$$时到达$$A$$地,甲车速度是乙车速度的几倍?\n ", "answer": "甲车速度是乙车速度的$$2$$倍\n ", "Analysis": "$$60∶15=4∶1$$,所以甲车速度是乙车的$$2$$倍.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "相遇问题", "同时出发相向而行", "两人相遇与追及问题"]} +{"_id": "ff80808148c43ff50148c971d56c064a", "question": "甲、乙分别从$$A$$,$$B$$两地同时相向出发,相遇时,甲、乙所行的路程比是$$a$$:$$b$$,从相遇算起,甲到达$$B$$地与乙到达$$A$$地所用的时间比是多少?\n ", "answer": "$${ b }^{ 2 }:{ a }^{ 2 }$$\n ", "Analysis": "因为甲、乙的速度比是$$a$$:$$b$$,\n 所以相遇后甲、乙还要行的路程比是$$b$$:$$a$$,\n 还要用的时间比是$$\\frac { b }{ a } :\\frac { a }{ b } ={ b }^{ 2 }:{ a }^{ 2 }$$.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "相遇问题", "同时出发相向而行", "两人相遇与追及问题"]} +{"_id": "ff80808148c43ff50148c971d6e6064e", "question": "甲、乙两人同时$$A$$地出发,在$$A$$、$$B$$两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到达$$A$$地、$$B$$地或遇到乙都会调头往回走,除此以外,两人在$$AB$$之间行走方向不会改变,已知两人第一次相遇的地点距离$$B$$地$$1800$$米,第三次的相遇点距离$$B$$地$$800$$米,那么第二次相遇的地点距离$$B$$地多远­­­­­­­­­­?\n ", "answer": "第二次相遇的地点距离$$B$$地­­­­­­­­­­$$1200$$米.\n ", "Analysis": "设甲、乙两人的速度分别为$${ v }_{ 1 }$$、$${ v }_{ 2 }$$,全程为$$s$$,第二次相遇的地点距离$$B$$地­­­­­­­­­­$$x$$米.\n 由于甲的速度大于乙的速度,所以甲第一次遇到乙是甲到达$$B$$地并调头往回走时遇到乙的,\n 这时甲、乙合走了两个全程,第一次相遇的地点与$$B$$地的距离为$${ v }_{ 1 }\\times \\frac { 2s }{ { v }_{ 1 }+{ v }_{ 2 } } -s=\\frac { { v }_{ 1 }-{ v }_{ 2 } }{ { v }_{ 1 }+{ v }_{ 2 } } s$$,\n 那么第一次相遇的地点$$B$$地的距离与全程的比为$$\\frac { { v }_{ 1 }-{ v }_{ 2 } }{ { v }_{ 1 }+{ v }_{ 2 } } $$;\n 两人第一次相遇后,甲调头向$$B$$地走,乙则继续向$$B$$地走,这样一个过程与第一次相遇前相似,\n 只是这次的“全程”为第一次相遇的地点到$$B$$地的距离,即$$1800$$米.\n 根据上面的分析可知第二次相遇的地点到$$B$$地的距离与第一次相遇的地点到$$B$$地的距离的比为$$\\frac { { v }_{ 1 }-{ v }_{ 2 } }{ { v }_{ 1 }+{ v }_{ 2 } } $$;\n 类似分析可知,第三次相遇的地点到$$B$$地的距离与第二次相遇的地点到$$B$$地的距离的比为$$\\frac { { v }_{ 1 }-{ v }_{ 2 } }{ { v }_{ 1 }+{ v }_{ 2 } } $$;\n 那么,$$\\frac { 1800 }{ x } =\\frac { x }{ 1800 } $$,\n 得到$$x=1200$$,故第二次相遇的地点距离$$B$$地­­­­­­­­­­$$1200$$米.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多次相遇和追及", "直线型行程问题", "往返相遇"]} +{"_id": "ff808081490d4ba8014912b8333203ef", "question": "小英的玩具个数是小丽的$$5$$倍,如果小英把$$6$$个玩具送给小丽,那么小丽的玩具个数就是小英的$$2$$倍了.请问:小英、小丽原来各有玩具多少个?\n ", "answer": "$$10、2$$\n ", "Analysis": "标准格式如下\n 解:设小丽原有$$x$$个玩具,则小英原有$$5x$$个玩具,\n 根据题意,得\n $$x+6=2(5x-6)$$\n 解得$$x=2$$\n $$5x=5\\times 2=10$$(个)\n 答:小英原有$$10$$个玩具,小丽原有$$2$$个玩具.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "列方程解应用题", "一元一次方程解应用题"]} +{"_id": "ff808081490d4ba8014912b8e23303f3", "question": "学而思学校某年级共有学生$$400$$人,新学期开始后,这个年级男生人数变成原来的$$2$$倍,而女生人数变成原来的一半,此时,这个年级共有学生$$560$$人.那么,这个年级现在男、女学生各有多少人?\n ", "answer": "男生$$480$$人,女生$$80$$人.\n ", "Analysis": "设原有男生$$x$$人,则原有女生($$400-x$$)人.\n\n有方程$$2x+\\frac{400-x}{2}=560$$,解得$$x=240$$.\n\n所以现在有男生$$240\\times2=480$$(人),现在有女生$$560-480=80$$(人).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["以文字题形式运用方程解应用题", "一元一次方程解应用题", "应用题模块", "应用题", "列方程解应用题", "综合与实践"]} +{"_id": "ff808081494160cb014946c300990db3", "question": "六年级二班同学参加学校植树活动,派男、女生共$$12$$名同学去取树苗.如果男生拿$$4$$棵,女生拿$$5$$棵,则还差$$2$$棵取完.如果男同学每人拿$$4$$棵,女同学每人拿$$2$$棵,则还差$$2$$棵取完.那么,六年级二班取树苗的男、女同学各有多少名?\n", "answer": "男生有$$7$$名,女生有$$5$$名.\n ", "Analysis": "解:设男同学$$x$$名,女同学$$12-x$$名.根据题意列方程组得$$5x+4(12-x)=4x+5(12-x)+2\\Rightarrow 5x+48-4x=4x+60-5x+2$$$$\\Rightarrow48+x=62-x\\Rightarrow 2x=14\\Rightarrow x=7$$\n\n女生:$$12-7=5$$(名)\n\n答:男生有$$7$$名,女生有$$5$$名.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["多元一次方程解应用题", "应用题模块", "列方程解应用题", "整数系数二元一次方程组解应用题"]} +{"_id": "ff80808149608948014969f1e54b0f86", "question": "几个同学去割两块草地的草,甲地面积是乙地面积的$$4$$倍,开始他们一起在甲地割了半天,后来留下$$12$$人割甲地的草,其余人去割乙地的草,这样又割了半天,甲、乙两地的草同时割完了,问:共有多少名学生?\n ", "answer": "$$20$$\n ", "Analysis": "有$$12$$人全天都在甲地割草,设有$$x$$人上午在甲地,下午在乙地割草.我们知道这$$x$$人在下午能割完乙地的草(甲地$$\\frac{1}{4}$$的草$$)$$,所以这$$x$$人在上午也能割甲地$$\\frac{1}{4}$$的草,所以$$12$$人一天割了甲地$$\\frac{3}{4}$$的草.每人每天割草$$\\frac{1}{16}$$,全部的草的为甲地草的$$\\frac{5}{4}$$,共需$$20$$名.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["合作工程问题", "应用题模块", "基本合作问题", "工程问题"]} +{"_id": "ff80808149990d5e01499f5136760a2b", "question": "小虎周末到公园划船,九点从租船处出发,计划不超过十一点回到租船处.已知,租船处在河的中游,河道笔直,河水流速$$1.5$$千米/小时;划船时,船在静水中的速度是$$3$$千米/小时,每划船半小时,小虎就要休息十分钟让船顺水漂流.问:小虎的船最远可以离租船处多少千米?\n", "answer": "$$1.375$$\n ", "Analysis": "由于多了一个每划半小时就休息$$10$$分钟的条件(不管是顺水还是逆水都一样),若是纠缠于划到最远处返回时是划呢还是漂呢,则很难找到突破口.我们不妨先来看看小虎的划船方式:划半小时,休息十分钟,一个周期是$$40$$分钟,$$9$$点出发,最迟$$11$$点要返回到租船处,共$$2$$小时,也就是$$120$$分钟,$$120\\div 40=3$$个周期.如果先顺水划再逆水返回,明显要划到租船处才行,这样最后一个周期里“休息”时间的$$10$$分钟就浪费了,故为了划出最远,小虎应该先逆水划到最远点再顺水返回,而且是利用最后休息的$$10$$分钟恰好漂到租船点,才充分利用了时间.一个周期逆行可划出的距离是:划行距离减去顺水漂回的距离,即:$$(3-1.5)\\times \\frac{30}{60}-1.5\\times \\frac{10}{60}=0.5$$千米;一个周期顺水能划出的距离是:$$(3+1.5)\\times \\frac{30}{60}+1.5\\times \\frac{10}{60}=2.5$$千米.显然,二个周期逆行可划出$$1$$千米,小于一个周期顺水返回的路程,也就是说,第三个周期中还可再往前划出一定距离到达最远处,再往回划,我们就假设这个距离为$$x$$千米,基于前面的分析,第三个周期中最后$$10$$分钟是顺水漂回租船处的,而顺水漂$$10$$分钟可行走$$1.5\\times \\frac{10}{60}=0.25$$千米,故第三个周期中划船的半小时是这样安排的:继续逆水往前划$$x$$千米,再顺水划$$x+1-0.25$$千米,这样我们就可把问题简化为只考虑第三个周期即可,可列方程如下:\n\n$$\\frac{x}{1.5}+\\frac{x+1-0.25}{4.5}=\\frac{1}{2}$$\n\n解之得:$$x=0.375$$千米,也就是再往前划$$0.375$$千米,故最远离租船处有:$$1+0.375=1.375$$千米.\n\n$$9$$点到$$11$$点共$$2$$小时,即$$120$$分钟,$$120=30+10+30+10+30+10$$,可见最后十分钟是船顺水漂流的,要想回到出发点,返回时一定是顺水.\n\n顺水速度为每小时$$4.5$$千米,逆水速度为每小时$$1.5$$千米,$$3$$倍关系,可见顺水行驶的时间一定少于半小时,即第$$3$$个$$30$$分一部分在逆水前进,一部分顺水返回.\n\n设顺水行驶的时间为$$x$$小时,则逆水行驶时间为$$(1.5-x)$$小时,则$$(1.5-x)\\times 1.5=0.25\\times 3+4.5x$$,解得$$x=0.25$$,所以最远可行$$0.25\\times 4.5+0.25=1.375$$千米.\n\n故答案为:$$1.375$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "基本流水行船问题", "流水行船问题", "用比例解流水行船问题"]} +{"_id": "ff80808149990d5e0149b3c38c1a322c", "question": "甲、乙二人从相距 $$60$$千米的两地同时相向而行,$$6$$小时后相遇.如果二人的速度各增加$$1$$千米/时,那么相遇地点距前一次相遇地点$$1$$千米.问:甲、乙二人的速度各是多少?\n", "answer": "甲、乙二人的速度分别为$$6$$千米/时和$$4$$千米/时\n ", "Analysis": "甲、乙两人的速度和第一次为$$60\\div6=10$$(千米/时),\n 第二次为$$12$$(千米/时),故第二次出发后$$5$$时相遇.\n 设甲第一次的速度为$$x$$千米/时,由两次相遇的地点相距$$1$$千米,\n 有$$6x-5(x+1)=±1$$,解得$$x=6$$或$$x=4$$,\n 即甲、乙二人的速度分别为$$6$$千米/时和$$4$$千米/时.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "相遇问题", "行程应用题", "相遇问题求某方速度", "应用题", "同时出发相向而行", "两人相遇与追及问题", "综合与实践"]} +{"_id": "ff80808149990d5e0149b3c3a96d3245", "question": "甲、乙、丙三车同时从$$A$$地沿同一公路开往$$B$$地,途中有个骑摩托车的人也在同方向行进,这三辆车分别用$$7$$分钟、$$8$$分钟、$$14$$分钟追上骑摩托车人.已知甲车每分钟行$$1000$$米,丙车每分钟行$$800$$米,求乙车的速度是多少?\n ", "answer": "乙车的速度是$$950$$米/分\n ", "Analysis": "甲与丙行驶$$7$$分钟的距离差为:$$(1000-800)\\times7=1400$$(米),\n 也就是说当甲追上骑摩托车人的时候,丙离骑摩托车人还有$$1400$$米,\n 丙用了$$14-7=7$$(分)钟追上了这$$1400$$米,\n 所以丙车和骑摩托车人的速度差为:$$1400\\div(14-7)=200$$(米/分),\n 骑摩托车人的速度为:$$800-200=600$$(米/分),\n 三辆车与骑摩托车人的初始距离为:$$(1000-600)\\times7=2800$$(米),\n 乙车追上这$$2800$$米一共用了$$8$$分钟,\n 所以乙车的速度为:$$2800\\div8+600=950$$(米/分).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人追及问题", "直线型行程问题", "多人相遇与追及问题"]} +{"_id": "ff80808149990d5e0149b3c3abb83249", "question": "张、李、赵$$3$$人都从甲地到乙地.上午$$6$$时,张、李两人一起从甲地出发,张每小时走$$5$$千米,李每小时走$$4$$千米.赵上午$$8$$时从甲地出发.傍晚$$6$$时,赵、张同时达到乙地.那么赵追上李的时间是几时?\n ", "answer": "赵追上李的时间是中午$$12$$时\n ", "Analysis": "甲、乙之间的距离:张早上$$6$$时出发,晚上$$6$$时到,用了$$12$$小时,每小时$$5$$千米,\n 所以甲、乙两地距离$$5\\times12$$ = $$60$$千米.\n 赵的速度:早上$$8$$时出发,晚上$$6$$时到,用了$$10$$小时,走了$$60$$千米,每小时走$$60\\div10$$ = $$6$$千米,\n 所以,赵追上李时用了:$$4\\times2\\div(6 - 4) = 4$$小时,即中午$$12$$时.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "追及问题", "不同时出发", "两人相遇与追及问题"]} +{"_id": "ff80808149990d5e0149b3c3adef324c", "question": "甲、乙、丙三人,甲每分钟走$$40$$米,丙每分钟走$$60$$米,甲、乙两人从$$A$$、$$B$$地同时出发相向而行,他们出发$$15$$分钟后,丙从$$B$$地出发追赶乙.此后甲、乙在途中相遇,过了$$7$$分钟甲又和丙相遇,又过了$$63$$分钟丙才追上乙,那么$$A$$、$$B$$两地相距多少米?\n ", "answer": "$$A$$、$$B$$两地相距$$1800$$米.\n", "Analysis": "根据题意可知,甲与乙相遇时,\n\n相遇点与丙的距离为$$(40+60)\\times 7=700$$(米��.\n\n相遇后乙丙有一次追及距离为$$700$$米.\n\n追及时间为$$7+63=70$$(分)的追及过程.\n\n可得$${{v}_{乙}}={{v}_{丙}}-$$速度差$$=60-[700\\div (7+63)]$$\n\n$$=60-(700\\div 70)=60-10=50$$(米/分).\n\n丙出发后又过了$$(15\\times 50-700)\\div 10=5$$(分)甲乙相遇.\n\n则$$A$$、$$B$$两地相距$$(40+50)\\times (15+5)=1800$$(米).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇追及问题", "直线型行程问题", "多人相遇与追及问题"]} +{"_id": "ff80808149990d5e0149b3c3b885324e", "question": "甲、乙、丙三人,他们的步行速度分别为每分钟$$480$$、$$540$$、$$720$$米,甲、乙、丙$$3$$人同时动身,甲、乙二人从$$A$$地出发,向$$B$$地行进,丙从$$B$$地出发向$$A$$地行进,丙首先在途中与乙相遇,$$3$$分钟后又与甲相遇,求甲、乙、丙$$3$$人行完全程各用多长时间?\n", "answer": "行完全程甲、乙、丙需要的时间分别是$$157.5$$分、$$140$$分、$$105$$分\n ", "Analysis": "方法一:乙与丙相遇时,乙比甲多行的距离可供丙、甲相向而行行$$3$$分钟的时间,\n 这段距离为$$\\left( {480 + 720} \\right) \\times 3 = 3600$$(米),$$3600 \\div \\left( {540 - 480} \\right) = 60$$(分),\n $$A$$、$$B$$之间的距离为$$\\left( {720 + 540} \\right) \\times 60 = 75600$$(米),\n 行完全程甲、乙、丙需要的时间分别如下:\n 甲:$$75600 \\div 480 = 157.5$$(分),\n 乙:$$75600 \\div 540 = 140$$(分),\n 丙:$$75600 \\div 720 = 105$$(分).\n 方法二:丙与乙相遇时,各行了$$\\left[ {\\left( {480 + 720} \\right) \\times 3} \\right] \\div \\left( {540 - 480} \\right) = 60$$(分),\n 速度与时间成反比,所以,丙行完全程需要$$60 + 60 \\times \\frac{{540}}{{720}} = 105$$(分);\n 乙行完全程需要$$105 \\times \\frac{{720}}{{480}} = 157.5$$(分)\n 方法三:丙与乙相遇时,乙比甲多行了$$\\left( {720 + 480} \\right) \\times 3 = 3600$$(米);\n 丙比甲多行了$$3600 \\times \\frac{{720 - 480}}{{540 - 480}} = 14400$$(米),\n 所以$$A$$地与$$B$$地之间的距离为$$480 \\times \\left( {540 - 480} \\right) \\times 2 + 3600 + 14400 = 75600$$,\n 行完全程甲、乙、丙需要的时间分别如下:\n 甲:$$75600 \\div 480 = 157.5$$(分),\n 乙:$$75600 \\div 540 = 140$$(分),\n 丙:$$75600 \\div 720 = 105$$(分).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇问题", "直线型行程问题", "多人相遇与追及问题"]} +{"_id": "ff80808149990d5e0149b3c3c034325b", "question": "小张和小王早晨$$8$$点整同时从甲地出发去乙地,小张开车,速度是每小时$$60$$千米.小王步行,速度为每小时$$4$$千米.如果小张到达乙地后停留$$1$$小时立即沿原路返回,恰好在$$10$$点整遇到正在前往乙地的小王.那么甲、乙两地之间的距离是 ___          ___ 千米.\n", "answer": "$$34$$", "Analysis": "因为小张和小王相遇时恰好合走了两个甲地到乙地的距离,\n\n而这个过程中小张开车$$1$$个小时,小王步行$$2$$个小时,\n\n他们一共所走的路程是:$$60 \\times 1+4 \\times 2= 68$$(千米),\n\n所以甲、乙两地之间的距离是:$$68 \\div 2 = 34$$(千米).\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "相遇问题", "同时同地出发折返相遇", "两人相遇与追及问题"]} +{"_id": "ff80808149990d5e0149d15b4a436fac", "question": "某条道路上,每隔$$900$$米有一个红绿灯.所有的红绿灯都按绿灯$$30$$秒、黄灯$$5$$秒、红灯$$25$$秒的时间周期同时重复变换,并且该道路限制车速在每小时$$40$$千米以上,每小时$$70$$千米以下.一辆汽车通过第一个红绿灯后,以每小时多少千米的速度行驶,可以在所有的红绿灯路口都遇到绿灯?\n ", "answer": "$$54$$\n ", "Analysis": "$$900\\div (30+5+25)=15$$(米/秒),则$$15$$米/秒$$=15\\times 3600\\div1000=54$$(千米/小时).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["应用题模块", "基本排列的周期问题", "周期问题"]} +{"_id": "ff80808149fa701b014a000449090d72", "question": "$$16$$个学生$$($$有的扮演只说真话的老实人,有的扮演只说假话的骗子$$)$$,在老师的旁边坐成一圈,老师问“坐在你右边的人是骗子吗”���时,$$8$$人回答“是骗子”,剩下的$$8$$人回答“不是骗子”,请问这$$16$$人中最多有多少个骗子?\n ", "answer": "$$12$$\n ", "Analysis": "最多三个骗子一个老实人一组正好是两个说骗子两个说不是骗子,$$16\\div (3+1)=4$$,$$4\\times 3=12$$(人).\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["真假话", "逻辑推理", "假设型逻辑推理", "组合模块", "找一致(同伙)"]} +{"_id": "ff8080814a053efa014a09df3820099a", "question": "甲、乙两车分别从相距$$100$$千米的$$A$$、$$B$$两地出发,同向而行,方向如下图所示.甲车的速度是每小时$$60$$千米,乙车的速度是每小时$$55$$千米.那么,几小时后,两车相距$$20$$千米?\n ", "answer": "$$16$$或$$24$$\n ", "Analysis": "题中只说“相距$$20$$千米”,没说谁在前谁在后,故知本题有两种情况:\n 若甲车比乙车落后$$20$$千米,那么路程差为$$(100-20)$$千米,追及时间为$$(100-20)\\div (60-55)=16$$小时;\n 若甲车超过乙车$$20$$千米,那么路程差为$$(100+20)$$千米,追及时间为$$(100+20)\\div (60-55)=24$$小时;\n 综上,答案为$$16$$或$$24$$小时.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "直线型行程问题", "相遇问题", "同时出发相向而行", "两人相遇与追及问题"]} +{"_id": "ff8080814a19e701014a32782dd73319", "question": "将每个最简分数$$\\frac{n}{m}$$(其中$$m$$,$$n$$为互质的非零自然数)染成红色或蓝色,染色规则如下:\n\n1) 将$$1$$染成红色;\n\n$$2)$$相差为$$1$$的两个数颜色不同,\n\n3) 不为$$1$$的数与其倒数颜色不同.\n\n问:$$\\frac{2013}{2014}$$ 和$$\\frac{2}{7}$$分别染成什么颜色?\n", "answer": "蓝色和红色\n", "Analysis": "$$\\frac{1}{1}$$染成红色,$$1$$与$$\\frac{2}{1}$$相差$$1$$,所以$$\\frac{2}{1}$$ 为蓝色,那么$$\\frac{2}{1}$$的倒数$$\\frac{1}{2}$$为红色,相差$$1$$的数:$$\\frac{3}{2}$$为蓝色,$$\\frac{5}{2}$$为红色,$$\\frac{7}{2}$$为蓝色,所以$$\\frac{2}{7}$$为红色.\n $$\\frac{1}{1}$$染成红色,$$1$$与$$\\frac{2}{1}$$相差$$1$$,所以$$\\frac{2}{1}$$ 为蓝色,$$\\frac{3}{1}$$ 为红色,奇数都染红色,$$\\frac{2013}{1}$$ 为红色,那么倒数$$\\frac{1}{2013}$$为蓝色,相差$$1$$的$$\\frac{2014}{2013}$$ 为红色,所以$$\\frac{2014}{2013}$$ 的倒数$$\\frac{2013}{2014}$$为蓝色.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["奇数与偶数", "奇数与偶数的认识", "数论模块"]} +{"_id": "ff8080814a19e701014a32fb67cf35eb", "question": "一辆汽车从$$A$$地匀速开往$$B$$地,原计划$$6$$小时到达;在行驶了$$50$$千米后汽车接到紧急通知,速度提高了$$40\\% $$;结果提前$$1$$小时到达.请问$$A$$、$$B$$两地的距离是多少千米?\n", "answer": "$$120$$\n ", "Analysis": "方法一(算术方法):后半程速度提高$$40\\% $$,即原计划速度与实际速度之比为$$5:7$$,故后半程原计划时间与实际时间之比为$$7:5$$,从而提前1小时到达,故知原计划的后半程时间为$$1\\div \\frac{7-5}{7}=3.5$$小时,所以前半程的50千米用时为$$6-3.5=2.5$$小时,故全长为$$50\\div\\frac{2.5}{6}=120$$千米.\n\n方法二(代数方法):设原车速为$$v$$千米每时,则有方程$$\\frac{50}{v}+\\frac{6v-50}{(1+40\\% )v}=6-1$$,解得$$v=20$$,故全长为$$20\\times6=120$$千米;或设后半段用时为$$t$$小时,则有方程$$50+\\frac{50}{5-t}\\times (1+40\\\\%)t=\\frac{50}{5-t}\\times 6$$,解得$$t=2.5$$,故全长为$$50\\div2.5\\times 6=120$$千米.\n\n本题的本质在于“路程一定,速度与时间成反比”,想用代数方法列出方程并不容易,建议用算术方法来分析.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "路程速度时间", "直线型行程问题", "单人变速问题"]} +{"_id": "ff8080814a5b28e5014a70f8c07426cc", "question": "春节前夕,一富翁向丐帮帮众施舍一笔钱财,一开始他准备给每人$$100$$元,结果剩下$$350$$元,他决定每人多给$$20$$元.这时从其它地方又闻讯赶来了$$5$$名乞丐,如果他们每个人拿到的钱和其它乞丐一样多,富翁还需要再增加$$550$$元.原有多少名乞丐?\n", "answer": "$$15$$名 .\n", "Analysis": "$$(350+550)-120\\times 5=300$$(元).$$300\\div 20=15$$(名).\n\n设原有$$x$$名乞丐,则据题意列方程:\n\n$$100x+350+550=(100+20)\\times (x+5)$$,\n\n解得$$x=15$$,原有$$15$$名乞丐.\n\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["以盈亏问题形式运用方程解应用题", "列方程解应用题", "应用题", "综合与实践"]} +{"_id": "ff8080814a5b296e014a686e07d12598", "question": "甲乙丙在一个环形跑道上匀速跑步,开始时乙在甲前面$$100$$米,丙在乙前面$$100$$米.当甲第一次追上乙时,丙还差$$100$$米追上乙;当甲第二次追上乙时,乙和丙距离$$25$$米.乙又跑了$$100$$米后,甲第一次追上了丙.此时甲一共走了多少米?\n ", "answer": "$$1200$$\n ", "Analysis": "设一圈为$$x$$米,按照题意,甲比乙多走了$$100$$时候,丙追了乙$$x-200$$米;甲比乙又多跑一圈时,丙追了乙$$125$$米,按照比例相等,可得全程应该是$$250$$米.第一个过程甲追了丙$$50$$米,第二个追了丙$$125$$米,所以第三个过程追了$$25$$米,得到三部分时间比例为$$2:5:1$$,所以第一个过程乙走了$$200$$米,甲$$300$$,丙$$250$$,这样甲丙速度比为$$6:5$$,甲追丙$$200$$米,应该走了$$1200$$米.\n ", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "环形追及同时异地出发", "环形跑道", "环形跑道中的追及"]} +{"_id": "ff8080814a9e3bbd014aa4e3652313f9", "question": "小红上山时每走$$30$$分钟休息$$10$$分钟,下山时每走$$30$$分钟休息$$5$$分钟.已知小红下山的速度是上山速度的$$1.5$$倍,如果上山用了$$3$$小时$$50$$分,那么下山用了多少时间?\n", "answer": "下山用了$$2$$小时$$15$$分 .\n", "Analysis": "上山用了$$3$$小时$$50$$分,即$$60\\times3+50$$ $$=230($$分$$)$$,\n\n由$$230 \\div(30+10)= 5\\cdots30$$,得到上山休息了$$5$$次,走了$$230-10\\times5=180($$分$$)$$.\n\n因为下山的速度是上山的$$1$$.$$5$$倍,\n\n所以下山走了$$180\\div1.5 =120($$分$$)$$.\n\n由$$120\\div30$$ $$=4$$知,下山途中休息了$$3$$次,\n\n所以下山共用$$120+5\\times3$$ $$=135($$分$$)=2$$小时$$15$$分.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "路程速度时间", "直线型行程问题", "单人变速问题"]} +{"_id": "ff8080814a9e3bbd014aa4e3a38213fb", "question": "邮递员早晨$$7$$时出发送一份邮件到对面山里,从邮局开始要走$$12$$千米上坡路,$$8$$千米下坡路.他上坡时每小时走$$4$$千米,下坡时每小时走$$5$$千米,到达目的地停留$$1$$小时以后,又从原路返回,邮递员什么时候可以回到邮局?\n ", "answer": "邮递员$$5$$时可以回到邮局 .\n", "Analysis": "先求出去的时间,再求出返回的时间,最后转化为时刻.\n\n①邮递员到达对面山里需时间:$$12\\div4+8\\div5=4.6$$(小时);\n\n②邮递员返回到邮局共用时间:$$8\\div 4+12\\div 5+1+4.6=2+2.4+1+4.6=10$$(小时);\n\n③邮递员回到邮局时的时刻是:$$7+10-12=5$$(时).\n\n邮递员是下午$$5$$时回到邮局的.\n\n从整体上考虑,邮递员走了$$(12+8)$$千米的上坡路,走了$$(12+8)$$千米的下坡路,\n\n所以共用时间为:$$(12+8)\\div4+(12+8)\\div5+1=10$$(小时),\n\n邮递员是下午$$7+10-12=5$$(时) 回到邮局的.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "路程速度时间", "直线型行程问题", "单人变速问题"]} +{"_id": "ff8080814a9e3bbd014aa4e7ba0a140f", "question": "一列火车出发$$1$$小时后因故停车$$ 0.5 $$小时,然后以原速的$$\\frac{3}{4}$$前进,最终晚$$1.5$$小时到达目的地.若出发$$1$$小时后又前进$$90$$千米再因故停车$$0.5$$小时,然后同样以原速的$$\\frac{3}{4}$$前进,则到达目的地仅晚$$1$$小时.那么整个路程为多少千米?\n", "answer": "$$240$$千米\n", "Analysis": "出发$$1$$小时后因故停车$$0.5$$小时,然后以原速的$$\\frac{3}{4}$$前进,最终到达目的地晚$$1.5$$小时,所以后面以原速的$$\\frac{3}{4}$$前进的时间比原定时间多用$$1.5 - 0.5 = 1$$(小时),而速度为原来的$$\\frac{3}{4}$$,所用时间为原来的$$\\frac{4}{3}$$,所以后面的一段路程原定时间为$$1 \\div \\left(\\frac{4}{3} - 1\\right) = 3$$(时),原定全程为$$4$$小时;出发$$1$$小时后又前进$$90$$千米再因故停车$$0.5$$小时,然后同样以原速的$$\\frac{3}{4}$$前进,则到达目的地仅晚$$1$$小时,类似分析可知又前进$$90$$千���后的那段路程原定时间为$$\\left(1 - 0.5\\right) \\div \\left(\\frac{4}{3} - 1\\right) = 1.5$$(时).所以原速度行驶$$90$$千米需要$$1.5$$小时,而原定全程为$$4$$小时,所以整个路程为$$90 \\div 1.5 \\times 4 = 240$$(千米).\n\n如果火车出发$$1$$小时后不停车,然后以原速的$$\\frac{3}{4}$$前进,最终到达目的地晚$$1.5-0.5=1$$(时),在一小时以后的那段路程,原计划所花的时间与实际所花的时间之比为$$3:4$$,所以原计划要花$$1\\div \\left( 4-3 \\right)\\times 3=3$$(时),现在要花$$1\\div \\left( 4-3 \\right)\\times 4=4$$(时),若出发$$1$$小时后又前进$$90$$公里不停车,然后同样以原速的$$\\frac{3}{4}$$前进,则到达目的地仅晚$$1-0.5=0.5$$(时),在一小时以后的那段路程,原计划所花的时间与实际所花的时间之比为$$3:4$$,所以原计划要花$$0.5\\div \\left( 4-3 \\right)\\times 3=1.5$$(时),现在要花$$0.5\\div \\left( 4-3 \\right)\\times 4=2$$(时).所以按照原计划$$90$$公里的路程火车要用$$3-1.5=1.5$$(时),所以火车的原速度为$$90\\div 1.5=60$$(千米/时),整个路程为$$60\\times \\left( 3+1 \\right)=240$$(千米).\n\n第一次速度变为原来的$$\\frac{3}{4}$$,行驶相同路程所需时间变为原来的$$\\frac{4}{3}$$,所以如果火车以原速行驶需要$$\\left(1.5-0.5\\right)\\div \\left(\\frac{4}{3}-1\\right)+1=4$$(时),同理第二次火车行驶$$90$$千米的时间为$$4-1-(1-0.5)\\div \\left(\\frac{4}{3}-1\\right)=1.5$$(时),所以火车原来的速度为$$90\\div 1.5=60$$(千米$$/$$小时).整个路程为$$60\\times 4=240$$(千米).\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "路程速度时间", "直线型行程问题", "单人变速问题"]} +{"_id": "ff8080814518d524014526a4fdc7191b", "question": "一个自然数恰有$$9$$个互不相同的因数,其中有$$3$$个因数$$A$$、$$B$$、$$C$$满足:\n\n①$$A+B+C=79$$\n\n②$$A\\times A=B\\times C$$\n\n那么,这个自然数是 ___          ___ .\n", "answer": "$$441$$", "Analysis": "一个自然数$$N$$恰有$$9$$个互不相同的因数,则可得$$N={{x}^{2}}\\times {{y}^{2}}$$,或者$$N={{x}^{8}}$$,\n\n($$1$$)当$$N={{x}^{8}}$$,则九个因数分别是:$$1,\\   x,\\  {{x}^{2}},\\   {{x}^{3}},\\    {{x}^{4}},\\  {{x}^{5}},\\  {{x}^{6}},\\  {{x}^{7}},\\  {{x}^{8}}$$,其中有$$3$$个因数$$A$$、$$B$$、$$C$$,同时满足$$A\\times A=B\\times C$$,$$A+B+C=79$$,$$79$$是质数,所以这种情况不可能满足题目要求.\n\n($$2$$)当$$N={{x}^{2}}\\times {{y}^{2}}$$,则九个因数分别是:$$1,\\  x,\\  y,\\  {{x}^{2}},\\  xy,\\  {{y}^{2}},\\  {{x}^{2}}y,\\  x{{y}^{2}},\\  {{x}^{2}}{{y}^{2}}$$,其中有$$3$$个因数$$A$$、$$B$$、$$C$$且满足$$A\\times A=B\\times C$$,\n\n$$A=x$$,$$B=1$$,$$C={{x}^{2}}$$,则$$x+1+{{x}^{2}}=79$$,无解.\n\n$$A=xy$$,$$B=1$$,$$C={{x}^{2}}{{y}^{2}}$$,则$$xy+1+{{x}^{2}}{{y}^{2}}=79$$,无解.\n\n$$A=xy$$,$$B=x$$,$$C=x{{y}^{2}}$$,则$$xy+x+x{{y}^{2}}=79$$,无解.\n\n$$A=xy$$,$$B={{x}^{2}}$$,$$C={{y}^{2}}$$,则$$xy+{{x}^{2}}+{{y}^{2}}=79$$,解得:$$\\begin{cases} x=3 \\\\ y=7 \\end{cases}$$,则$$N={{3}^{2}}\\times{{7}^{2}}=441$$.\n\n$$A={{x}^{2}}y$$,$$B={{x}^{2}}{{y}^{2}}$$,$$C={{x}^{2}}$$,则$${{x}^{2}}y+{{x}^{2}}{{y}^{2}}+{{x}^{2}}=79$$,无解.\n\n一个数恰有$$9$$个不同的因数,说明这个数要么是$${{p}^{8}}$$的形式,要么是$${{p}^{2}}{{q}^{2}}$$的形式($$p$$、$$q$$都是质数且不相等),下面分别讨论:\n\n若$${{p}^{8}}$$的形式,由于$$79$$本身是质数,那么$$A$$一定是$${{p}^{n}}$$的形式,$$B$$、$$C$$分别是$$1$$、$${{p}^{2n}}$$,于是会出现$$1+{{p}^{n}}+{{p}^{2n}}=79$$,化简得$${{p}^{n}}({{p}^{n}}+1)=78$$,但相邻的两个自然数乘积不可能是$$78$$,所以这种情况不可能;\n\n若是$${{p}^{2}}{{q}^{2}}$$的形式,列一个方阵如下:\n\n\n\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\t\n\t\t\t\n\t\t\t\n\t\t\t\n\t\t\n\t\n
\n\t\t\t$$1$$\n\n\t\t\t$$p$$\n\n\t\t\t$${{p}^{2}}$$\n
\n\t\t\t$$q$$\n\n\t\t\t$$pq$$\n\n\t\t\t$${{p}^{2}}q$$\n
\n\t\t\t$${{q}^{2}}$$\n\n\t\t\t$$p{{q}^{2}}$$\n\n\t\t\t$${{p}^{2}}{{q}^{2}}$$\n
\n由于$${{A}^{2}}=B\\times C$$���故知$$A$$、$$B$$、$$C$$只能是右面方阵中的一行、一列或一条对角线;但是根据上一种情况不可能,可知第$$1$$行、第$$1$$列及主对角线都不可能;又$$79$$是质数,故第$$2$$行、第$$3$$行、第$$2$$列、第$$3$$列都不可能;所以可能的形式只有副对角的形式,即$$A$$是$$pq$$的形式,$$B$$、$$C$$分别是$${{p}^{2}}$$、$${{q}^{2}}$$的形式,$${{p}^{2}}+pq+{{q}^{2}}=79$$;由于$$p$$、$$q$$都是质数,可能的值只有$$2$$、$$3$$、$$5$$、$$7$$,尝试可得$$pq$$分别为$$3$$、$$7$$,故所求数为$${{p}^{2}}{{q}^{2}}={{3}^{2}}\\times {{7}^{2}}=441$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分解质因数(式)", "因数个数定理逆应用", "分解质因数", "因数与倍数", "因数个数定理", "数论模块"]} +{"_id": "ff8080814518d524014526a52d7f191d", "question": "把$$1$$~$$8$$这$$8$$个数字放到一个正方体的八个顶点处,然后在每条棱的中点处写上这条棱的两个顶点处所写的数的平均数.如果上底面的四个中点和下底面的四个中点上写的数都是整数,那么另外四个中点处所写的数中,有 ___          ___ 个不是整数.\n ", "answer": "$$4$$", "Analysis": "奇偶性问题$$1$$~$$8$$八个数$$4$$奇$$4$$偶,上下两组各$$4$$个数同时满足相邻和为偶数,\n\n唯一情况为上下两组数分别同奇同偶.即上面$$4$$个为奇数,下面$$4$$个为偶数或者上面$$4$$个为偶数,\n\n下面$$4$$个为奇数.所以上下$$4$$组数和都是奇数,即它们的平均数都不是整数.所以有$$4$$个不是整数.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["奇数与偶数", "奇数与偶数的认识", "数论模块"]} +{"_id": "ff8080814518d524014526a6bed91931", "question": "有一群猴子正要分$$56$$个桃子.每只猴子可以分到同样个数的桃子.这时.又窜来$$4$$只猴子.只好重新分配,但要使每只猴子分到同样个数的桃子,必须扔掉一个桃子.则最后每只猴子分到桃子 ___          ___ 个.\n ", "answer": "$$5$$", "Analysis": "$$56$$的约数有:$$1$$、$$2$$、$$4$$、$$7$$、$$8$$、$$14$$、$$28$$、$$56$$,\n $$55$$的约数有:$$1$$、$$5$$、$$11$$、$$55$$,\n 其中只有$$11=7+4$$,所以原来有$$7$$只猴,后来有$$11$$只猴,每只猴子分到$$55÷11=5$$个.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["因数应用题", "因数与倍数", "因倍应用题", "数论模块", "公因数与公倍数"]} +{"_id": "ff8080814518d524014526a71b661943", "question": "有一批图书总数在$$1000$$本以内,若按$$24$$本书包成一捆,则最后一捆差$$2$$本;若按$$28$$本书包成一捆,最后一捆还是差$$2$$本书;若按$$32$$本书包成一捆,则最后一捆是$$30$$本.那么这批图书共有 ___          ___ 本.\n", "answer": "$$670$$", "Analysis": "由题意可知,这批书如果再多$$2$$本,那么按$$24$$本,$$28$$本,$$32$$本一捆全书时,\n\n都将恰好分成整数捆.所以这批书的本数加上$$2$$之后是$$24$$,$$28$$,$$32$$的公倍数,\n\n而$$[24,28,32] = 672$$,所以这批书的本数是$$672k - 2$$($$k$$是整数).由于这批书少于$$1000$$本,\n\n所以$$k$$只能为$$1$$,这批书有$$670$$本.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["公倍数与最小公倍数", "因数与倍数", "数论模块", "公因数与公倍数", "多数的最小公倍数"]} +{"_id": "ff8080814526d1c2014526ea566000b1", "question": "算式$$999999999-88888888+7777777-666666+55555-4444+333-22+1$$的计算结果的各位数字之和是 ___          ___ .\n ", "answer": "$$45$$", "Analysis": "方法一:多位数计算,算出结果$$918273645$$,求得各位数字和为$$45$$.\n 方法二:由于计算过程没有产生进位或借位,故结果的数字和是$$9\\times 9-8\\times 8+7\\times 7-6\\times 6+5\\times 5-4\\times 4+3\\times3-2\\times 2+1\\times 1=45$$.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整数", "计算模块", "多位数计算", "多位数的运算和数字和相关", "求计算结果的数字和"]} +{"_id": "ff8080814526d1c2014527a283f50403", "question": "由$$2013$$个边长为$$1$$的小正三角形拼成的四边形中,周长的最小值是 ___          ___ ��\n ", "answer": "$$127$$", "Analysis": "正三角形组成两种四边形,平行四边形和梯形.\n\n平行四边形要求偶数个三角形,而此题为$$2013$$个正三角形,所以一定构成梯形.\n\n那么在构造的梯形中,相邻层数间都差$$2$$个三角形,且都是奇数个,则可以构造一个梯形:\n\n第一次层有:$$2a+1$$个三角形;最后一层有$$2b+1$$个三角形,则有层数为$$b-a+1$$层.\n\n利用等差数列求和公式得:$$(2a+1+2b+1)\\times (b-a+1)\\div 2=2013$$\n\n化简得$$(b+a+1)\\times (b-a+1)=2013$$\n\n再考虑这个梯形上底长:$$a$$;下底长$$b+1$$;腰为:$$b-a+1$$;则周长可列为:$$3b-a+3$$\n\n由于$$2013=3\\times 11\\times 61$$,考虑到要想周长最小,即$$b$$尽量小,$$a$$尽量大\n\n取$$b+a+1=61$$,$$b-a+1=33$$,得$$a=14$$,$$b=46$$.带入得最小周长$$3b-a+3=127$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["组合模块最值问题", "组合模块", "最值原理在几何中的应用"]} +{"_id": "ff8080814526d2f401452794b9f20400", "question": "小朋友们要做一次“动物保护”宣传活动,若$$1$$人拿$$3$$个动物小玩具,则最后余下$$2$$个动物小玩具;若$$1$$人拿$$4$$个动物小玩具,则最后余下$$3$$个动物小玩具;若$$1$$人拿$$5$$个动物小玩具,则最后余下$$4$$动物小玩具.那么这次活动中小朋友至少拿了 ___          ___ 个动物小玩具.\n ", "answer": "$$59$$", "Analysis": "那么再加一个玩具,玩具总数就能同时被$$3$$、$$4$$、$$5$$整除,能同时被$$3$$、$$4$$、$$5$$整除最小整数位$$60$$.所以这次活动小朋友至少拿了$$59$$个玩具.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["因数与倍数", "因倍应用题", "倍数应用题", "数论模块", "公因数与公倍数"]} +{"_id": "ff8080814526d2f4014527825fd10300", "question": "有一个奇怪的四位数(首位不为$$0$$),它是完全平方数,它的数字和也是完全平方数,用这个四位数除以它的数字和得到的结果还是完全平方数,并且它的因数个数还恰好等于它的数字和,那当然也是完全平方数,如果这个四位数的各位数字互不相同,那么这个四位数是 ___          ___ .\n", "answer": "$$2601$$", "Analysis": "四位数中,各个位数不重复的情况下,和可以为$$9$$,$$16$$,$$25.$$且因为完全平方数的因数为奇数个,则可以是$$9$$,$$25$$两种情况.\n\n$$9$$的情况下,该数为$${{a}^{2}}\\times{{3}^{2}}$$形式,因为$$a$$为质数,经测试可取$$a=17$$,得符合要求四位数$$2601$$.$$25$$的情况下,该数为$${{a}^{4}}\\times{{5}^{4}}$$形式,故$$a$$取任何质数不能满足条件.\n\n所以符合题意要求的四位数为$$2601$$.\n\n假设这个四位数是$$\\overline{ABCD}$$,由于各位数字互不相同,则$$6\\leqslant A+B+C+D\\leqslant 30$$,又知是完全平方数,所以数字和只可能是$$9$$、$$16$$、$$25$$,又因为完全平方数的因数个数是奇数,所以数字和只可能是$$9$$或$$25$$.若数字之和为$$25$$,则$$25|$$$$\\overline{ABCD}$$,又$$\\overline{ABCD}$$是完全平方数,所以$$\\overline{CD}=00$$或$$25$$,则$$A+B+C+D\\leqslant 2+5+8+9=24$$,矛盾,故数字之和只可能是$$9$$.那么由题意可知,$$A+B+C+D=9$$及$$9\\left| \\overline{ABCD} \\right.$$,且$$\\overline{ABCD}$$的因数个数等于$$9$$.则$$\\overline{ABCD}={{3}^{8}}$$或$$\\overline{ABCD}={{3}^{2}}\\times {{P}^{2}}$$($$P$$为非$$3$$的质数),而显然$$\\overline{ABCD}={{3}^{8}}$$不符合题意,而要$${{\\left( 3P \\right)}^{2}}$$是四位数,$$P$$可能是$$11$$、$$13$$、$$17$$、$$23$$、$$29$$、$$31$$,则该四位数可能是$$1089$$、$$1521$$、$$2601$$、$$4761$$、$$7569$$、$$8649$$,其中只有$$\\overline{ABCD}=2601$$符合题意,所以这个四位数是$$2601$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 5, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["完全平方数", "平方数的综合应用", "数论模块"]} +{"_id": "ff8080814526d2f401452c90869c1d8d", "question": "有四个非零自然数$$a$$ 、$$b$$ 、$$c$$ 、$$d$$,其中$$c = a + b$$ , $$d = b + c$$ .\n 如果$$a$$ 能被$$2$$整除, $$b$$ 能被$$3$$整除,$$c$$ 能被$$5$$整除, $$d$$ 能被$$7$$整除,那么$$d$$ 最小是 ___          ___ .\n ", "answer": "$$28$$", "Analysis": "令$$a = 2k$$ ,$$b = 3l$$ ,则$$d = 6l + 2k$$ ,\n\n因为$$d$$ 能被$$7$$ 整除,最小$$14$$ ,此时$$c$$ 取不到$$5$$ 的倍数;\n\n若$$d = 28$$ ,则$$l = 1$$ ,$$k=11$$ ,此时$$a=22$$,$$b=3$$,$$c=25$$,所以$$d$$ 最小是$$28$$ .\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整除特征", "整除特征综合", "数论模块", "整除"]} +{"_id": "ff8080814526d2f401452c9094211d93", "question": "$$N$$是一个各位数字互不相等的自然数,它能被它的每个数字整除.$$N$$的最大值是 ___          ___ .\n ", "answer": "$$9867312$$", "Analysis": "$$N$$不能含有$$0$$,因为不能被$$0$$除;\n $$N$$不能同时含有$$5$$和偶数,因为此时N的个位将是$$0$$;\n 如果含有$$5$$,则$$2$$,$$4$$,$$6$$,$$8$$都不能有,此时位数不会多;\n 如果$$N$$只缺少$$5$$,则含有$$1$$,$$2$$,$$3$$,$$4$$,$$6$$,$$7$$,$$8$$,$$9$$,但是数字和为$$40$$,不能被$$9$$整除;\n 所以必须再去掉一位,为了最大,应该保留$$9$$放到最高位,\n 为了使数字和被$$9$$整除,还需要去掉$$4$$;\n 此时由$$1$$,$$2$$,$$3$$,$$6$$,$$7$$,$$8$$,$$9$$组成,肯定被$$9$$整除,还需要考虑被$$7$$和$$8$$整除.\n 前四位最大为$$9876$$,剩下三个数字组成的被$$8$$整除的三位数为$$312$$,$$9876312$$被$$7$$除余$$5$$;\n 前四位如果取$$9873$$,剩下三个数字组成的被$$8$$整除的三位数为$$216$$,$$9873216$$被$$7$$除余$$3$$;\n 前四位如果取$$9872$$,剩下三个数字组成的被$$8$$整除的三位数为$$136$$,$$9872136$$被$$7$$除余$$1$$;\n 前四位如果取$$9871$$,剩下三个数字组成的被$$8$$整除的三位数为$$632$$,$$9871632$$被$$7$$除余$$1$$;\n 前四位如果取$$9867$$,剩下三个数字组成的被$$8$$整除的三位数为$$312$$,$$9867312$$被$$7$$整除.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整除特征", "整除特征综合", "数论模块", "整除"]} +{"_id": "ff8080814526d2f401452c90cefe1da1", "question": "学生问数学老师的年龄,老师说:“由三个相同数字组成的三位数除以这三个数字的和,所得结果就是我的年龄.”老师今年 ___          ___ 岁.\n", "answer": "$$37$$", "Analysis": "方法一:操作找规律,当这个三位数为$$111$$时,$$111\\div (1+1+1)=37$$,\n\n当这个三位数为$$222$$时,$$222\\div (2+2+2)=37$$,所以老师今年$$37$$岁.\n\n方法二:设而不求,设这个三位数为$$\\overline {aaa} $$ 时,\n\n根据题意列出式子整理得到:$$111 \\times a \\div (a + a + a) = 37$$  .\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["以文字题形式运用方程解应用题", "列方程解应用题", "应用题", "综合与实践"]} +{"_id": "ff8080814526d2f401452c9105f71db2", "question": "有三个自然数$$a$$,$$b$$,$$c$$,已知$$b$$除以$$a$$,得商$$3$$余$$3$$;$$c$$除以$$a$$,得商$$9$$余$$11$$.则$$c$$除以$$b$$,得到的余数是 ___          ___ .\n", "answer": "$$2$$", "Analysis": "$$b = 3a + 3$$ ,$$c = 9a + 11$$ ,$$c = (9a + 9) + 2 = 3b + 2$$ ,所以应该余$$2$$ .\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["余数问题", "余数的性质", "数论模块", "余数的可加性"]} +{"_id": "ff8080814526d2f401452c912b921dbb", "question": "一个$$n$$位正整数$$x$$,如果把它补在任意两个正整数的后面,所得两个新数的乘积的末尾还是$$x$$,那么称$$x$$是“吉祥数”.例如:$$6$$就是一个“吉祥数”;但$$16$$不是,因为$$116\\times216=25056$$,末尾不再是$$16$$.所有位数不超过$$3$$位的“吉祥数”之和是 ___          ___ .\n ", "answer": "$$1114$$", "Analysis": "显然,一位数只能是$$1$$、$$5$$、$$6$$.\n\n设符合条件的两位数为$$\\overline {ab} $$,则必有$$100{\\left| {\\overline {ab} } \\right.^2} - \\overline {ab}  = \\overline {ab}  \\times (\\overline {ab}  - 1)$$$$\\begin{cases} b=1\\quad \\quad \\overline { ab } \\neq  \\\\ b=5\\quad \\quad \\overline { ab } =25 \\\\ b=6\\quad \\quad \\overline { ab } =76 \\end{cases}$$.\n\n设符合条件的三位数为$$\\overline { abc } $$,则必有$$1000{\\left| {\\overline {abc} } \\right.^2} - \\overline {abc}  = \\overline {abc} (\\overline {abc}  - 1)$$$$\\begin{cases} \\overline { bc } =25\\quad \\quad \\quad \\overline { abc } =625 \\\\ \\overline { bc } =76\\quad \\quad \\quad \\overline { abc } =376 \\end{cases}$$.\n\n所有“吉祥数”之和为$$1+5+6+25+76+625+376=1114$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["整除特征", "整除特征综合", "数论模块", "整除"]} +{"_id": "ff8080814526d2f401452c9188221dd8", "question": "一本故事书共有$$30$$个故事,每个故事分别占$$1$$、$$2$$、$$3$$、$$\\cdots$$、$$30$$页(未必按这个顺序).第一个故事从第$$1$$页开始,每个故事都从新的一页开始,最多有 ___          ___ 个故事是从奇数页开始的.\n", "answer": "$$23$$", "Analysis": "前$$15$$个故事让其均为偶数页,这样前$$15$$个故事均为奇数页开始,\n 后面$$15$$个奇数页的故事,有$$8$$个是从奇数页开始的,所以最多有$$15+8=23$$个.\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["奇数与偶数的应用", "奇数与偶数", "数论模块"]} +{"_id": "ff8080814526d2f401452c9ab52f1ea8", "question": "在$$3$$棵树上栖息着$$15$$只黄鹂和$$14$$只白鹭,每棵树上至少有$$4$$只黄鹂和$$2$$只白鹭,如果每棵树上的白鹭都不比黄鹂多,那么一棵树最多有 ___          ___ 只鸟.\n", "answer": "$$14$$", "Analysis": "由于每棵树上至少有$$4$$只黄鹂,所以每棵树上最多有$$15 - 4 \\times 2 = 7$$只黄鹂,而每棵树上的白鹭都不比黄鹂多,所以每棵树上的白鹭最多也只有$$7$$只,那么每棵树上的鸟数不超过$$7 + 7 = 14$$只.另外,当三棵树上的黄鹂、白鹭的只数分别为$$(4$$、$$3)$$,$$(4$$、$$4)$$和$$(7$$、$$7)$$时,有一棵树上恰好有$$14$$只鸟.所以一棵树最多有$$14$$只鸟.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["加减法应用", "应用题模块", "最值问题"]} +{"_id": "ff8080814526d2f401452f876bca2403", "question": "算式$$2013\\times \\dfrac{5.7\\times 4.2+\\dfrac{21}{5}\\times4.3}{\\dfrac{14}{73}\\times 15+\\dfrac{5}{73}\\times 177+656}$$的计算结果是 ___          ___ .\n", "answer": "$$126$$", "Analysis": "原式=$$2013\\times \\dfrac{5.7\\times 4.2+4.2\\times4.3}{\\dfrac{15}{73}\\times 14+\\dfrac{15}{73}\\times59+656}$$\n\n$$=2013\\times \\dfrac{4.2\\times 10}{\\dfrac{15}{73}\\times73+656}$$\n\n$$=2013\\times \\dfrac{42}{671}$$\n\n$$=3\\times 42$$\n\n$$=126$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["分数", "计算模块", "繁分数", "繁分数计算"]} +{"_id": "ff808081452c82e901452d685a000729", "question": "小于$$200$$且与$$200$$互质的所有自然数的和是 ___          ___ .\n ", "answer": "$$8000$$", "Analysis": "$$200$$分解质因数得$$200={{2}^{3}}\\times{{5}^{2}}$$,所以小于$$200$$且与$$200$$互质的数不能有质因数$$2$$或者$$5$$.\n\n而$$200$$以内$$2$$的倍数有$$2$$、$$4$$、$$6$$、$$\\cdots$$、$$198$$,和为$$2+4+\\cdots+198=9900$$;\n\n$$200$$以内$$5$$的倍数有$$5$$、$$10$$、$$15$$、$$\\cdots$$、$$195$$,和为$$5+10+\\cdots+195=3900$$;\n\n既是$$2$$的倍数又是$$5$$的倍数有$$10$$、$$20$$、$$\\cdots$$、$$190$$,和为$$10+20+\\cdots+190=1900$$;\n\n所以所求数和为$$1+2+3+\\cdots+199-9900-3900+1900=8000$$.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["质数与合数", "数论模块", "质数与合数判定", "质数与合数的认识"]} +{"_id": "ff808081454b256501454e779c2903be", "question": "甲要完成一批零件,原计划$$10$$天完成.实际上甲每天比原计划多做$$16$$个,结果$$8$$天完成.这批零件共有 ___          ___ 个.\n ", "answer": "$$640$$ .", "Analysis": "量率对应求总量,$$16\\div (\\frac{1}{8}-\\frac{1}{10})=640$$(个).\n ", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 2, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["量率对应求单位一", "应用题", "分数百分数应用题", "综合与实践"]} +{"_id": "ff808081454b256501454e6ce2f103b4", "question": "甲、乙在$$A$$地,丙在$$B$$地同时出发,相向而行,到达目的地后立即返回.当甲丙相遇时,乙恰好走到$$AB$$ 两地的中点;当乙丙相遇时,甲恰好走到$$B$$.当甲乙相遇时,丙走了$$2014$$米,$$AB$$两地相距 ___          ___ 米.\n", "answer": "$$5035$$", "Analysis": "根据“当甲丙相遇时,乙恰好走到$$AB$$两地的中点”可知$${{v}_{甲}}+{{v}_{丙}}=2{{v}_{乙}}$$;根据“当乙丙相遇时,甲恰好走到$$B$$地”可知$${{v}_{乙}}+{{v}_{丙}}={{v}_{甲}}$$,故可解得$${{v}_{甲}}:{{v}_{乙}}:{{v}_{��}}=3:2:1$$;故甲乙相遇时,甲走了$$3$$份,乙走了$$2$$份,丙走了$$1$$份.可见每份是$$2014$$米.那么甲乙共走的两个全长,同时甲乙共走了$$5$$份,故知全长为$$2014\\div 2\\times 5=5035$$米.\n", "options": "", "logicQuesTypeName": "填空", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "1", "gradeGroupName": "小学", "subjectName": "数学", "knowledge": ["行程模块", "多人相遇问题", "直线型行程问题", "多人相遇与追及问题"]} +{"_id": "61cbbf634f9449f0b1dde97d80cf3776", "question": "如图,平面内两条直线$${{l}_{1}}//{{l}_{2}}$$,其之间的距离为$$a$$,一块正方形硬纸板$$ABCD$$的边长也为$$a$$,现将这块硬纸板平放在两条平行线上,使得$${{l}_{1}}$$与$$AB$$、$$AD$$均相交,交点为$$E$$、$$F$$;$${{l}_{2}}$$与$$CB$$、$$CD$$均相交,交点为$$G$$、$$H$$,设$$\\triangle AEF$$周长为$${{m}_{1}}$$,$$\\triangle CGH$$的周长为$${{m}_{2}}$$,证明:无论怎样放置正方形硬纸板$$ABCD$$,$${{m}_{1}}+{{m}_{2}}$$总是一个定值.\n\n\"\"\n", "answer": "证明见解析.\n", "Analysis": "如图,联结$$EH$$、$$FG$$得交点$$O$$,\n\n因为点$$H$$到$$AB$$、$${{l}_{1}}$$距离相等,所以,$$EH$$平分$$BEF$$,也平分$$DHG$$,\n\n又点$$G$$到$$AD$$、$${{l}_{1}}$$等距离,从而,$$FG$$平分$$DFE$$,也平分$$BGH$$,由此可知,$$O$$既是$$\\triangle AEF$$的旁心,又是$$\\triangle CGH$$的旁心,作出两个旁切圆,易知它们是同心圆,\n\n设$$P$$、$$M$$、$$Q$$、$$N$$分别是$$AB$$、$$AD$$、$$CD$$、$$CB$$上的切点,易证$$P$$、$$O$$、$$Q$$和$$M$$、$$O$$、$$N$$分别三点共线,且$$PQ=AD=a$$,$$MN=AB=a$$;\n\n利用旁心性质$$2$$知$$AP=AM=\\frac{1}{2}{{m}_{1}}$$,$$CQ=CN=\\frac{1}{2}{{m}_{2}}$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 1, "difficulty": 4, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": ["共圆和多圆问题(二试)", "平面几何"]} +{"_id": "2d15aaf4eb3e4f0a85380146bafe5437", "question": "设$$m,n$$是给定的整数,$$4  <  m  <  n$$,$${{A}_{1}}{{A}_{2}}\\cdot \\cdot \\cdot {{A}_{2n+1}}$$是一个正$$2n+1$$边形,$$P=\\left\\{ {{A}_{1}},{{A}_{2}},\\cdot \\cdot \\cdot ,{{A}_{2n+1}} \\right\\}$$.求顶点属于$$P$$且恰有两个内角是锐角的凸$$m$$边形的个数.\n", "answer": "$$(2n+1)(C_{n+1}^{m-1}+C_{n}^{m-1})$$.\n", "Analysis": "先证一个引理:顶点在$$P$$中的凸$$m$$边形至多有两个锐角,且有两个锐角时,这两个锐角必相邻.\n\n事实上,设这个凸$$m$$边形为$${{P}_{1}}{{P}_{2}}\\cdot \\cdot \\cdot {{P}_{m}}$$,只考虑至少有一个锐角的情况,此时不妨设$$\\angle {{P}_{m}}{{P}_{1}}{{P}_{2}}  <  \\frac{\\pi }{2}$$,则$$\\angle {{P}_{2}}{{P}_{j}}{{P}_{m}}=\\pi -\\angle {{P}_{2}}{{P}_{1}}{{P}_{m}}>\\frac{\\pi }{2}(3\\leqslant j\\leqslant m-1)$$,\n\n更有$$\\angle {{P}_{j-1}}{{P}_{j}}{{P}_{j+1}}>\\frac{\\pi }{2}(3\\leqslant j\\leqslant m-1)$$.而$$\\angle {{P}_{1}}{{P}_{2}}{{P}_{3}}+\\angle {{P}_{m-1}}{{P}_{m}}{{P}_{1}}>\\pi $$,故其中至多一个为锐角,这就证明了引理.\n\n由引理知,若凸$$m$$边形中恰有两个内角是锐角,则它们对应的顶点相邻.\n\n在凸$$m$$边形中,设顶点$${{A}_{i}}$$与$${{A}_{j}}$$为两个相邻顶点,且在这两个顶点处的内角均为锐角.设$${{A}_{i}}$$与$${{A}_{j}}$$的劣弧上包含了$$P$$的$$r$$条边($$1\\leqslant r\\leqslant n$$),这样的$$(i,j)$$在$$r$$固定时恰有$$2n+1$$对.\n\n($$1$$)若凸$$m$$边形的其余$$m-2$$个顶点全在劣弧$${{A}_{i}}{{A}_{j}}$$上,而$${{A}_{i}}{{A}_{j}}$$劣弧上有$$r-1$$个$$P$$中的点,此时这$$m-2$$个顶点的取法数为$$C_{r-1}^{m-2}$$.\n\n($$2$$)若凸$$m$$边形的其余$$m-2$$个顶点全在优弧$${{A}_{i}}{{A}_{j}}$$上,取$${{A}_{i}},{{A}_{j}}$$的对径点$${{B}_{i}},{{B}_{j}}$$,由于凸$$m$$边形在顶点$${{A}_{i}},{{A}_{j}}$$处的内角为锐角,所以,其余的$$m-2$$个顶点全在劣弧$${{B}_{i}}{{B}_{j}}$$上,而劣弧$${{B}_{i}}{{B}_{j}}$$上恰有$$r$$个$$P$$中的点,此时这$$m-2$$个顶点的取法数为$$C_{r}^{m-2}$$.\n\n所以,满足题设的凸$$m$$边形的个数为\n\n$$\\begin{matrix}(2n+1)\\sum\\limits_{r=1}^{n}{(C_{r-1}^{m-2}+C_{r}^{m-2})}=(2n+1)\\left( \\sum\\limits_{r=1}^{n}{C_{r-1}^{m-2}}+\\sum\\limits_{r=1}^{n}{C_{r}^{m-2}} \\right) \\\\ =(2n+1)(\\sum\\limits_{r=1}^{n}{(C_{r}^{m-1}-C_{r-1}^{m-1})+\\sum\\limits_{r=1}^{n}{(C_{r+1}^{m-1}-C_{r}^{m-1})}}) \\\\\\end{matrix}$$ $$=(2n+1)(C_{n+1}^{m-1}+C_{n}^{m-1})$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": ["图论(二试)", "组合"]} +{"_id": "832c2431178a4e9e970ce362ce93e1a4", "question": "凸$$n$$边形$$P$$中的每条边和每条对角线都被染为$$n$$种颜色中的一种颜色.问:对怎样的$$n$$,存在一种染色方式,使得对于这$$n$$种颜色中的任何$$3$$种不同颜色,都能找到一个三角形,其顶点为多边形$$P$$的顶点,且它的$$3$$条边分别被染为这$$3$$种颜色?\n\n", "answer": "当$$n\\geqslant 3$$为奇数时,存在合乎要求的染法.\n", "Analysis": "当$$n\\geqslant 3$$为奇数时,存在合乎要求的染法;当$$n\\geqslant 4$$为偶数时,不存在所述的染法.\n\n每$$3$$个顶点形成一个三角形,三角形的个数为$$\\text{C}_{n}^{3}$$个,而颜色的三三搭配也刚好有$$\\text{C}_{n}^{3}$$种,所以本题相当于要求不同的三角形对应于不同的颜色组合,即形成一一对应.\n\n我们将多边形的边与对角线都称为线段.对于每一种颜色,其余的颜色形成$$\\text{C}_{n-1}^{2}$$种搭配,所以每种颜色的线段(边或对角线)都应出现在$$\\text{C}_{n-1}^{2}$$个三角形中,这表明在合乎要求的染法中,各种颜色的线段条数相等.所以每种颜色的线段都应当有$$\\frac{\\text{C}_{n}^{2}}{n}=\\frac{n-1}{2}$$条.\n\n当$$n$$为偶数时,$$\\frac{n-1}{2}$$不是整数,所以不可能存在合乎条件的染法.下设$$n=2m+1$$为奇数,我们来给出一种染法,并证明它满足题中条件.自某个顶点开始,按顺时针方向将凸$$2m+1$$边形的各个顶点依次记为$${{A}_{1}}$$,$${{A}_{2}}$$,$$\\cdot \\cdot \\cdot$$,$${{A}_{2m+1}}$$.\n\n对于$$i\\notin \\left\\{ 1,2,\\cdot \\cdot \\cdot,2m+1 \\right\\}$$,按$$\\bmod 2m+1$$理解顶点$${{A}_{i}}$$.再将$$2m+1$$种颜色分别记为颜色$$1$$,$$2$$,$$\\cdot \\cdot \\cdot$$,$$2m+1$$.\n\n将边$${{A}_{i}}{{A}_{i+1}}$$染为颜色$$i$$,其中$$i=1$$,$$2$$,$$\\cdot \\cdot \\cdot $$,$$2m+1$$.再对每个$$i=1$$,$$2$$,$$\\cdot \\cdot \\cdot$$,$$2m+1$$,都将线段(对角线)$${{A}_{i-k}}{{A}_{i+1+k}}$$染为颜色$$i$$,其中$$k=1$$,$$2$$,$$cdot \\cdot \\cdot$$,$$m-1$$.\n\n于是每种颜色的线段都刚好有$$m$$条.注意,在我们的染色方法之下,线段$${{A}_{{{i}_{1}}}}{{A}_{{{j}_{1}}}}$$与$${{A}_{{{i}_{2}}}}{{A}_{{{j}_{2}}}}$$同色,\n\n当且仅当$${{i}_{1}}+{{j}_{1}}\\equiv {{i}_{2}}+{{j}_{2}}\\ (\\bmod 2m+1)$$. ①\n\n因此,对任何$$i\\ne j\\ (\\bmod 2m+1)$$,任何$$k\\ne 0\\ (\\bmod 2m+1)$$,线段$${{A}_{i}}{{A}_{j}}$$都不与$${{A}_{i+k}}{{A}_{j+k}}$$同色.\n\n换言之,如果$${{i}_{1}}-{{j}_{1}}\\equiv {{i}_{2}}-{{j}_{2}}\\ (\\bmod 2m+1)$$. ②\n\n则线段$${{A}_{{{i}_{1}}}}{{A}_{{{j}_{1}}}}$$都不与$${{A}_{{{i}_{2}}}}{{A}_{{{j}_{2}}}}$$同色.\n\n任取两个三角形$$\\triangle {{A}_{{{i}_{1}}}}{{A}_{{{j}_{1}}}}{{A}_{{{k}_{1}}}}$$和$$\\triangle {{A}_{{{i}_{2}}}}{{A}_{{{j}_{2}}}}{{A}_{{{k}_{2}}}}$$,如果它们之间至多只有一条边同色,当然它们不对应相同的颜色组合.如果它们之间有两条边分别同色,我们来证明第$$3$$条边必不同颜色.为确定起见,不妨设$${{A}_{{{i}_{1}}}}{{A}_{{{j}_{1}}}}$$与$${{A}_{{{i}_{2}}}}{{A}_{{{j}_{2}}}}$$同色.\n\n情形$$1$$:如果$${{A}_{{{j}_{1}}}}{{A}_{{{k}_{1}}}}$$与$${{A}_{{{j}_{2}}}}{{A}_{{{k}_{2}}}}$$也同色,则由①知\n\n$${{i}_{1}}+{{j}_{1}}\\equiv {{i}_{2}}+{{j}_{2}}\\ (\\bmod 2m+1)$$,\n\n$${{j}_{1}}+{{k}_{1}}\\equiv {{j}_{2}}+{{k}_{2}}\\ (\\bmod 2m+1)$$,\n\n将二式相减,得$$f(A)=f(B)$$,故由②知$${{A}_{{{k}_{1}}}}{{A}_{{{i}_{1}}}}$$不与$${{A}_{{{k}_{2}}}}{{A}_{{{i}_{2}}}}$$同色.\n\n情形$$2$$:如果$${{A}_{{{i}_{1}}}}{{A}_{{{k}_{1}}}}$$与$${{A}_{{{i}_{2}}}}{{A}_{{{k}_{2}}}}$$也同色,则亦由①知\n\n$${{i}_{1}}+{{j}_{1}}\\equiv {{i}_{2}}+{{j}_{2}}\\ (\\bmod 2m+1)$$,\n\n$${{i}_{1}}+{{k}_{1}}\\equiv {{i}_{2}}+{{k}_{2}}\\ (\\bmod 2m+1)$$,\n\n将二式相减,亦得$${{j}_{1}}-{{k}_{1}}\\equiv {{j}_{2}}-{{k}_{2}}\\ (\\bmod 2m+1)$$,亦由②知$${{A}_{{{j}_{1}}}}{{A}_{{{k}_{1}}}}$$与$${{A}_{{{j}_{2}}}}{{A}_{{{k}_{2}}}}$$不同色.总之,$$\\triangle {{A}_{{{i}_{1}}}}{{A}_{{{j}_{1}}}}{{A}_{{{k}_{1}}}}$$与$$\\triangle {{A}_{{{i}_{2}}}}{{A}_{{{j}_{2}}}}{{A}_{{{k}_{2}}}}$$对应不同的颜色组合.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": ["图论(二试)", "组合"]} +{"_id": "2ae62787071c44c59e1ba073e818fa05", "question": "给定正整数$$m$$、$$n$$.求具有下述性质的最小整数$$N\\left( N\\geqslant m \\right)$$:若一个$$N$$元整数集含有模$$m$$的完全剩余系,则其有一个非空子集,其元素和被$$n$$整除.\n", "answer": "$$N\\geqslant \\max \\left\\{ m,m+n-\\frac{1}{2}m\\left[ \\left( m,n \\right)+1 \\right] \\right\\}$$.\n", "Analysis": "$$N\\geqslant \\max \\left\\{ m,m+n-\\frac{1}{2}m\\left[ \\left( m,n \\right)+1 \\right] \\right\\}$$.\n\n\n首先证明:\n\n$$N\\geqslant \\max \\left\\{ m,m+n-\\frac{1}{2}m\\left[ \\left( m,n \\right)+1 \\right] \\right\\}$$.$$①$$\n\n设$$d=\\left( m,n \\right)$$,$$m=d{{m}_{1}}$$,$$n=d{{n}_{1}}$$.\n\n若$$n>\\frac{1}{2}m\\left( d+1 \\right)$$,考虑一个模$$m$$的完全剩余系$${{x}_{1}}$$,$${{x}_{2}}$$,$$\\cdots $$,$${{x}_{m}}$$,其模$$n$$的余数恰为$${{m}_{1}}$$个$$1$$,$$2$$,$$\\cdots $$,$$d$$.这样的一组完全剩余系是存在的,如下面$$m$$个数:\n\n$$i+d{{n}_{1}}j\\left( i=1,2,\\cdots ,d,j=1,2,{{m}_{1}} \\right)$$.\n\n再添上$$k=n-\\frac{1}{2}m\\left( d+1 \\right)-1$$个模$$n$$余$$1$$的数$${{y}_{1}}$$,$${{y}_{2}}$$,$$\\cdots $$,$${{y}_{k}}$$,则集合$$A=\\left\\{ {{x}_{1}},{{x}_{2}},\\cdots ,{{x}_{m}},{{y}_{1}},{{y}_{2}},\\cdots ,{{y}_{k}} \\right\\}$$含有模$$m$$的完全剩余系,但不存在非空子集的元素和被$$n$$整除.\n\n事实上,集合$$A$$中没有一个元素倍$$n$$整除,集合$$A$$的每个元素除以$$n$$的最小正余数之和为$${{m}_{1}}\\left( 1+2+\\cdots +d \\right)+k=n-1$$.\n\n从而,集合$$A$$中不存在非空子集,其元素和被$$n$$整除.\n\n因此,$$N\\geqslant m+n-\\frac{1}{2}\\left( d+1 \\right)$$,即式$$①$$成立.\n\n其次证明:$$N\\geqslant \\max \\left\\{ m,m+n-\\frac{1}{2}m\\left[ \\left( m,n \\right)+1 \\right] \\right\\}$$满足要求.\n\n反复利用结论:$$k$$个整数中必存在若干个之和被$$k$$整除.\n\n设这$$k$$个整数为$${{a}_{1}},{{a}_{2}},\\cdots ,{{a}_{k}}$$,令$${{S}_{i}}={{a}_{1}}+{{a}_{2}}+\\cdots +{{a}_{i}}$$.\n\n若有一个$${{S}_{i}}$$被$$k$$整除,则结论成立.否则,存在$$1\\leqslant i < j\\leqslant k$$,使得\n\n$${{S}_{i}}\\equiv {{S}_{j}}\\left( \\bmod k \\right)\\Rightarrow k\\left| \\left( {{S}_{j}}-{{S}_{i}} \\right) \\right.={{a}_{i+1}}+{{a}_{i+2}}+\\cdots +{{a}_{j}}$$.\n\n由上,知在$$k$$个均被正整数$$a$$整除的整数中,必可取出若干个数之和被$$ka$$整除.\n\n对原问题分两种情形讨论.\n\n$$\\left( 1 \\right)n\\leqslant \\frac{1}{2}m\\left( d+1 \\right)$$.\n\n此时,$$N=m$$.若一个有限整数集的所有元素和可被$$k$$整除,则称“$$k-$$集”.\n\n设$${{x}_{1}}$$,$${{x}_{2}}$$,$$\\cdots $$,$${{x}_{m}}$$为模$$m$$的完全剩余系,将这些数分成$${{m}_{1}}$$组,每组构成模$$d$$的完全剩余系.\n\n设$${{y}_{1}}$$,$${{y}_{2}}$$,$$\\cdots $$,$${{y}_{d}}$$为模$$d$$的完全剩余系.则$${{y}_{i}}\\equiv i\\left( \\bmod d \\right)$$.\n\n若$$d$$为奇数,则可将一个模$$d$$的完全剩余系分成$$\\frac{d+1}{2}$$个$$d-$$集,如$$\\left\\{ {{y}_{1}},{{y}_{d-1}} \\right\\}$$,$$\\left\\{ {{y}_{\\frac{d-1}{2}}},{{y}_{\\frac{d+1}{2}}} \\right\\}$$,$$\\left\\{ {{y}_{d}} \\right\\}$$,共有$$\\frac{1}{2}{{m}_{1}}\\left( d+1 \\right)$$个$$d-$$集.\n\n由于$${{n}_{1}}\\leqslant \\frac{1}{2}{{m}_{1}}\\left( d+1 \\right)$$,故从这些$$d-$$集中可选一些集合,其总和被$${{n}_{1}}d=n$$整除.\n\n若$$d$$为偶数,类似地,可将$${{y}_{1}}$$,$${{y}_{2}}$$,$$\\cdots $$,$${{y}_{d}}$$分成$$\\frac{d}{2}$$个$$d-$$集,此时多余$${{y}_{\\frac{d}{2}}}$$.\n\n注意到,两个模$$d$$余$$\\frac{d}{2}$$的数又可组成一个$$d-$$集.\n\n则从一个模$$m$$的完全剩余系中可取出$$\\frac{1}{2}{{m}_{1}}d+\\left[ \\frac{{{m}_{1}}}{2} \\right]$$个$$d-$$集.\n\n又$${{n}_{1}}\\leqslant \\frac{1}{2}{{m}_{1}}\\left( d+1 \\right)=\\frac{1}{2}{{m}_{1}}d+\\frac{{{m}_{1}}}{2}$$,故$${{n}_{1}}\\leqslant \\frac{1}{2}{{m}_{1}}d+\\left[ \\frac{{{m}_{1}}}{2} \\right]$$.\n\n于是,可从这些$$d-$$集中选出一些,其总和被$${{n}_{1}}d=n$$整除.\n\n$$\\left( 2 \\right)n>\\frac{1}{2}m\\left( d+1 \\right)$$.\n\n此时,$$N=m+n-\\frac{1}{2}m\\left( d+1 \\right)$$.\n\n设$$A$$为$$N$$元集包含模$$m$$的完全剩余系$${{x}_{1}}$$,$${{x}_{2}}$$,$$\\cdots $$,$${{x}_{m}}$$,另外还有$$n-\\frac{1}{2}m\\left( d+1 \\right)$$个数.\n\n若$$d$$为奇数,则由$$\\left( 1 \\right)$$的论证,可将一个模$$m$$的完全剩余系分成$$\\frac{1}{2}{{m}_{1}}\\left( d+1 \\right)$$个$$d-$$集.\n\n另外,$$n-\\frac{1}{2}m\\left( d+1 \\right)$$个数又分成$${{n}_{1}}-\\frac{1}{2}{{m}_{1}}\\left( d+1 \\right)$$组数,每组$$d$$个数,每一组中又可取出一个$$d-$$集,\n\n即从另外的数中可找到$${{n}_{1}}-\\frac{1}{2}{{m}_{1}}\\left( d+1 \\right)$$个$$d-$$集.这样共得到$${{n}_{1}}$$个$$d-$$集.\n\n若$$d$$为偶数,则由$$\\left( 1 \\right)$$的论证,可将一个模$$m$$的完全剩余系分成$$\\frac{1}{2}{{m}_{1}}d+\\left[ \\frac{{{m}_{1}}}{2} \\right]$$个$$d-$$集.\n\n当$${{m}_{1}}$$为偶数时,可得至少$${{n}_{1}}-\\frac{1}{2}{{m}_{1}}\\left( d+1 \\right)$$个$$d-$$集,这样共得到$${{n}_{1}}$$个$$d-$$集.\n\n当$${{m}_{1}}$$为奇数时,剩余的$$\\left\\{ {{x}_{i}} \\right\\}$$也为一个$$\\frac{d}{2}-$$集,共有$$2{{n}_{1}}-{{m}_{1}}\\left( d+1 \\right)+1$$个$$\\frac{d}{2}-$$集,\n\n从中可取出至少$${{n}_{1}}-\\frac{1}{2}{{m}_{1}}\\left( d+1 \\right)+\\frac{1}{2}$$个$$d-$$集.这样共得到$${{n}_{1}}$$个$$d-$$集.\n\n最后,从这$${{n}_{1}}$$个$$d-$$集中可选出一部分数,其总和被$${{n}_{1}}d=n$$整除.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 4, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": ["带余除法(辗转相除法)", "同余", "平方剩余", "数论模块", "整除"]} +{"_id": "e957d8e6d90f4448bcf2fa78d47f35ea", "question": "设点$$I$$、$$H$$分别为锐角$$\\triangle ABC$$的内心和垂心,点$${{B}_{1}}$$、$${{C}_{1}}$$分别为边$$AC$$、$$AB$$的中点.已知射线$${{B}_{1}}I$$交边$$AB$$于点$${{B}_{2}}\\left( {{B}_{2}}\\ne B \\right)$$,射线$${{C}_{1}}I$$交$$AC$$的延长线于点$${{C}_{2}}$$,$${{B}_{2}}{{C}_{2}}$$与$$BC$$相交于点$$K$$,点$${{A}_{1}}$$为$$\\triangle BHC$$的外心.试证:$$A$$、$$I$$、$${{A}_{1}}$$三点共线的充分必要条件是$$\\triangle BK{{B}_{2}}$$和$$\\triangle CK{{C}_{2}}$$的面积相等.\n\n\"\"\n", "answer": "证明见解析\n", "Analysis": "(1)首先证明\n\n\n$$A$$、$$I$$、$${{A}_{1}}$$三点共线$$\\Leftrightarrow \\angle BAC=60{}^\\circ $$.\n\n如图,设$$O$$为$$\\triangle ABC$$的外心,连$$OB$$、$$OC$$,则\n\n$$\\angle BHC=180{}^\\circ -\\angle BAC$$,\n\n$$\\angle B{{A}_{1}}C=2\\left( 180{}^\\circ -\\angle BHC \\right)=2\\angle BAC$$.因此,\n\n$$\\angle BAC=60{}^\\circ \\Leftrightarrow \\angle BAC+\\angle B{{A}_{1}}C=180{}^\\circ $$\n\n$$\\Leftrightarrow {{A}_{1}}$$在$$\\triangle ABC$$的外接圆$$\\odot O$$上$$\\Leftrightarrow AI$$与$$A{{A}_{1}}$$重合.\n\n[只有角平分线$$AI$$与三角形外接圆的交点$${{A}_{1}}$$,才有性质:$${{A}_{1}}B={{A}_{1}}I={{A}_{1}}C$$]\n\n$$\\Leftrightarrow A$$、$$I$$、$${{A}_{1}}$$三点共线.\n\n(2)其次,再证明$${{S}_{\\triangle BK{{B}_{2}}}}={{S}_{\\triangle CK{{C}_{2}}}}\\Leftrightarrow \\angle BAC=60{}^\\circ $$.\n\n作$$IP\\bot AB$$于点$$P$$,$$IO\\bot AC$$于点$$Q$$.则\n\n$${{S}_{\\triangle A{{B}_{1}}{{B}_{2}}}}=\\frac{1}{2}IP\\cdot A{{B}_{2}}+\\frac{1}{2}IQ\\cdot A{{B}_{1}}$$.①\n\n设$$IP=r$$($$r$$为$$\\triangle ABC$$的内切圆的半径),则$$IQ=r$$.\n\n又令$$BC=a$$,$$CA=b$$,$$AB=c$$,则$$r=\\frac{2{{S}_{\\triangle ABC}}}{a+b+c}$$.\n\n注意到$${{S}_{\\triangle A{{B}_{1}}{{B}_{2}}}}=\\frac{1}{2}A{{B}_{1}}\\cdot A{{B}_{2}}\\sin A$$.②\n\n由①、②及$$A{{B}_{1}}=\\frac{b}{2}$$,$$2A{{B}_{1}}\\sin A={{h}_{c}}=2\\frac{{{S}_{\\triangle ABC}}}{c}$$.\n\n有$$A{{B}_{2}}\\left( 2\\cdot \\frac{{{S}_{\\triangle ABC}}}{c}-2\\cdot \\frac{2{{S}_{\\triangle ABC}}}{a+b+c} \\right)=b\\frac{2{{S}_{\\triangle ABC}}}{a+b+c}$$.\n\n则$$A{{B}_{2}}=\\frac{bc}{a+b-c}$$.同理,$$A{{C}_{2}}=\\frac{bc}{a+c-b}$$.由$${{S}_{\\triangle BK{{B}_{2}}}}={{S}_{\\triangle CK{{C}_{2}}}}$$,\n\n有$${{S}_{\\triangle ABC}}={{S}_{\\triangle A{{B}_{2}}{{C}_{2}}}}$$.于是,$$bc=\\frac{bc}{a+b-c}\\cdot \\frac{bc}{a+c-b}$$,\n\n即$${{a}^{2}}={{b}^{2}}+{{c}^{2}}-bc\\Leftrightarrow $$由余弦定理$$\\angle BAC=60{}^\\circ $$.\n\n\"\"\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 1, "difficulty": 5, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": ["内心相关问题(二试)", "平面几何"]} +{"_id": "305845510ebd4a968fe434f3483dfce3", "question": "如图,$$\\triangle ABC$$的内切圆$$\\odot I$$在边$$AB$$,$$BC$$,$$CA$$上的切点分别为$$D$$,$$E$$,$$F$$,直线$$EF$$分别与$$AI$$,$$BI$$,$$DI$$交于点$$M$$,$$N$$,$$K$$.证明:$$DM\\cdot KE=DN\\cdot KF$$.\n\n\"\"\n", "answer": "证明见解析\n", "Analysis": "易知,$$I$$,$$D$$,$$E$$,$$B$$四点共圆.\n\n又$$\\angle AID=90^{\\circ}-\\angle IAD$$,$$\\angle MED=\\angle FDA=90^{\\circ}-\\angle IAD$$,则$$\\angle AID=\\angle MED$$.\n\n于是,$$I$$,$$D$$,$$E$$,$$M$$四点共圆.从而,$$I$$,$$D$$,$$B$$,$$E$$,$$M$$五点共圆.\n\n故$$\\angle IMB=\\angle IEB=90^{\\circ}$$,即$$AM\\bot BM$$.\n\n类似地,$$I$$,$$D$$,$$A$$,$$N$$,$$F$$五点共圆,且$$BN\\bot AN$$.\n\n如图,设直线$$AN$$与$$BM$$交于点$$G$$.则$$I$$为$$\\triangle GAB$$的垂心.\n\n\"\"\n\n又$$ID\\bot AB$$,则$$G$$,$$I$$,$$D$$三点共线.\n\n由$$G$$,$$N$$,$$D$$,$$B$$四点共圆,知$$\\angle ADN=\\angle AGB$$.\n\n类似地,$$\\angle BDM=\\angle AGB$$.\n\n于是,$$DK$$平分$$\\angle MDN$$.从而,$$\\frac{DM}{DN}= \\frac{KM}{KN}$$.①\n\n又由$$I$$,$$D$$,$$E$$,$$M$$与$$I$$,$$D$$,$$N$$,$$F$$分别四点共圆知\n\n$$KM \\cdot KE=KI \\cdot KD=KF \\cdot KN \\Rightarrow \\frac{KM}{KN}= \\frac{KF}{KE}$$.②\n\n由式①、②,知$$\\frac{DM}{DN}= \\frac{KF}{KE}\\Rightarrow DM \\cdot KE=DN \\cdot KF$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 1, "difficulty": 4, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": ["共圆和多圆问题(二试)", "平面几何"]} +{"_id": "f3b40022ee5146fbac32d8692053f8c7", "question": "设$$n$$为无平方因子的正偶数,$$k$$为整数,$$p$$为质数,满足$$p  <  2\\sqrt{n}$$,$$p\\not \\left| n\\right.$$,$$\\left. p \\right|\\left( n+{{k}^{2}} \\right)$$.\n\n证明:$$n$$可以表示为$$ab+bc+ca$$,其中$$a$$、$$b$$、$$c$$为互不相同的正整数.\n", "answer": "证明见解析.\n", "Analysis": "由于$$n$$是偶数,故$$p\\ne 2$$.又$$p\\not \\left| n\\right.$$,$$\\left. p \\right|\\left( n+{{k}^{2}} \\right)$$,故$$p\\not \\left| k\\right.$$.\n\n不妨设$$0  <  k  <  p$$.\n\n取$$a=k$$,$$b=p-k$$,则 $$c=\\frac{n-k\\left( p-k \\right)}{p}=\\frac{n+{{k}^{2}}}{p}-k$$.\n\n由条件知$$c$$是整数,$$a$$、$$b$$是不同的正整数.\n\n下面只需证明:$$c>0$$,并且$$c\\ne a$$,$$c\\ne b$$.\n\n由均值不等式有$$\\frac{n}{k}+k\\geqslant 2\\sqrt{n}>p$$,故$$n+{{k}^{2}}>pk$$.由此知$$c>0$$.\n\n若$$c=a$$,则 $$\\frac{n+{{k}^{2}}}{p}-k=k$$,即$$n=k\\left( 2p-k \\right)$$.\n\n由于$$n$$是偶数,故$$k$$也是偶数,这样$$n$$被$$4$$整除,这与$$n$$无平方因子矛盾.\n\n若$$c=b$$,则$$n={{p}^{2}}-{{k}^{2}}$$.\n\n由于$$n$$是偶数,故$$k$$是奇数,这样同样导致$$n$$被$$4$$整除,矛盾.\n\n综上,选取的$$a$$、$$b$$、$$c$$满足条件.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": ["质数(算数基本定理)", "数论模块", "整除"]} +{"_id": "c492e07f4a6f447d8eb71b4615b0dbde_1", "question": "$$\\triangle ABC$$的三边长分别为$$a$$、$$b$$、$$c$$,$$b < c$$,$$AD$$是$$\\angle A$$的内角平分线,点$$D$$在$$BC$$上.\n\n求在线段$$AB$$、$$AC$$内分别存在点$$E$$、$$F$$(不是端点)满足$$BE=CF$$,和$$\\angle BDE=\\angle CDF$$的充分必要条件(用$$\\angle A$$、$$\\angle B$$、$$\\angle C$$表示);\n", "answer": "$$2\\angle B>\\angle A$$\n", "Analysis": "先求必要条件,再证明它的充分性.若存在点$$E$$、$$F$$,则$${{S}_{BDE}}={{S}_{CDF}}$$,从而$$BD\\cdot DE=CD\\cdot DF$$.结合对$$\\triangle BDE$$、$$\\triangle CDF$$及$$\\angle BDE=\\angle CDF$$应用余弦定理,可化得$$B{{D}^{2}}+D{{E}^{2}}=C{{D}^{2}}+D{{F}^{2}}$$,及$$BD+DE=CD+DF$$.讨论后知,只有$$BD=DF$$,$$DE=CD$$成立.\n\n从而,$$\\triangle DEB$$≌$$\\triangle DCF$$,$$\\angle B=\\angle DFC$$,$$\\angle C=\\angle BED$$,$$\\angle DFC>\\angle DAF$$,即推得$$2\\angle B>\\angle A$$,是为必要条件.\n\n反之,若$$2\\angle B>\\angle A$$,则有$$\\angle ADC>\\angle A$$,$$\\angle ADB>\\angle A$$.这时,用构造法,可在$$\\triangle ABC$$内部作$$\\angle BDE=\\angle A$$,$$\\angle CDF=\\angle A$$,在$$AB$$、$$AC$$上得点$$E$$、$$F$$,即可证得$$BE=CF$$,即存在点$$E$$、$$F$$了.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": []} +{"_id": "c492e07f4a6f447d8eb71b4615b0dbde_2", "question": "$$\\triangle ABC$$的三边长分别为$$a$$、$$b$$、$$c$$,$$b < c$$,$$AD$$是$$\\angle A$$的内角平分线,点$$D$$在$$BC$$上.\n\n在点$$E$$和$$F$$存在的情况下,用$$a$$、$$b$$、$$c$$表示$$BE$$的长.\n", "answer": "$$BE=\\frac{{{a}^{2}}}{b+c}$$\n", "Analysis": "由(1)知,$$A$$、$$C$$、$$D$$、$$E$$和$$A$$、$$B$$、$$D$$、$$F$$各四点共圆,$$BE\\cdot BA=BD\\cdot BC$$,$$CF\\cdot CA=CD\\cdot CB$$.于是,可算得$$BE=\\frac{{{a}^{2}}}{b+c}$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": []} +{"_id": "9a38f261b3474ca491412045b55b0e9d_1", "question": "记$$\\left( x,y \\right)$$表示正整数$$x$$、$$y$$的最大公约数.试证明:\n\n若$$2n-1$$为素数,则对于任意的$$n$$个互不相同的正整数$${{a}_{1}}$$,$${{a}_{2}}$$,…,$${{a}_{n}}$$,均存在$$i$$、$$j\\in \\left\\{ 1,2,\\cdots ,n \\right\\}$$,使得$$\\frac{{{a}_{i}}+{{a}_{j}}}{\\left( {{a}_{i}},{{a}_{j}} \\right)}\\geqslant 2n-1$$.\n", "answer": "见解析\n", "Analysis": "证明:记$$2n-1$$为素数$$p$$,不妨设$$\\left( {{a}_{1}},{{a}_{2}},\\cdots ,{{a}_{n}} \\right)=1$$.\n\n若存在$$i\\left( 1\\leqslant i\\leqslant n \\right)$$,使得$$p\\left| {{a}_{i}} \\right.$$,必然存在$$j\\ne i$$,使得$$p\\not{\\mathop{|}}\\,{{a}_{j}}$$.\n\n由于$$p\\not{\\mathop{|}}\\,\\left( {{a}_{i}},{{a}_{j}} \\right)$$,则$$\\frac{{{a}_{i}}+{{a}_{j}}}{\\left( {{a}_{i}},{{a}_{j}} \\right)}\\geqslant \\frac{{{a}_{i}}}{\\left( {{a}_{i}},{{a}_{j}} \\right)}\\geqslant p=2n-1$$.\n\n以下只需考虑$$\\left( {{a}_{i}},p \\right)=1\\left( i=1,2,\\cdots ,n \\right)$$,则对任意$$i\\ne j$$均有$$p\\not{\\mathop{|}}\\,\\left( {{a}_{i}}, {{a}_{j}} \\right)$$.\n\n将$$1$$,$$2$$,…,$$p-1$$分成$$n-1$$类$$\\left\\{ 1,p-1 \\right\\}$$,$$\\left\\{ 2,p-2 \\right\\}$$,…,$$\\left\\{ n-1,n \\right\\}$$.\n\n由抽屉原理,知存在$$i\\ne j$$,使得$${{a}_{i}}\\equiv {{a}_{j}}\\left( \\bmod p \\right)$$或$${{a}_{i}}+{{a}_{j}}\\equiv 0\\left( \\bmod p \\right)$$.\n\n当$${{a}_{i}}\\equiv {{a}_{j}}\\left( \\bmod p \\right)$$时,$$\\frac{{{a}_{i}}+{{a}_{j}}}{\\left( {{a}_{i}},{{a}_{j}} \\right)}>\\frac{{{a}_{i}}-{{a}_{j}}}{\\left( {{a}_{i}},{{a}_{j}} \\right)}\\geqslant p=2n-1$$;\n\n当$${{a}_{i}}+{{a}_{j}}\\equiv 0\\left( \\bmod p \\right)$$时,$$\\frac{{{a}_{i}}+{{a}_{j}}}{\\left( {{a}_{i}},{{a}_{j}} \\right)}\\geqslant p=2n-1$$.\n\n故($$1$$)得证.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": []} +{"_id": "9a38f261b3474ca491412045b55b0e9d_2", "question": "记$$\\left( x,y \\right)$$表示正整数$$x$$、$$y$$的最大公约数.试证明:\n\n若$$2n-1$$为合数,则存在$$n$$个互不相同的正整数$${{a}_{1}}$$,$${{a}_{2}}$$,…,$${{a}_{n}}$$,使得对任意的$$i$$、\n$$j\\in \\left\\{ 1,2,\\cdots ,n \\right\\}$$,均有$$\\frac{{{a}_{i}}+{{a}_{j}}}{\\left( {{a}_{i}},{{a}_{j}} \\right)} < 2n-1$$;\n", "answer": "见解析\n", "Analysis": "证明:先构造命题存在性的例子.\n\n由于$$2n-1$$为合数,则存在两个大于$$1$$的正整数$$p$$、$$q$$,使得$$2n-1=pq$$.\n\n可以构成如下$$n$$个数:\n\n$${{a}_{1}}=1$$,$${{a}_{1}}=2$$,…,$${{a}_{p}}=p$$,$${{a}_{p+1}}=p+1$$,$${{a}_{p+2}}=p+3$$,…,$${{a}_{n}}=pq-p$$,其中,前面为$$p$$个连续的整数,从$$p+1$$到$$pq-p$$为$$n-p$$个连续的偶数.\n\n当$$1\\leqslant i\\leqslant j\\leqslant p$$时,显然,有$$\\frac{{{a}_{i}}+{{a}_{j}}}{\\left( {{a}_{i}},{{a}_{j}} \\right)}\\leqslant {{a}_{i}}+{{a}_{j}}\\leqslant 2p < 2n-1$$.\n\n当$$p+1\\leqslant i\\leqslant j\\leqslant n$$时,因为$$2\\left| \\left( {{a}_{i}},{{a}_{j}} \\right) \\right.$$,所以$$\\frac{{{a}_{i}}+{{a}_{j}}}{\\left( {{a}_{i}},{{a}_{j}} \\right)}\\leqslant \\frac{{{a}_{i}}+{{a}_{j}}}{2}\\leqslant pq-p < 2n-1$$.\n\n当$$1\\leqslant i\\leqslant p$$,$$p+1\\leqslant j\\leqslant n$$时,分两种情形.\n\n(ⅰ)当$$i\\ne p$$或$$j\\ne n$$时,显然,$$\\frac{{{a}_{i}}+{{a}_{j}}}{\\left( {{a}_{i}},{{a}_{j}} \\right)}\\leqslant pq-1 < 2n-1$$;\n\n(ⅱ)当$$i=p$$且$$j=n$$时,由$$\\left( p,pq-p \\right)=p$$,则$$\\frac{{{a}_{p}}+{{a}_{n}}}{\\left( {{a}_{p}},{{a}_{n}} \\right)}=\\frac{pq}{p}=q < 2n-1$$.\n\n经过如上验证,可看出如上构造的一组数据满足条件.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": []} +{"_id": "33c9b1b7ea3447baaf4aad11364bcf2f_1", "question": "$$n$$名姓名两两不同的学生互寄贺卡每人准备了$$n-1$$个信封,分别写上其他$$n-1$$名学生的姓名和地址,并准备了至少一张签有自己姓名的贺卡.每天,会有一名学生按如下要求寄出贺卡:先选择一张自己手中的贺卡(包括收到的贺卡),放入一个尚未使用的信封,使得贺卡签名与收信人姓名不同,再将该贺卡寄出,并于当日寄达.证明:当所有学生均无法按上述要求寄出贺卡时.\n\n每人手中均有至少一张贺卡.\n", "answer": "见解析\n", "Analysis": "记这$$n$$名学生为$${{P}_{1}}$$,$${{P}_{2}}$$,$$\\cdots $$,$${{P}_{n}}$$,他们手中的初始贺卡数分别为$${{p}_{1}}$$,$${{p}_{2}}$$,$$\\cdots $$,$${{p}_{n}}$$,最终贺卡数分别为$${{q}_{1}}$$,$${{q}_{2}}$$,$$\\cdots $$,$${{q}_{n}}$$.\n\n首先证明:若最终时刻$${{P}_{i}}$$从未寄贺卡给$${{P}_{j}}$$,则$${{P}_{i}}$$手中的所有贺卡的签名均为$${{P}_{j}}$$,且若$${{q}_{i}}>0$$,则$${{P}_{i}}$$只没给$${{P}_{j}}$$寄过贺卡.\n\n给定集合$$V=\\left\\{ {{P}_{1}},{{P}_{2}},\\cdots ,{{P}_{n}} \\right\\}$$的一个子集$${{V}_{0}}$$,在任何一天结束时,从$${{V}_{0}}$$向$$V\\backslash {{V}_{0}}$$的未寄出的信封总数记为$${{r}_{{{V}_{0}}}}$$,从$$V\\backslash {{V}_{0}}$$向$${{V}_{0}}$$的未寄出的信封总数记为$${{s}_{{{V}_{0}}}}$$,$${{V}_{0}}$$中的贺卡总数记为$${{m}_{{{V}_{0}}}}$$(三者均为关于天数的函数).注意到,每经过一天必出现以下三种情况之一:\n\n(i)$${{r}_{{{V}_{0}}}}$$与$${{m}_{{{V}_{0}}}}$$同时减少$$1$$,$${{s}_{{{V}_{0}}}}$$不变;\n\n(ii)$${{s}_{{{V}_{0}}}}$$减少$$1$$,$${{m}_{{{V}_{0}}}}$$增加$$1$$,$${{r}_{{{V}_{0}}}}$$不变;\n\n(iii)$${{r}_{{{V}_{0}}}}$$、$${{s}_{{{V}_{0}}}}$$、$${{m}_{{{V}_{0}}}}$$均不变.\n\n于是,$${{m}_{{{V}_{0}}}}-{{r}_{{{V}_{0}}}}+{{s}_{{{V}_{0}}}}$$为不变量.\n\n记最初时刻$${{V}_{0}}$$中所有贺卡的集合为$$p\\left( {{V}_{0}} \\right)$$,最终时刻$${{V}_{0}}$$中所有贺卡的集合为$$q\\left( {{V}_{0}} \\right)$$.则\n\n$$\\left| p\\left( {{V}_{0}} \\right) \\right|=\\left| q\\left( {{V}_{0}} \\right) \\right|-{{r}_{{{V}_{0}}}}+{{s}_{{{V}_{0}}}}$$.①\n\n先证明一个引理.\n\n引理:不存在$${{V}_{0}}\\subseteq V$$,使得\n\n$$q\\left( {{V}_{0}} \\right)\\subset p\\left( {{V}_{0}} \\right)$$.\n\n证明:假设存在这样的$${{V}_{0}}\\subseteq V$$.\n\n由于$$\\left| q\\left( {{V}_{0}} \\right) \\right| < \\left| p\\left( {{V}_{0}} \\right) \\right|$$,据式①有\n\n$${{s}_{{{V}_{0}}}}>{{r}_{{{V}_{0}}}}\\geqslant 0$$.\n\n于是,存在$${{V}_{0}}$$中的某个$${{P}_{{{i}_{1}}}}$$,及$$V\\backslash {{V}_{0}}$$中的某个$${{P}_{{{j}_{1}}}}$$,使得$${{P}_{{{j}_{1}}}}$$从未寄信给$${{P}_{{{i}_{1}}}}$$.从而,$${{P}_{{{j}_{1}}}}$$手中只有$${{P}_{{{i}_{1}}}}$$的贺卡.\n\n$${{V}_{1}}={{V}_{0}}\\cup \\left\\{ {{P}_{{{j}_{1}}}} \\right\\}$$.则\n\n$$q\\left( {{V}_{1}} \\right)\\subseteq p\\left( {{V}_{0}} \\right)\\subset p\\left( {{V}_{1}} \\right)$$.\n\n故存在$${{V}_{1}}$$中的某个$${{P}_{{{i}_{2}}}}$$,及$$V\\backslash {{V}_{1}}$$中的某个$${{P}_{{{j}_{2}}}}$$,使得$${{P}_{{{j}_{2}}}}$$从未寄信给$${{P}_{{{i}_{2}}}}$$,这个过程可以无限重复下去,矛盾.\n\n引理得证.\n\n假设存在某个$${{P}_{i}}$$,使得$${{q}_{i}}=0$$.\n\n令$${{V}_{0}}=\\left\\{ {{P}_{i}} \\right\\}$$,则$$q\\left( {{V}_{0}} \\right)\\subset p\\left( {{V}_{0}} \\right)$$.与引理矛盾,故所有的$${{q}_{i}}$$均不等于$$0$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": ["数论模块", "竞赛"]} +{"_id": "33c9b1b7ea3447baaf4aad11364bcf2f_2", "question": "$$n$$名姓名两两不同的学生互寄贺卡每人准备了$$n-1$$个信封,分别写上其他$$n-1$$名学生的姓名和地址,并准备了至少一张签有自己姓名的贺卡.每天,会有一名学生按如下要求寄出贺卡:先选择一张自己手中的贺卡(包括收到的贺卡),放入一个尚未使用的信封,使得贺卡签名与收信人姓名不同,再将该贺卡寄出,并于当日寄达.证明:当所有学生均无法按上述要求寄出贺卡时.\n\n若此时存在$$k$$名学生$${{P}_{1}}$$,$${{P}_{2}}$$,$$\\cdots $$,$${{P}_{k}}$$,使得$${{P}_{k}}$$从未寄贺卡给$${{P}_{1}}$$,$${{P}_{i}}$$从未寄贺卡给$${{P}_{i+1}}\\left( i=1,2,\\cdots ,k-1 \\right)$$,则这$$k$$名学生最初准备的贺卡数量相同.\n", "answer": "见解析\n", "Analysis": "记这$$n$$名学生为$${{P}_{1}}$$,$${{P}_{2}}$$,$$\\cdots $$,$${{P}_{n}}$$,他们手中的初始贺卡数分别为$${{p}_{1}}$$,$${{p}_{2}}$$,$$\\cdots $$,$${{p}_{n}}$$,最终贺卡数分别为$${{q}_{1}}$$,$${{q}_{2}}$$,$$\\cdots $$,$${{q}_{n}}$$.\n\n首先证明:若最终时刻$${{P}_{i}}$$从未寄贺卡给$${{P}_{j}}$$,则$${{P}_{i}}$$手中的所有贺卡的签名均为$${{P}_{j}}$$,且若$${{q}_{i}}>0$$,则$${{P}_{i}}$$只没给$${{P}_{j}}$$寄过贺卡.\n\n给定集合$$V=\\left\\{ {{P}_{1}},{{P}_{2}},\\cdots ,{{P}_{n}} \\right\\}$$的一个子集$${{V}_{0}}$$,在任何一天结束时,从$${{V}_{0}}$$向$$V\\backslash {{V}_{0}}$$的未寄出的信封总数记为$${{r}_{{{V}_{0}}}}$$,从$$V\\backslash {{V}_{0}}$$向$${{V}_{0}}$$的未寄出的信封总数记为$${{s}_{{{V}_{0}}}}$$,$${{V}_{0}}$$中的贺卡总数记为$${{m}_{{{V}_{0}}}}$$(三者均为关于天数的函数).注意到,每经过一天必出现以下三种情况之一:\n\n(i)$${{r}_{{{V}_{0}}}}$$与$${{m}_{{{V}_{0}}}}$$同时减少$$1$$,$${{s}_{{{V}_{0}}}}$$不变;\n\n(ii)$${{s}_{{{V}_{0}}}}$$减少$$1$$,$${{m}_{{{V}_{0}}}}$$增加$$1$$,$${{r}_{{{V}_{0}}}}$$不变;\n\n(iii)$${{r}_{{{V}_{0}}}}$$、$${{s}_{{{V}_{0}}}}$$、$${{m}_{{{V}_{0}}}}$$均不变.\n\n于是,$${{m}_{{{V}_{0}}}}-{{r}_{{{V}_{0}}}}+{{s}_{{{V}_{0}}}}$$为不变量.\n\n记最初时刻$${{V}_{0}}$$中所有贺卡的集合为$$p\\left( {{V}_{0}} \\right)$$,最终时刻$${{V}_{0}}$$中所有贺卡的集合为$$q\\left( {{V}_{0}} \\right)$$.则\n\n$$\\left| p\\left( {{V}_{0}} \\right) \\right|=\\left| q\\left( {{V}_{0}} \\right) \\right|-{{r}_{{{V}_{0}}}}+{{s}_{{{V}_{0}}}}$$.①\n\n先证明一个引理.\n\n引理:不存在$${{V}_{0}}\\subseteq V$$,使得\n\n$$q\\left( {{V}_{0}} \\right)\\subset p\\left( {{V}_{0}} \\right)$$.\n\n证明:假设存在这样的$${{V}_{0}}\\subseteq V$$.\n\n由于$$\\left| q\\left( {{V}_{0}} \\right) \\right| < \\left| p\\left( {{V}_{0}} \\right) \\right|$$,据式①有\n\n$${{s}_{{{V}_{0}}}}>{{r}_{{{V}_{0}}}}\\geqslant 0$$.\n\n于是,存在$${{V}_{0}}$$中的某个$${{P}_{{{i}_{1}}}}$$,及$$V\\backslash {{V}_{0}}$$中的某个$${{P}_{{{j}_{1}}}}$$,使得$${{P}_{{{j}_{1}}}}$$从未寄信给$${{P}_{{{i}_{1}}}}$$.从而,$${{P}_{{{j}_{1}}}}$$手中只有$${{P}_{{{i}_{1}}}}$$的贺卡.\n\n$${{V}_{1}}={{V}_{0}}\\cup \\left\\{ {{P}_{{{j}_{1}}}} \\right\\}$$.则\n\n$$q\\left( {{V}_{1}} \\right)\\subseteq p\\left( {{V}_{0}} \\right)\\subset p\\left( {{V}_{1}} \\right)$$.\n\n故存在$${{V}_{1}}$$中的某个$${{P}_{{{i}_{2}}}}$$,及$$V\\backslash {{V}_{1}}$$中的某个$${{P}_{{{j}_{2}}}}$$,使得$${{P}_{{{j}_{2}}}}$$从未寄信给$${{P}_{{{i}_{2}}}}$$,这个过程可以无限重复下去,矛盾.\n\n引理得证.\n\n记$${{V}_{0}}=\\left\\{ {{P}_{1}},{{P}_{2}},\\cdots ,{{P}_{k}} \\right\\}$$.\n\n注意到,$$q\\left( \\left\\{ {{P}_{i}} \\right\\}\\subseteq p\\left( \\left\\{ {{P}_{i+1}} \\right\\} \\right) \\right)$$.\n\n则$${{q}_{1}}\\leqslant {{p}_{2}}$$,$$\\cdots $$,$${{q}_{k}}\\leqslant {{p}_{1}}$$,且$$q\\left( {{V}_{0}} \\right)\\subseteq p\\left( {{V}_{0}} \\right)$$.\n\n由引理,知$$q\\left( {{V}_{0}} \\right)=p\\left( {{V}_{0}} \\right)$$.故上述不等式均取等号,这表明,每个$${{q}_{i}}$$均大于$$0$$.\n\n于是,$${{P}_{i}}$$只有$${{P}_{i+1}}$$这一张未寄出的信封.\n\n故$${{r}_{\\left| {{P}_{i}} \\right|}}=1$$且$${{r}_{{{V}_{0}}=0}}$$.\n\n由式①知$${{s}_{{{V}_{0}}=0}}$$.\n\n从而,对每个$${{P}_{i}}$$又有$${{s}_{\\left\\{ {{P}_{i}} \\right\\}}}=1$$.\n\n最后据式①有$${{p}_{i}}={{q}_{i}}\\left( i=1,2,\\cdots ,k \\right)$$,结合,$${{q}_{1}}={{p}_{2}}$$,$$\\cdots $$,$${{q}_{k}}={{p}_{1}}$$,得\n\n$${{p}_{1}}={{p}_{2}}=\\cdots ={{p}_{k}}$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": ["数论模块", "竞赛"]} +{"_id": "ec8807b9147842dcbb9e8a2c4b7a472a", "question": "记$$a=2001$$.设$$A$$是适合下列条件的正整数对$$\\left( m,n \\right)$$所组成的集合: \n\n(ⅰ)$$m < 2a$$; \n\n(ⅱ)$$2n\\left| \\left( 2am-{{m}^{2}}+{{n}^{2}} \\right) \\right.$$; \n\n(ⅲ)$${{n}^{2}}-{{m}^{2}}+2mn\\leqslant 2a\\left( n-m \\right)$$. \n\n令$$f=\\frac{2am-{{m}^{2}}-mn}{n}$$,求$$\\underset{\\left( m,n \\right)\\in A}{\\mathop{\\min }}\\,f$$及$$\\underset{\\left( m,n \\right)\\in A}{\\mathop{\\max }}\\,f$$.\n", "answer": "见解析\n", "Analysis": "$$f=\\frac{2am-{{m}^{2}}+{{n}^{2}}}{n}-\\left( m+n \\right)$$是整数.由(ⅱ),$$m$$,$$\\left( \\right)n$$奇偶性相同,且$$\\frac{2am-{{m}^{2}}+{{n}^{2}}}{n}$$是偶数,所以$$f$$也是偶数.(ⅲ)即$${{n}^{2}}+2mn\\leqslant 2an-m\\left( 2a-m \\right) < 2an$$,所以$$n+2m < 2a$$.于是$$f$$为正数,$$f\\geqslant 2$$.取$$m=2$$,$$n=200$$,则(ⅰ),(ⅱ),(ⅲ)均成立,$$f=2$$,所以$$\\min f=2$$.由(ⅲ)$$2mn\\leqslant \\left( n-m \\right)\\left( 2a-n-m \\right)$$,所以$$n>m$$.设$$m=n-2t$$.(ⅲ)即$$2t\\left( a+t \\right)\\geqslant {{n}^{2}}$$.$$f=\\frac{\\left( n-2t \\right)\\left( 2a-2n+2t \\right)}{n}=2a-2n-\\frac{2t\\left( 2a-3n+2t \\right)}{n}$$.$$t=1$$时,$$f=2a+6-2\\left( n+\\frac{2\\left( a+1 \\right)}{n} \\right)$$.$$n\\left| 2\\left( a+1 \\right) \\right.=4\\times 7\\times 11\\times 13$$,且$${{n}^{2}}\\leqslant 2\\left( a+1 \\right)$$,$$n\\leqslant 64$$.所以$$n\\leqslant 52$$,$$f\\leqslant 2a+6-2\\left( 52+77 \\right)=3750$$.$$t\\geqslant 2$$时,$$f\\leqslant 2a-2n-\\frac{4\\left( 2a-3n+4 \\right)}{n}=2a+12-2\\left( n+\\frac{4\\left( a+2 \\right)}{n} \\right)\\leqslant 2a+12-4\\sqrt{4\\left( a+2 \\right)} < 3750$$.在$$m=50$$,$$n=52$$时,(ⅰ),(ⅱ),(ⅲ)均成立,$$f=3750$$,所以$$\\max f=3750$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": []} +{"_id": "e080fa084a7c4564b741f7d5ba98be82", "question": "已知数列$$\\left\\{ {{a}_{n}} \\right\\}$$满足条件$${{a}_{1}}=\\frac{21}{16}\\left( 7 \\right)$$,$$2{{a}_{n}}-3{{a}_{n-1}}=\\frac{3}{{{2}^{n+1}}}$$,$$n\\geqslant 2\\left( 8 \\right)$$.设$$m$$为正整数,$$m\\geqslant 2$$.证明:当$$n\\leqslant m$$时,$${{\\left( {{a}_{n}}+\\frac{3}{{{2}^{n+3}}} \\right)}^{\\frac{1}{m}}}\\left[ m-{{\\left( \\frac{2}{3} \\right)}^{\\frac{n\\left( m-1 \\right)}{m}}} \\right] < \\frac{{{m}^{2}}-1}{m-n+1}\\left( 9 \\right)$$.(年中国数学奥林匹克试题,朱华伟提供)\n", "answer": "见解析\n", "Analysis": "解:本题当然是先求出$$\\left\\{ {{a}_{n}} \\right\\}$$的通项.\n\n由$$\\left( 8 \\right)$$得$$2\\left( {{a}_{n}}+\\frac{3}{{{2}^{n+3}}} \\right)=3\\left( {{a}_{n-1}}+\\frac{3}{{{2}^{n+2}}} \\right)$$,从而$${{a}_{n}}+\\frac{3}{{{2}^{n+3}}}={{\\left( \\frac{3}{2} \\right)}^{n-1}}\\left( {{a}_{1}}+\\frac{3}{16} \\right)={{\\left( \\frac{3}{2} \\right)}^{n}}$$.\n\n于是$$\\left( 9 \\right)$$化为$${{\\left( \\frac{3}{2} \\right)}^{\\frac{n}{m}}}\\left[ m-{{\\left( \\frac{2}{3} \\right)}^{\\frac{n\\left( m-1 \\right)}{m}}} \\right] < \\frac{{{m}^{2}}-1}{m-n+1}\\left( 10 \\right)$$.\n\n在$$n\\geqslant 2$$时,$$\\left( 10 \\right)$$可加强为$${{\\left( \\frac{3}{2} \\right)}^{\\frac{n}{m}}}\\cdot m < \\frac{{{m}^{2}}-1}{m-n+1}\\left( 11 \\right)$$.\n\n$$\\left( 11 \\right)$$的证明如下:\n\n设$$f\\left( n \\right)={{\\left( \\frac{3}{2} \\right)}^{\\frac{n}{m}}}\\left( m-n+1 \\right)$$.在$$n < m$$时,$$\\frac{f\\left( n \\right)}{f\\left( n+1 \\right)}={{\\left( \\frac{2}{3} \\right)}^{\\frac{1}{m}}}\\cdot \\frac{m-n+1}{m-n}$$.\n\n因为$${{\\left( 1+\\frac{1}{m-n} \\right)}^{m}}>{{\\left( 1+\\frac{1}{m} \\right)}^{m}}>1+m\\cdot \\frac{1}{m}=2>\\frac{3}{2}$$,\n\n所以$$f\\left( n \\right)>f\\left( n+1 \\right)$$.\n\n由于$$f\\left( n \\right)$$递减,要证$$\\left( 11 \\right)$$,只需证$$f\\left( 2 \\right) < \\frac{{{m}^{2}}-1}{m}$$,即$${{\\left( \\frac{3}{2} \\right)}^{\\frac{2}{m}}}\\leqslant \\frac{m+1}{m}\\left( 12 \\right)$$.\n\n因为$${{\\left( \\frac{m+1}{m} \\right)}^{m}}\\geqslant 1+m\\cdot \\frac{1}{m}+\\frac{m\\left( m-1 \\right)}{2}\\cdot {{\\left( \\frac{1}{m} \\right)}^{2}}=\\frac{5}{2}-\\frac{1}{2m}\\geqslant \\frac{9}{4}$$,\n\n所以$$\\left( 12 \\right)$$成立,$$\\left( 11 \\right)$$也随之成立.\n\n当$$m=n\\geqslant 2$$时,易证$$\\left( 11 \\right)$$成立.\n\n容易看出,当且仅当$$m=n=2$$时,$$\\left( 11 \\right)$$中等号成立.\n\n于是,剩下的问题是证明$$n=1$$时,\n\n式$$\\left( 10 \\right)$$成立,即$${{\\left( \\frac{3}{2} \\right)}^{\\frac{1}{m}}}\\left[ m-{{\\left( \\frac{2}{3} \\right)}^{\\frac{m-1}{m}}} \\right] < \\frac{{{m}^{2}}-1}{m}\\left( 13 \\right)$$.\n\n为了证明$$\\left( 13 \\right)$$,考虑关于$$t$$的二次函数$$y=mt-\\frac{2}{3}{{t}^{2}}$$.\n\n这个函数在$$t\\leqslant \\frac{3}{4}m$$时递增,\n\n而$${{\\left( \\frac{3}{2} \\right)}^{\\frac{1}{m}}} < 1+\\frac{1}{2m}\\left[ {{\\left( 1+\\frac{1}{2m} \\right)}^{m}}>1+m\\cdot \\frac{1}{2m}=\\frac{3}{2} \\right]$$,\n$$1+\\frac{1}{2m} < 1+\\frac{1}{2}\\leqslant \\frac{3}{4}m$$,\n\n所以$$m{{\\left( \\frac{3}{2} \\right)}^{\\frac{1}{m}}}-\\frac{2}{3}{{\\left( \\frac{3}{2} \\right)}^{\\frac{2}{m}}} < m\\left( 1+\\frac{1}{2m} \\right)-\\frac{2}{3}{{\\left( 1+\\frac{1}{2m} \\right)}^{2}}$$\n$$ < m+\\frac{1}{2}-\\frac{2}{3}-\\frac{2}{3m}=m-\\frac{1}{m}+\\frac{1}{3m}-\\frac{1}{6}\\leqslant \\frac{{{m}^{2}}-1}{m}$$.\n\n因此$$\\left( 13 \\right)$$成立.\n在上面的证明中,$$n$$为正整数,这与原来的题意相符.\n\n其实,不等式$$\\left( 10 \\right)$$对一切满足$$1\\leqslant n\\leqslant m$$的实数$$n$$均成立($$m$$为大于或等于$$2$$的实数).上面的解答需要略加修改.\n\n关于$$\\left( n \\right)$$的单调性,应当利用导数\n\n$${{f}^{\\prime}}\\left( n \\right)=-{{\\left( \\frac{3}{2} \\right)}^{\\frac{n}{m}}}+\\left( m-n+1 \\right){{\\left( \\frac{3}{2} \\right)}^{\\frac{n}{m}}}\\cdot \\frac{1}{m}\\ln \\frac{3}{2}$$\n$$={{\\left( \\frac{3}{2} \\right)}^{\\frac{n}{m}}}\\left( \\frac{m-n+1}{m}\\ln \\frac{3}{2}-1 \\right) < {{\\left( \\frac{3}{2} \\right)}^{\\frac{n}{m}}}\\left( \\ln\\frac{3}{2}-1 \\right) < 0$$.\n\n而在$$1\\leqslant n\\leqslant 2$$时,应当先证明$$g\\left( n \\right)=\\left( m+1-n \\right){{\\left( \\frac{3}{2} \\right)}^{\\frac{n}{m}}}\\left[ m-{{\\left( \\frac{2}{3} \\right)}^{\\frac{n\\left( m-1 \\right)}{m}}} \\right]$$是单调递减的(从而,问题化为$$\\left( 11 \\right)$$的证明).\n\n这也要利用导数:因为\n\n$${{g}^{\\prime}}\\left( n \\right)=-\\left[ {{\\left( \\frac{3}{2} \\right)}^{\\frac{n}{m}}}\\cdot m-{{\\left( \\frac{2}{3} \\right)}^{\\frac{n\\left( m-1 \\right)}{m}}} \\right]+\\left( m-n+1 \\right)\\cdot \\left[ {{\\left( \\frac{3}{2} \\right)}^{\\frac{n}{m}}}+{{\\left( \\frac{2}{3} \\right)}^{\\frac{n\\left( m-2 \\right)}{m}}}\\cdot \\frac{m-2}{m} \\right] \\ln \\frac{3}{2}$$,\n\n于是\n\n$${{g}^{\\prime}}\\left( n \\right) < 0$$\n$$\\Leftarrow m{{\\left( \\frac{3}{2} \\right)}^{\\frac{n}{m}}}\\left( 1-\\ln \\frac{3}{2} \\right)>\\left( m-2 \\right){{\\left( \\frac{2}{3} \\right)}^{\\frac{n\\left( m-2 \\right)}{m}}}\\ln \\frac{3}{2}+{{\\left( \\frac{2}{3} \\right)}^{\\frac{n\\left( m-2 \\right)}{m}}}$$\n$$\\Leftarrow \\left( 1-\\ln \\frac{3}{2} \\right)>\\left( m-2 \\right){{\\left( \\frac{2}{3} \\right)}^{\\frac{n\\left( m-1 \\right)}{m}}}\\ln \\frac{3}{2}+{{\\left( \\frac{2}{3} \\right)}^{\\frac{n\\left( m-2 \\right)}{m}}}$$\n$$\\Leftarrow m\\left( 1-\\ln \\frac{3}{2} \\right)>\\left( m-2 \\right) \\ln \\frac{3}{2}+1$$\n$$\\Leftarrow m\\left( 1-\\ln \\frac{3}{2} \\right)>1-2\\ln \\frac{3}{2}$$,\n而$$1-2\\ln \\frac{3}{2}>0\\left( e=2.718\\cdots >{{\\left( \\frac{3}{2} \\right)}^{2}}=2.25 \\right)$$,\n\n所以上面最后的不等式成立.从而$$g\\left( n \\right)$$递减.\n\n解题时,可以考虑问题的推广与加强,做得比要求更多一些.\n两个变量之间如果有条件相关联,那么实��是一个变量.但在对一个变量求导时,不要忘记另一个变量是它的函数,也必须求导.复合函数的求导法则是$${{\\left\\{ f\\left[ g\\left( x \\right) \\right] \\right\\}}^{\\prime}}={{f}^{\\prime}}\\left[ g\\left( x \\right) \\right]\\cdot {{g}^{\\prime}}\\left( x \\right)$$.特别常用的是$${{\\left[ f\\left( ax+b \\right) \\right]}^{\\prime}}=a{{f}^{\\prime}}\\left( ax+b \\right)$$,$${{\\left[ f\\left( \\frac{a}{x} \\right) \\right]}^{\\prime}}={{f}^{\\prime}}\\left( \\frac{a}{x} \\right)\\left( -\\frac{a}{{{x}^{2}}} \\right)$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": []} +{"_id": "46db907c5ebe42dd85d2f368ffe59cf2", "question": "设$$X=\\left\\{ 1,2,3,\\cdots ,2001 \\right\\}$$.求最小的正整数$$m$$,适合要求:对$$X$$的任何一个$$m$$元子集$$W$$,都存在$$u$$,$$\\upsilon \\in W$$($$u$$和$$\\upsilon $$允许相同),使得$$u+\\upsilon $$是$$2$$的方幂.\n", "answer": "见解析\n", "Analysis": "解:$$m=999$$.一方面$$\\left\\{ 2001,2000,\\cdots ,1025 \\right\\}\\cup \\left\\{ 46,45,\\cdots ,33 \\right\\}\\cup \\left\\{ 17 \\right\\}\\cup \\left\\{ 14,13,\\cdots ,9 \\right\\}$$是$$998$$元集,其中每两个数的和都不是$$2$$的幂.另一方面,$$998$$个数对$$\\left( 2001,47 \\right)$$,…,$$\\left( 1025,1023 \\right)$$,$$\\left( 46,18 \\right)$$,…,$$\\left( 33,31 \\right)$$,$$\\left( 17,15 \\right)$$,$$\\left( 14\\text{,2} \\right)$$,…,$$\\left( \\text{9,7} \\right)$$中,如果有一个数对的两个数都属于$$W$$,$$W$$既满足要求.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": []} +{"_id": "956171904640448ea770aee3c19f1248", "question": "在正边$$n$$形的每个顶点上各停有一只喜鹊.偶受惊吓,众喜鹊都飞去.一段时间后,它们又都回到这些顶点上,仍是每个顶点上一只,但未必都回到原来的顶点.求所有的正整数$$n$$,使得一定存在$$3$$只喜鹊,以它们前后所在顶点分别形成的三角形或同为锐角三角形,或同为直角三角形,或同为钝角三角形.\n", "answer": "见解析\n", "Analysis": "解:设鸟原来位置组成正$$n$$边形$${{A}_{1}}{{A}_{2}}\\cdots {{A}_{n}}$$.不妨设鸟$${{A}_{1}}$$(即原来在点$${{A}_{1}}$$的鸟)仍回到点$${{A}_{1}}$$.\n\n如果$$n=2k\\left( k\\geqslant 2 \\right)$$,设鸟$${{A}_{i}}$$飞到点$${{A}_{k+1}}$$.在$$i\\ne k+1$$时,鸟$${{A}_{1}}$$,$${{A}_{i}}$$,$${{A}_{k+1}}$$前后同为直角三角形.在$$i=k+1$$时,鸟$${{A}_{1}}$$,$${{A}_{k+1}}$$,$${{A}_{2}}$$前后同为直角三角形.\n\n如果$$n=2k+1\\left( k\\geqslant 3 \\right)$$,称为左边,为右边,鸟$${{A}_{2}}$$,$${{A}_{3}}$$,$${{A}_{4}}$$原来均$${{A}_{3}}$$在左边,后来必有两只在同一边.不妨设$${{A}_{2}}$$,$${{A}_{3}}$$仍为同一边,则鸟$${{A}_{1}}$$,$${{A}_{2}}$$,$${{A}_{3}}$$前后组成钝角三角形.\n\n$$n=3$$时,鸟$${{A}_{1}}$$,$${{A}_{2}}$$,$${{A}_{3}}$$始终成正三角形.\n\n$$n=5$$时,鸟$${{A}_{2}}$$,$${{A}_{3}}$$,$${{A}_{4}}$$,$${{A}_{5}}$$分别飞到点$${{A}_{4}}$$,$${{A}_{2}}$$,$${{A}_{5}}$$,$${{A}_{3}}$$处,则任三鸟前后所成三角形分别为锐角(钝角)三角形、钝角(锐角)三角形.\n\n因此$$n\\geqslant 3$$并且$$n\\ne 5$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": []} +{"_id": "fb91575d82084bc58afc867820433319", "question": "如下图,在圆内接$$\\triangle ABC$$中,$$\\angle A$$为最大角,不含点$$A$$的弧$$\\overset\\frown{BC}$$上两点$$D$$、$$E$$分别为弧$$\\overset\\frown{ABC}$$、$$\\overset\\frown{ACB}$$的中点,记过点$$A$$、$$B$$且与$$AC$$相切的圆为$$\\odot {{O}_{1}}$$,过点$$A$$、$$E$$且与$$AD$$相切的圆为$$\\odot {{O}_{2}}$$,$$\\odot {{O}_{1}}$$与$$\\odot {{O}_{2}}$$交于点$$A$$、$$P$$.证明:$$AP$$平分$$\\angle BAC$$.\n", "answer": "见解析\n", "Analysis": "解:如图,连接$$EP$$、$$AE$$、$$BE$$、$$BP$$、$$CD$$. \n\n\"\"\n\n分别记$$\\angle BAC$$、$$\\angle ABC$$、$$\\angle ACB$$为$$\\angle A$$、$$\\angle B$$、$$\\angle C$$,$$X$$、$$Y$$分别为$$CA$$延长线、$$DA$$延长线上的任意一点. \n\n由已知条件易得$$AD=DC$$,$$AE=EB$$. \n\n结合,$$A$$、$$B$$、$$D$$、$$E$$、$$C$$五点共圆,得 \n\n$$\\angle BAE=90{}^\\circ -\\frac{1}{2}\\angle AEB=90{}^\\circ -\\frac{\\angle C}{2}$$, \n\n$$\\angle CAD=90{}^\\circ -\\frac{1}{2}\\angle ADC=90{}^\\circ -\\frac{\\angle B}{2}$$. \n\n由$$AC$$、$$AD$$分别与$$\\odot {{O}_{1}}$$、$$\\odot {{O}_{2}}$$切于点$$A$$得 \n\n$$\\angle APB=\\angle BAX=180{}^\\circ -\\angle A$$,$$\\angle ABP=\\angle CAP$$, \n\n及$$\\angle APE=\\angle EAY=180{}^\\circ -\\angle DAE=180{}^\\circ -\\left( \\angle BAE+\\angle CAD-\\angle A \\right)$$ \n\n$$=180{}^\\circ -\\left( 90{}^\\circ -\\frac{\\angle C}{2} \\right)-\\left( 90-\\frac{\\angle B}{2} \\right)+\\angle A=90{}^\\circ +\\frac{\\angle A}{2}$$. \n\n故$$\\angle BPE=360{}^\\circ -\\angle APB-\\angle APE=90{}^\\circ +\\frac{\\angle A}{2}=\\angle APE$$. \n\n在$$\\triangle APE$$与$$\\triangle BPE$$中,分别运用正弦定理并结合$$AE=BE$$,得 \n\n$$\\frac{\\sin \\angle PAE}{\\sin \\angle APE}=\\frac{PE}{AE}=\\frac{PE}{BE}=\\frac{\\sin \\angle PBE}{\\sin \\angle BPE}$$. \n\n从而,$$\\sin \\angle PAE=\\sin \\angle PBE$$. \n\n又因为$$\\angle APE$$、$$\\angle BPE$$均为钝角,所以,$$\\angle PAE$$、$$\\angle PBE$$均为锐角. \n\n于是,$$\\angle PAE=\\angle PBE$$. \n\n故$$\\angle BAP=\\angle BAE-\\angle PAE=\\angle ABE-\\angle PBE=\\angle ABP=\\angle CAP$$.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": []} +{"_id": "54fa95b99aad436d93882d38730f8e59", "question": "如图,设$$D$$为锐角$$\\triangle ABC$$外接圆圆$$\\Gamma $$上弧$$\\overset\\frown{BC}$$的中点,点$$X$$在弧$$\\overset\\frown{BD}$$上,$$E$$为弧$$\\overset\\frown{ABX}$$的中点,$$S$$为弧$$\\overset\\frown{AC}$$上一点,直线$$SD$$与$$BC$$交于点$$R$$,$$SE$$与$$AX$$交于点$$T$$.若$$RT\\text{//}DE$$,证明:$$\\triangle ABC$$的内心在直线$$RT$$上.\n\n\"\"\n", "answer": "见解析\n", "Analysis": "如图,联结$$AD$$与$$RT$$交于点$$I$$. \n\n因为$$D$$是弧$$\\overset\\frown{BC}$$的中点,所以,$$AI$$为$$\\angle BAC$$的角平分线. \n\n联结$$AS$$、$$SI$$.由$$RT\\text{//}DE$$,知$$\\angle STI=\\angle SED=\\angle SAI$$. \n\n故$$A$$、$$T$$、$$I$$、$$S$$四点共圆(记此圆为$${{\\Gamma }_{1}}$$). \n\n联结$$CE$$与$$RT$$交于点$$J$$,联结$$SC$$.则$$\\angle SRJ=\\angle SDE=\\angle SCE$$. \n\n故$$S$$、$$J$$、$$R$$、$$C$$四点共圆(记此圆为$${{\\Gamma }_{2}}$$). \n\n设圆$${{\\Gamma }_{1}}$$、$${{\\Gamma }_{2}}$$除点$$S$$外另一个交点为$$K$$.接下来证明:$$AJ$$与$$CI$$交于点$$K$$. \n\n设圆$${{\\Gamma }_{1}}$$与$$AJ$$(除点$$A$$外)的交点为$${{K}_{1}}$$. \n\n由于$$E$$为弧$$\\overset\\frown{AX}$$的中点,于是, \n\n$$\\angle S{{K}_{1}}A=\\angle STA=\\frac{1}{2}\\left( \\overset\\frown{SA}{}^\\circ +\\overset\\frown{XE}{}^\\circ \\right)$$ \n\n$$=\\frac{1}{2}\\left( \\overset\\frown{SA}{}^\\circ +\\overset\\frown{AE}{}^\\circ \\right)=\\angle SDE=\\angle SRT=\\angle SRJ$$. \n\n故$$S$$、$${{K}_{1}}$$、$$J$$、$$R$$四点共圆.于是,点$${{K}_{1}}$$在圆$${{\\Gamma }_{2}}$$上. \n\n同时,设圆$${{\\Gamma }_{2}}$$与$$CI$$(除点$$C$$外)另一个交点为$${{K}_{2}}$$.则点$${{K}_{2}}$$在圆$${{\\Gamma }_{1}}$$上. \n\n所以,点$${{K}_{1}}$$与$${{K}_{2}}$$重合,且为$$AJ$$与$$CI$$的交点,即$$K$$为$$AJ$$与$$CI$$的交点. \n\n因为$$\\angle CAD=\\angle CAI$$,且$$\\angle TJE=\\angle CJR=\\angle CED=\\angle CAD$$,所以,$$A$$、$$I$$、$$J$$、$$C$$四点共圆. \n\n因而,$$\\angle ACI=\\angle AJI$$. \n\n又由$$C$$、$$K$$、$$J$$、$$R$$四点共圆,知$$\\angle BCI=\\angle ICR=\\angle AJI$$. \n\n因此,$$\\angle ACI=\\angle BCI$$. \n\n故$$I$$为$$\\triangle ABC$$的内心.\n\n\"\"\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 1, "difficulty": 3, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": []} +{"_id": "ee7fa7f012c9405fae64474cb5c241b0", "question": "证明:对于任意的实数$$M>2$$,总存在满足下列条件的严格递增的正整数数列$${{a}_{1}} \\ {{a}_{2}}\\cdots $$:\n\n⑴对每个正整数$$i$$,有$${{a}_{i}}>{{M}^{i}}$$.\n\n⑵当且仅当整数$$n\\ne 0$$时,存在正整数$$m$$以及$${{b}_{1}}\\ {{b}_{2}}\\cdots \\ {{b}_{m}}\\in \\left\\{ -1 \\ 1 \\right\\}$$,使得\n\n$$n={{b}_{1}}{{a}_{1}}+{{b}_{2}}{{a}_{2}}+\\cdots +{{b}_{m}}{{a}_{m}}$$.\n", "answer": "见解析\n", "Analysis": "递推地构造正整数数列$$\\left\\{ {{a}_{n}} \\right\\}$$如下:取整数$${{a}_{1}}>{{M}^{2}}$$,以及$${{a}_{2}}={{a}_{1}}+1$$.对$$k\\geqslant 2$$,取整数$${{a}_{2k-1}}>{{M}^{2k}}+\\sum\\limits_{i=1}^{2k-2}{{{a}_{i}}} \\ {{a}_{2k}}=k+\\sum\\limits_{i=1}^{2k-1}{{{a}_{i}}}$$.\n\n接下来证明数列满足条件.\n\n由定义知$${{a}_{m}}>{{a}_{m-1}}+{{a}_{m-2}}+\\cdots +{{a}_{1}}$$对$$m>1$$均成立,且对任意的正整数$$k$$有\n\n$${{a}_{2k}}>{{a}_{2k-1}}>{{M}^{2k}}$$.\n\n于是,这一数列是严格递增的正整数数列且满足条件⑴.\n\n对任意的正整数$$n$$有$$n=-\\sum\\limits_{i=1}^{2n-1}{{{a}_{i}}+{{a}_{2n}}}$$,及$$-n=\\sum\\limits_{i=1}^{2n-1}{{{a}_{i}}-{{a}_{2n}}}$$.\n\n最后,只需证明:0不能表示成$${{b}_{1}}{{a}_{1}}+{{b}_{2}}{{a}_{2}}+\\cdots +{{b}_{m}}{{a}_{m}}\\left( {{b}_{1}} \\ {{b}_{2}}\\cdots \\ {{b}_{m}}\\in \\left\\{ -1 \\ 1 \\right\\} \\right)$$的形式.\n\n当$$m=1$$时,$$\\left| {{b}_{1}}{{a}_{1}} \\right|>0$$.\n\n当$$m>1$$时,$$\\left| {{b}_{1}}{{a}_{1}}+{{b}_{2}}{{a}_{2}}+\\cdots +{{b}_{m}}{{a}_{m}} \\right|\\geqslant {{a}_{m}}-\\left( {{a}_{m-1}}+{{a}_{m+2}}+\\cdots +{{a}_{1}} \\right)>0$$.\n\n这样便验证了所构造的数列满足所有条件.\n", "options": "", "logicQuesTypeName": "解答", "subjectId": "2", "is_img": 0, "difficulty": 3, "gradeGroupId": "3", "gradeGroupName": "高中", "subjectName": "数学", "knowledge": []}