File size: 3,310 Bytes
7b49dc4
 
 
 
 
 
 
 
 
 
 
 
 
13d284e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58945e6
13d284e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8819861
 
13d284e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77a9f5e
13d284e
 
 
 
 
 
 
 
 
77a9f5e
13d284e
 
58945e6
 
13d284e
 
 
 
 
 
 
 
 
7b49dc4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
license: mit
pretty_name: AstroM3Dataset
size_categories:
- 10K<n<100K
tags:
- astronomy
- multimodal
- classification
arxiv:
- arXiv:2411.08842
---

# AstroM3Dataset

## Description

AstroM3Dataset is a time-series astronomy dataset containing photometry, spectra, and metadata features for variable stars. 
The dataset includes multiple subsets (`full`, `sub10`, `sub25`, `sub50`) and supports different random seeds (`42`, `66`, `0`, `12`, `123`). 
Each sample consists of:

- **Photometry**: Light curve data of shape `(N, 3)` (time, flux, flux\_error).
- **Spectra**: Spectra observations of shape `(M, 3)` (wavelength, flux, flux\_error).
- **Metadata**: Auxiliary features of shape `(38,)`.
- **Label**: The class name as a string.

## Corresponding paper and code

- Paper: [AstroM<sup>3</sup>: A self-supervised multimodal model for astronomy](https://arxiv.org/abs/2411.08842)
- Code Repository: [GitHub: AstroM<sup>3</sup>](https://github.com/MeriDK/AstroM3/)

---

## Subsets and Seeds
AstroM3Dataset is available in different subset sizes:  

- `full`: Entire dataset  
- `sub50`: 50% subset  
- `sub25`: 25% subset  
- `sub10`: 10% subset  

Each subset is sampled from the respective train, validation, and test splits of the full dataset.  
For reproducibility, each subset is provided with different random seeds:  

- `42`, `66`, `0`, `12`, `123`  


## Data Organization
The dataset is organized as follows:
```
AstroM3Dataset/
β”œβ”€β”€ photometry.zip             # Contains all photometry light curves
β”œβ”€β”€ utils/
β”‚   β”œβ”€β”€ parallelzipfile.py     # Zip file reader to open photometry.zip
β”œβ”€β”€ spectra/                   # Spectra files organized by class
β”‚   β”œβ”€β”€ EA/
β”‚   β”‚   β”œβ”€β”€ file1.dat
β”‚   β”‚   β”œβ”€β”€ file2.dat
β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”œβ”€β”€ EW/
β”‚   β”œβ”€β”€ SR/
β”‚   β”œβ”€β”€ ...
β”œβ”€β”€ splits/                    # Train/val/test splits for each subset and seed
β”‚   β”œβ”€β”€ full/
β”‚   β”‚   β”œβ”€β”€ 42/
β”‚   β”‚   β”‚   β”œβ”€β”€ train.csv
β”‚   β”‚   β”‚   β”œβ”€β”€ val.csv
β”‚   β”‚   β”‚   β”œβ”€β”€ test.csv
β”‚   β”‚   β”‚   β”œβ”€β”€ info.json      # Contains feature descriptions and preprocessing info
β”‚   β”‚   β”œβ”€β”€ 66/
β”‚   β”‚   β”œβ”€β”€ 0/
β”‚   β”‚   β”œβ”€β”€ 12/
β”‚   β”‚   β”œβ”€β”€ 123/
β”‚   β”œβ”€β”€ sub10/
β”‚   β”œβ”€β”€ sub25/
β”‚   β”œβ”€β”€ sub50/
│── AstroM3Dataset.py          # Hugging Face dataset script
```

## Usage
To load the dataset using the Hugging Face `datasets` library:

```python
from datasets import load_dataset

# Load the default full dataset with seed 42
dataset = load_dataset("MeriDK/AstroM3Dataset", trust_remote_code=True)
```

The default configuration is **full_42** (entire dataset with seed 42).
To load a specific subset and seed, use {subset}_{seed} as the name:

```python
from datasets import load_dataset

# Load the 25% subset sampled using seed 123
dataset = load_dataset("MeriDK/AstroM3Dataset", name="sub25_123", trust_remote_code=True)
```

---

## Citation
If you find this dataset usefull, please cite:
```bibtex
@article{rizhko2024astrom,
  title={AstroM $\^{} 3$: A self-supervised multimodal model for astronomy},
  author={Rizhko, Mariia and Bloom, Joshua S},
  journal={arXiv preprint arXiv:2411.08842},
  year={2024}
}
```