File size: 4,706 Bytes
0e73f41
 
20ee462
 
 
 
 
 
 
 
 
 
 
 
b0f80a8
 
832a58a
b0f80a8
 
 
 
832a58a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a5bd9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
832a58a
 
 
 
 
 
 
 
 
 
 
 
5027cc8
b58f805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5027cc8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: apache-2.0
task_categories:
- question-answering
- text-generation
language:
- en
tags:
- vector search
- semantic search
- retrieval augmented generation
pretty_name: hackernoon_tech_news_with_embeddings
size_categories:
- 100K<n<1M
---

## Overview
[HackerNoon](https://huggingface.co/datasets/HackerNoon/tech-company-news-data-dump/tree/main) curated the internet's most cited 7M+ tech company news articles and blog posts about the 3k+ most valuable tech companies in 2022 and 2023. 

To further enhance the dataset's utility, a new embedding field and vector embedding for every datapoint have been added using the OpenAI EMBEDDING_MODEL = "text-embedding-3-small", with an EMBEDDING_DIMENSION of 256. 

Notably, this extension with vector embeddings only contains a portion of the original dataset, focusing on enriching a selected subset with advanced analytical capabilities. 

## Dataset Structure
Each record in the dataset represents a news article about technology companies and includes the following fields:

- _id: A unique identifier for the news article.
- companyName: The name of the company the news article is about.
- companyUrl: A URL to the HackerNoon company profile page for the company.
- published_at: The date and time when the news article was published.
- url: A URL to the original news article.
- title: The title of the news article.
- main_image: A URL to the main image of the news article.
- description: A brief summary of the news article's content.
- embedding: An array of numerical values representing the vector embedding for the article, generated using the OpenAI EMBEDDING_MODEL.


## Data Ingestion
[Create a free MongoDB Atlas Account](https://www.mongodb.com/cloud/atlas/register?utm_campaign=devrel&utm_source=community&utm_medium=organic_social&utm_content=Hugging%20Face%20Dataset&utm_term=richmond.alake) and conduct the Data Ingestion process below.

```python
import os
from pymongo import MongoClient
import datasets
from datasets import load_dataset
from bson import json_util

# MongoDB Atlas URI and client setup
uri = os.environ.get('MONGODB_ATLAS_URI')
client = MongoClient(uri)

# Change to the appropriate database and collection names for the tech news embeddings
db_name = 'your_database_name'  # Change this to your actual database name
collection_name = 'tech_news_embeddings'  # Change this to your actual collection name

tech_news_embeddings_collection = client[db_name][collection_name]

# Load the "tech-news-embeddings" dataset from Hugging Face
dataset = load_dataset("AIatMongoDB/tech-news-embeddings")

insert_data = []

# Iterate through the dataset and prepare the documents for insertion
for item in dataset['train']:
    # Convert the dataset item to MongoDB document format
    doc_item = json_util.loads(json_util.dumps(item))
    insert_data.append(doc_item)

    # Insert in batches of 1000 documents
    if len(insert_data) == 1000:
        tech_news_embeddings_collection.insert_many(insert_data)
        print("1000 records ingested")
        insert_data = []

# Insert any remaining documents
if len(insert_data) > 0:
    tech_news_embeddings_collection.insert_many(insert_data)
    print("Data Ingested")

```

## Usage
The dataset is suited for a range of applications, including:

- Tracking and analyzing trends in the tech industry.
- Enhancing search and recommendation systems for tech news content with the use of vector embeddings.
- Conducting sentiment analysis and other natural language processing tasks to gauge public perception and impact of news on specific tech companies.
- Educational purposes in data science, journalism, and technology studies courses.

## Notes


### Sample Document
```
{
  "_id": {
    "$oid": "65c63ea1f187c085a866f680"
  },
  "companyName": "01Synergy",
  "companyUrl": "https://hackernoon.com/company/01synergy",
  "published_at": "2023-05-16 02:09:00",
  "url": "https://www.businesswire.com/news/home/20230515005855/en/onsemi-and-Sineng-Electric-Spearhead-the-Development-of-Sustainable-Energy-Applications/",
  "title": "onsemi and Sineng Electric Spearhead the Development of Sustainable Energy Applications",
  "main_image": "https://firebasestorage.googleapis.com/v0/b/hackernoon-app.appspot.com/o/images%2Fimageedit_25_7084755369.gif?alt=media&token=ca7527b0-a214-46d4-af72-1062b3df1458",
  "description": "(Nasdaq: ON) a leader in intelligent power and sensing technologies today announced that Sineng Electric will integrate onsemi EliteSiC silic",
  "embedding": [
    {
      "$numberDouble": "0.05243798345327377"
    },
    {
      "$numberDouble": "-0.10347484797239304"
    },
    {
      "$numberDouble": "-0.018149614334106445"
    }
  ]
}
```