AstroM3Dataset / AstroM3Dataset.py
MeriDK's picture
Add files using upload-large-folder tool
88109f2 verified
raw
history blame
6.89 kB
import os
from io import BytesIO
import datasets
import pandas as pd
import numpy as np
import json
from astropy.io import fits
from utils.parallelzipfile import ParallelZipFile as ZipFile
_DESCRIPTION = (
"AstroM3 is a time-series astronomy dataset containing photometry, spectra, "
"and metadata features for variable stars. The dataset includes multiple "
"subsets (full, sub10, sub25, sub50) and supports different random seeds (42, 66, 0, 12, 123). "
"Each sample consists of:\n"
"- **Photometry**: Light curve data of shape `(N, 3)` (time, flux, flux_error).\n"
"- **Spectra**: Spectral observations of shape `(M, 3)` (wavelength, flux, flux_error).\n"
"- **Metadata**: Auxiliary features of shape `(25,)`.\n"
"- **Label**: The class name as a string."
)
_HOMEPAGE = "https://huggingface.co/datasets/AstroM3"
_LICENSE = "CC BY 4.0"
_URL = "https://huggingface.co/datasets/MeriDK/AstroM3Dataset/resolve/main"
_VERSION = datasets.Version("1.0.0")
_CITATION = """
@article{AstroM3,
title={AstroM3: A Multi-Modal Astronomy Dataset},
author={Your Name},
year={2025},
journal={AstroML Conference}
}
"""
class AstroM3Dataset(datasets.GeneratorBasedBuilder):
"""Hugging Face dataset for AstroM3 with configurable subsets and seeds."""
DEFAULT_CONFIG_NAME = "full_42"
BUILDER_CONFIGS = [
datasets.BuilderConfig(name=f"{sub}_{seed}", version=_VERSION, data_dir=None)
for sub in ["full", "sub10", "sub25", "sub50"]
for seed in [42, 66, 0, 12, 123]
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"photometry": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=3)),
"spectra": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=3)),
"metadata": datasets.Sequence(datasets.Value("float32"), length=25),
"label": datasets.Value("string"),
}
),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _get_photometry(self, file_name):
csv = BytesIO()
file_name = file_name.replace(' ', '')
data_path = f'vardb_files/{file_name}.dat'
csv.write(self.reader_v.read(data_path))
csv.seek(0)
lc = pd.read_csv(csv, sep=r'\s+', skiprows=2, names=['HJD', 'MAG', 'MAG_ERR', 'FLUX', 'FLUX_ERR'],
dtype={'HJD': float, 'MAG': float, 'MAG_ERR': float, 'FLUX': float, 'FLUX_ERR': float})
return lc[['HJD', 'FLUX', 'FLUX_ERR']].values
@staticmethod
def _get_spectra(file_name):
hdulist = fits.open(file_name)
len_list = len(hdulist)
if len_list == 1:
head = hdulist[0].header
scidata = hdulist[0].data
coeff0 = head['COEFF0']
coeff1 = head['COEFF1']
pixel_num = head['NAXIS1']
specflux = scidata[0,]
ivar = scidata[1,]
wavelength = np.linspace(0, pixel_num - 1, pixel_num)
wavelength = np.power(10, (coeff0 + wavelength * coeff1))
hdulist.close()
elif len_list == 2:
head = hdulist[0].header
scidata = hdulist[1].data
wavelength = scidata[0][2]
ivar = scidata[0][1]
specflux = scidata[0][0]
else:
raise ValueError(f'Wrong number of fits files. {len_list} should be 1 or 2')
return np.vstack((wavelength, specflux, ivar)).T
def _split_generators(self, dl_manager):
"""Returns SplitGenerators for train, val, and test."""
# Get subset and seed info from the name
sub, seed = self.config.name.split("_")
# Load the splits and info files
urls = {
"train": f"{_URL}/splits/{sub}/{seed}/train.csv",
"val": f"{_URL}/splits/{sub}/{seed}/val.csv",
"test": f"{_URL}/splits/{sub}/{seed}/test.csv",
"info": f"{_URL}/splits/{sub}/{seed}/info.json",
}
extracted_path = dl_manager.download_and_extract(urls)
# Load all spectra files
spectra_urls = {}
for split in ["train", "val", "test"]:
df = pd.read_csv(extracted_path[split])
for _, row in df.iterrows():
spectra_url = f"{_URL}/spectra/{split}/{row['target']}/{row['spec_filename']}"
spectra_urls[row["spec_filename"]] = spectra_url
spectra = dl_manager.download_and_extract(spectra_urls)
# Load photometry and init reader
photometry_path = dl_manager.download(f"{_URL}/photometry.zip")
self.reader_v = ZipFile(photometry_path)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"csv_path": extracted_path["train"],
"info_path": extracted_path["info"],
"spectra": spectra,
"split": "train"}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": extracted_path["val"],
"info_path": extracted_path["info"],
"spectra": spectra,
"split": "val"}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"csv_path": extracted_path["test"],
"info_path": extracted_path["info"],
"spectra": spectra,
"split": "test"}
),
]
def _generate_examples(self, csv_path, info_path, spectra, split):
"""Yields examples from a CSV file containing photometry, spectra, metadata, and labels."""
if not os.path.exists(csv_path):
raise FileNotFoundError(f"Missing dataset file: {csv_path}")
if not os.path.exists(info_path):
raise FileNotFoundError(f"Missing info file: {info_path}")
df = pd.read_csv(csv_path)
with open(info_path) as f:
info = json.loads(f.read())
for idx, row in df.iterrows():
photometry = self._get_photometry(row["name"])
spectra = self._get_spectra(spectra[row['spec_filename']])
yield idx, {
"photometry": photometry,
"spectra": spectra,
"metadata": row[info["all_cols"]],
"label": row["target"],
}