File size: 3,310 Bytes
7b49dc4 13d284e 58945e6 13d284e 8819861 13d284e 77a9f5e 13d284e 77a9f5e 13d284e 58945e6 13d284e 7b49dc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
license: mit
pretty_name: AstroM3Dataset
size_categories:
- 10K<n<100K
tags:
- astronomy
- multimodal
- classification
arxiv:
- arXiv:2411.08842
---
# AstroM3Dataset
## Description
AstroM3Dataset is a time-series astronomy dataset containing photometry, spectra, and metadata features for variable stars.
The dataset includes multiple subsets (`full`, `sub10`, `sub25`, `sub50`) and supports different random seeds (`42`, `66`, `0`, `12`, `123`).
Each sample consists of:
- **Photometry**: Light curve data of shape `(N, 3)` (time, flux, flux\_error).
- **Spectra**: Spectra observations of shape `(M, 3)` (wavelength, flux, flux\_error).
- **Metadata**: Auxiliary features of shape `(38,)`.
- **Label**: The class name as a string.
## Corresponding paper and code
- Paper: [AstroM<sup>3</sup>: A self-supervised multimodal model for astronomy](https://arxiv.org/abs/2411.08842)
- Code Repository: [GitHub: AstroM<sup>3</sup>](https://github.com/MeriDK/AstroM3/)
---
## Subsets and Seeds
AstroM3Dataset is available in different subset sizes:
- `full`: Entire dataset
- `sub50`: 50% subset
- `sub25`: 25% subset
- `sub10`: 10% subset
Each subset is sampled from the respective train, validation, and test splits of the full dataset.
For reproducibility, each subset is provided with different random seeds:
- `42`, `66`, `0`, `12`, `123`
## Data Organization
The dataset is organized as follows:
```
AstroM3Dataset/
βββ photometry.zip # Contains all photometry light curves
βββ utils/
β βββ parallelzipfile.py # Zip file reader to open photometry.zip
βββ spectra/ # Spectra files organized by class
β βββ EA/
β β βββ file1.dat
β β βββ file2.dat
β β βββ ...
β βββ EW/
β βββ SR/
β βββ ...
βββ splits/ # Train/val/test splits for each subset and seed
β βββ full/
β β βββ 42/
β β β βββ train.csv
β β β βββ val.csv
β β β βββ test.csv
β β β βββ info.json # Contains feature descriptions and preprocessing info
β β βββ 66/
β β βββ 0/
β β βββ 12/
β β βββ 123/
β βββ sub10/
β βββ sub25/
β βββ sub50/
βββ AstroM3Dataset.py # Hugging Face dataset script
```
## Usage
To load the dataset using the Hugging Face `datasets` library:
```python
from datasets import load_dataset
# Load the default full dataset with seed 42
dataset = load_dataset("MeriDK/AstroM3Dataset", trust_remote_code=True)
```
The default configuration is **full_42** (entire dataset with seed 42).
To load a specific subset and seed, use {subset}_{seed} as the name:
```python
from datasets import load_dataset
# Load the 25% subset sampled using seed 123
dataset = load_dataset("MeriDK/AstroM3Dataset", name="sub25_123", trust_remote_code=True)
```
---
## Citation
If you find this dataset usefull, please cite:
```bibtex
@article{rizhko2024astrom,
title={AstroM $\^{} 3$: A self-supervised multimodal model for astronomy},
author={Rizhko, Mariia and Bloom, Joshua S},
journal={arXiv preprint arXiv:2411.08842},
year={2024}
}
``` |