--- license: mit dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 921768062.125 num_examples: 7703 - name: train_numbers num_bytes: 15248375 num_examples: 357 - name: test num_bytes: 56689886.75 num_examples: 3074 - name: test_numbers num_bytes: 554420 num_examples: 100 download_size: 994154685 dataset_size: 994260743.875 configs: - config_name: default data_files: - split: train path: data/train-* - split: train_numbers path: data/train_numbers-* - split: test path: data/test-* - split: test_numbers path: data/test_numbers-* task_categories: - image-to-text language: - en tags: - ocr - ctw1500 pretty_name: ctw1500 --- # CTW1500 ## META ```yaml Name: 'CTW1500' Paper: Title: Curved scene text detection via transverse and longitudinal sequence connection URL: https://www.sciencedirect.com/science/article/pii/S0031320319300664 Venue: PR Year: '2019' BibTeX: '@article{liu2019curved, title={Curved scene text detection via transverse and longitudinal sequence connection}, author={Liu, Yuliang and Jin, Lianwen and Zhang, Shuaitao and Luo, Canjie and Zhang, Sheng}, journal={Pattern Recognition}, volume={90}, pages={337--345}, year={2019}, publisher={Elsevier} }' Data: Website: https://github.com/Yuliang-Liu/Curve-Text-Detector Language: - English Scene: - Scene Granularity: - Word - Line Tasks: - textrecog ```