{ "cells": [ { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "from media_processing_lib.image import image_read, image_resize\n", "from argparse import ArgumentParser\n", "from pathlib import Path\n", "from tqdm import tqdm, trange\n", "import numpy as np\n", "from functools import partial\n", "from multiprocessing import Pool, cpu_count\n", "import shutil\n", "import matplotlib.pyplot as plt\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "dataset_path = Path(\"neo_1month/data\")\n", "# dataset_path = Path(\"neo_1week/data\")\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "def make_figure_of_date_to_representations(date_to_representations: dict[str, list[str]], representations):\n", " n_repr = {k: len(v) for k, v in date_to_representations.items()}\n", " x = np.arange(len(n_repr))\n", "\n", " xticks = [[], []]\n", " for i, key in enumerate(n_repr.keys()):\n", " if key[5:7] in (\"01\", \"07\") and (len(xticks[1]) == 0 or (len(xticks[1]) > 0 and xticks[1][-1] != key[0:7])):\n", " xticks[0].append(i)\n", " xticks[1].append(key[0:7])\n", "\n", " # keys = list(n_repr.keys())\n", " plt.figure(figsize=(20, 10))\n", " bar_list = plt.bar(x, n_repr.values(), width=1)\n", " for bar, bar_n in zip(bar_list, n_repr.values()):\n", " if bar_n < 5:\n", " bar.set_color(\"red\")\n", " elif bar_n < 15:\n", " bar.set_color(\"yellow\")\n", " elif bar_n < len(representations):\n", " bar.set_color(\"blue\")\n", " else:\n", " bar.set_color(\"green\")\n", " plt.xticks(xticks[0], xticks[1], rotation=90)\n", " plt.ylabel(\"N representations\")\n", " plt.title(f\"Red = <5, Yellow = <15, Blue = <{len(representations)}, Green == {len(representations)}\")\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['AOD', 'CHLORA', 'CLD_FR', 'CLD_RD', 'CLD_WP', 'COT', 'FIRE', 'LAI', 'LSTD_AN', 'LSTD', 'LSTN_AN', 'LSTN', 'NO2', 'OZONE', 'SNOWC', 'SST', 'WV', 'NDVI', 'CO_M']\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABl4AAANvCAYAAAC8qae4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACEUElEQVR4nOzdeZhWdf3/8dewOCAiaiCLIe6aGyrmCim5IC3u4hqIaaVSXyU3LMMlQ21Rc8FUFLPM3HLPb2ruWymSy1fJBRg0QdEAwVCB+/eHPyZHthn84DDyeFzXfV3e5z7n3O8zNzPFPDnnVFUqlUoAAAAAAAD41Jo19gAAAAAAAACfF8ILAAAAAABAIcILAAAAAABAIcILAAAAAABAIcILAAAAAABAIcILAAAAAABAIcILAAAAAABAIcILAAAAAABAIcILAAAAAABAIcILAACLbeTIkamqqsq4ceMae5Qmbdy4camqqsrIkSNrl5166qmpqqpqvKFYLIceemjWWGONxh4DAABoRMILAMDnzNwYMvfRokWLrLbaajn00EPz+uuvN/Z4jeb++++v83X5+OPxxx9v8P6+973vZbnllstzzz03z2uzZs3KpptumjXWWCMzZswoMf4y7W9/+1uOOuqo9OjRIy1btlxokFrQZ3zWWWct9vt/cl9t2rTJhhtumJ/+9Kd57733Fnu/n0d/+ctf8u1vfzsbb7xxmjdvvtAI9fLLL2fffffNyiuvnOWXXz49e/bMfffd96lnmDZtWs4888xsueWWadeuXaqrq9OtW7fsv//+ueOOOz71/pdlb7zxRk466aT07t07bdu2TVVVVe6///75rvvhhx/mtNNOy1prrZXq6uqstdZa+elPf5pZs2Z9tkMDADSCFo09AAAAS8bpp5+eNddcMzNnzszjjz+ekSNH5uGHH85zzz2XVq1aNfZ4jeYHP/hBvvzlL9dZts466zR4P2eddVZuueWWfO9738tDDz1UJwace+65efbZZ3PHHXekTZs2n3rmZd2dd96Zyy+/PJtuumnWWmut/POf/1zo+rvsskv69+9fZ9nmm2/+qWb4+D6nT5+ehx56KKecckr+8Y9/5Prrr/9U+/48ueaaa/LHP/4xW2yxRbp06bLA9SZMmJBtt902zZs3z/HHH582bdrkyiuvzK677pp77703X/nKVxbr/V9++eX06dMn48ePz1577ZX+/ftnhRVWyIQJE3LnnXfmG9/4Rn7729/mW9/61uIe4jJtzJgxOfvss7Puuutmk002yWOPPbbAdQ855JBcf/31Oeyww7Llllvm8ccfzymnnJKamppceumln+HUAACfPeEFAOBzqm/fvtlyyy2TJIcffnjat2+fs88+O7feemv69evXyNMteTU1NVlxxRWz0kor1Vneq1ev7Lvvvp96/yuttFLOP//87L///rnsssvyne98p/Z9TzvttPTr1y9f+9rXPvX7LGsqlUqee+65bLLJJrXLjjzyyJx44olp3bp1Bg0atMjwst566+WQQw4pOtcn9/m9730vH3zwQW666abMnDlzmYyZs2fPzpgxY7LhhhvWLvvZz36Wyy67LC1btsw3vvGN+Z4RlnwULqdMmZLnnnsu66+/fpLkiCOOyAYbbJBjjz02Tz31VIPnmTVrVvbaa69MmjQpDzzwQLbffvs6rw8dOjR/+ctfMnv27IXuZ8aMGYLpAvTo0SNvv/12Vlllldxwww3Zb7/95rve3//+91x33XU55ZRTcvrppyf56Humffv2+dWvfpVBgwZl0003/SxHBwD4TLnUGADAMqJXr15JkldeeaXO8hdffDH77rtvVllllbRq1Spbbrllbr311nm2f/755/PVr341rVu3zhe/+MX89Kc/zZw5cz6T2evrgw8+yA033JDddtsta6655gLvPfPuu+8WudzN3Lhy0kkn5c0330ySfP/730/Lli1z/vnnJ0lef/31HHbYYenYsWOqq6uz0UYb5Yorrlis95s1a1bOOOOMrL322qmurs4aa6yRk08+Oe+//37tOoMHD84XvvCFVCqV2mXf//73U1VVlV//+te1yyZNmpSqqqoMHz58sWYp7V//+ld+9rOfZd11153nbISOHTumdevWDdrff/7zn8ycObPkiPPo1KlT7eX8FmTuJe4+eTmm+d3XJ6n/92Njevnll3PyySena9euOfnkk+u81qVLl7Rs2XKR+3jooYey+eab10aXJFl++eWz++67Z9SoUXnppZcaPNf111+f5557Lqeccso80WWuXXfdNX379q19PvfSjA888ECOOuqorLrqqvniF79Y+/qf//zn9OrVK23atEnbtm3z9a9/Pc8///w8+63P5zb3vR555JEMHjw4HTp0SJs2bbLXXnvlrbfeavDxNoa2bdtmlVVWWeR6Dz30UJLkgAMOqLP8gAMOSKVSyR//+MclMh8AwNLCGS8AAMuIuRFi5ZVXrl32/PPPZ/vtt89qq62Wk046KW3atMl1112XPffcMzfeeGP22muvJMnEiRPTu3fvzJo1q3a9Sy+9tN6/DH///ffz7rvv1mvd9u3bN+zA/v9xjBgxIldffXUmT56c9ddfv/aX+J80cODATJ8+Pc2bN0+vXr3y85//vPbMoMVx8cUXZ6ONNsqxxx6bfv365dZbb80ll1ySTp06ZdKkSdlmm21SVVWVQYMGpUOHDvnzn/+cb3/725k2bVqOOeaYBr3X4Ycfnquuuir77rtvfvjDH+aJJ57IsGHD8sILL+RPf/pTko8C27nnnpvnn38+G2+8cZKPfgnarFmzPPTQQ/nBD35QuyzJIi/pNHXq1Hz44YeLnK1Vq1ZZYYUVGnQ8s2bNyu23354RI0bkz3/+c5Jkt912y1FHHdWg/XzSyJEjc/HFF6dSqeRLX/pSfvzjH+eggw76VPucOXNmJk+enOSjMyIeeeSRXHXVVTnooIMWGl4aor7fjwvy73//e5FncyQfBY7ll1++QbP95z//yY033pjLL788DzzwQKqrq7PnnnvW/nlqqPfff7/Oz6KPz5YkTz311Hy/fxfmtttuS5LFOtvpqKOOSocOHfKTn/yk9r5MV199dQYMGJA+ffrk7LPPznvvvZfhw4enZ8+eefrpp2vvX9PQz+373/9+Vl555QwdOjTjxo3Leeedl0GDBi0yRizuz9H33nuvXvciat68+Xw/k8UxNwZ/8n8jPv75AgB8rlUAAPhcufLKKytJKvfcc0/lrbfeqkyYMKFyww03VDp06FCprq6uTJgwoXbdnXbaqbLJJptUZs6cWbtszpw5le22266y7rrr1i475phjKkkqTzzxRO2yN998s9KuXbtKksrYsWPrNVN9HvU1bdq0ymWXXVbZeuutK0kqbdu2rXz729+uPPLII/Nd/5FHHqnss88+lREjRlRuueWWyrBhwypf+MIXKq1ataqMGjWq3u87P7/4xS8qSSqrrLJKZfvtt6/MmTOnUqlUKt/+9rcrnTt3rkyePLnO+gcccEClXbt2lffee69SqVQqY8eOrSSpXHnllbXrDB06tM7XY/To0ZUklcMPP7zOvo477rhKkspf//rXSqXy0eeSpHLxxRdXKpVKZcqUKZVmzZpV9ttvv0rHjh1rt/vBD35QWWWVVWpnXZAddtihXp/bgAED6v31evHFFyvHH398pWPHjpUklfXXX79y1llnVf71r38tctujjz56oX9Otttuu8p5551XueWWWyrDhw+vbLzxxnW+HotjQce855571vneqVQqlQEDBlS6detW+/y+++6rJKncd999ddab32de3+/HBenWrVu9PquhQ4fW+9iffPLJypFHHln7vd6jR4/KhRdeWHnnnXcWue3Xv/71Ol+Lj/vmN79ZWWmllSrTpk2rs3zbbbetJKn84he/qPeMc22++eaVlVZaaZ7l06dPr7z11lu1j6lTp9a+NvdnU8+ePSuzZs2qXf7uu+9WVlpppcoRRxxRZ18TJ06stGvXrs7y+n5uc99r5513rvN9d+yxx1aaN29emTJlykKPb3F/js79WbKox4I+qwW5/vrr5/tnu1KpVG688cZKksrVV19dZ/kll1xSSVLZeOONG/ReAABNjTNeAAA+p3beeec6z9dYY4387ne/q72MzjvvvJO//vWvOf300/Puu+/W+ZfUffr0ydChQ/P6669ntdVWy5133pltttkmW221Ve06HTp0yMEHH5yLL754kbP06dMnd999d5HjmjhxYk4++eRcd911ee+99/KVr3wlI0eOzH777bfQf8W/3XbbZbvttqt9vvvuu2fffffNpptumiFDhuSuu+5a7JmOOeaY/Pa3v81zzz2X3/zmN6mqqkqlUsmNN96Yfv36pVKp1J4tkXz09bj22mszatSoBV4S6ZPuvPPOJB9dSuzjfvjDH+YXv/hF7rjjjvTu3TsdOnTIBhtskAcffDBHHnlkHnnkkdobmF9//fV56aWXsu666+ahhx5Kz549U1VVtdD3/eUvf5l///vfi5xvYTdSn+t///d/89Of/jQPP/xw2rZtm379+uWwww6r87l8Wo888kid54cddlh69OiRk08+OYceemiDL1k21x577JFBgwYl+egMgscffzznnntuDjrooNxwww2L/DouSkO+Hxfk97//ff7zn/8s8r3WWmutRa5zzTXX5Oc//3lGjx6d9u3bZ+DAgRk4cGCx+3IceeSRue2227L//vvnzDPPTJs2bXLxxRfnySefTJJ6HccnTZs2bb5nXf3oRz+qvfRfknz961/P7bffXmedI444Is2bN699fvfdd2fKlCk58MAD63zvNm/ePFtvvXXuu+++JIv3uX3nO9+p8+dl7llq48ePX+jXd3F/jvbv3z89e/Zc5HqL+70xP1/72tfSrVu3HHfccVl++eXTo0ePPPHEE/nRj36UFi1aLNbnCwDQlAgvAACfUxdddFHWW2+9TJ06NVdccUUefPDBVFdX177+8ssvp1Kp5JRTTskpp5wy3328+eabWW211TJ+/PhsvfXW87z+8fszLEznzp3TuXPnxTuQT3jxxRdz5ZVXpkWLFjnnnHPyP//zP/W6p8T8rLPOOtljjz1y0003Zfbs2XV+8doQzZs3z+abb55XXnklG220UZLkrbfeypQpU3LppZfm0ksvne92c+8LUx/jx49Ps2bNss4669RZ3qlTp6y00koZP3587bJevXrVhpqHHnooW265Zbbccsusssoqeeihh9KxY8f84x//qNflt3r06FHvGRflD3/4Qx5++OGstdZa+f3vf59tttmm2L4XZLnllsugQYPyve99L0899VS9fgE9P1/84hfrxMzdd989X/jCF3Lcccfl9ttvzze/+c1PNWdDvh8XpL4Rrz4uvfTSjB49OltssUV+//vfZ4MNNii27yTp27dvLrjggpx00knZYostknz0/XjmmWfmhBNOaPBl65KP7j/y9ttvz7P8qKOOyje+8Y0kC74M2Zprrlnn+dx7zHz1q1+d7/orrrhiksX73FZfffU6r8+9vNeiAufi/hxda6216hXbSmrVqlXuuOOO9OvXL/vss0+SpLq6Ouecc07OPPPMxfp8AQCaEuEFAOBzaquttqq9d8mee+6Znj175qCDDsqYMWOywgorZM6cOUmS4447Ln369JnvPj75S/7F9Z///CdTp06t17qdOnVa6Otf/vKXc+GFF2bEiBE5/vjjc/bZZ+eQQw5Z7H+N37Vr13zwwQeZMWNG7S9TS5j79T3kkEMyYMCA+a6zOPPW58yKnj175rLLLsurr76ahx56KL169UpVVVV69uyZhx56KF26dMmcOXPSq1evRe7rnXfeyQcffLDI9Vq3bp127dotdJ0hQ4akXbt2+d3vfpdtt902PXr0yMCBA3PQQQcVu7fE/HTt2jXJR8dS0k477ZQkefDBBxcYXhb0eX3yXiwlvh/feuutet3jZYUVVljkL75/8YtfZPjw4bnuuuuy4YYbZocddsjAgQOzzz77pE2bNot8j/oYNGhQBg4cmGeeeSbLLbdcNttss4wYMSJJst566zV4fxtssEFGjx49zxkm6623Xu3+WrVqNd9tP3m2x9zP4+qrr57vz6S59/VZnM9tQYG3UqnMd/lci/tzdPr06Zk+ffoit2nevHk6dOhQr/3Xx0YbbZTnnnsu//d//5d///vf2XDDDdO6desce+yx2WGHHYq9DwDA0kh4AQBYBjRv3jzDhg1L7969c+GFF+akk06q/RfQLVu2nOeyZJ/UrVu32n8B/nFjxoyp1/v/8Y9/zMCBA+u17qJ++dimTZscffTROfroozNq1KhcfvnlufLKK3Peeedliy22qP1F/iqrrFKv93v11VcX68bwi9KhQ4e0bds2s2fPXuTXtz66deuWOXPm5KWXXsqXvvSl2uWTJk3KlClT0q1bt9plc4PK3Xffnb///e856aSTkiRf+cpXMnz48HTp0iVt2rSp19kse++9dx544IFFrjdgwICMHDlyoeusv/76Of/883POOefkT3/6U0aMGJHvf//7+eEPf5g99tgjhx12WHbZZZc0a9Zske/XEK+++mqSFP2lcpLMmjUrSRb6S+25QWnKlCl1ln/8DKUkDfp+XJAvf/nL8+x3foYOHZpTTz11oetsueWWGTFiRM4///xce+21ufzyyzNgwIAMGjQo/fr1y8CBA4ucYdOmTZtsu+22tc/vueeetG7derH2/Y1vfCPXXnttfv/73+eEE074VHOtvfbaSZJVV111oZ9Hic+tvhb35+gvfvGLnHbaaYvcplu3bhk3btzijjdfVVVVtWcBJh9dMnHOnDlL/GsFANDYhBcAgGXEjjvumK222irnnXdejjnmmKy66qrZcccd85vf/Cbf//7357mEzVtvvVX7i+qvfe1rOe+88/K3v/2t9j4vb731Vn7/+9/X671L3uPl47bYYotcfPHF+eUvf5nrr7++9hf5xx13XHbfffdcdNFFtcfw8eOZ6x//+EduvfXW9O3bt/gv+5s3b5599tkn11xzTZ577rlsvPHGdV6f3zwL87WvfS0nn3xyzjvvvPzmN7+pXf6rX/0qyUf3rZhrzTXXzGqrrZZzzz03H374Ye0vsXv16pXjjjsuN9xwQ7bZZpvaf7W/MCXv8TJXdXV1DjjggBxwwAEZN25cRowYkZEjR+a6667LaqutlmOOOSbHHXdcvfc31/y+pu+++27OO++8tG/fvuhl05LktttuS5J07959get069YtzZs3z4MPPpg999yzdvkn743UkO/HBSl5j5e5VlhhhRx++OE5/PDD8/zzz+fyyy/P1VdfnREjRmTdddfNj3/84/Tv37/e+1uYRx99NDfddFOOPPLIRZ49NT/9+vXLz372s5xxxhn5yle+Mt9L2S0q7M7Vp0+frLjiivnZz36W3r17z3M5w7mfR4nPrb6a0j1e5uc///lPTjnllHTu3DkHHnjgEn0vAIDGJrwAACxDjj/++Oy3334ZOXJkvve97+Wiiy5Kz549s8kmm+SII47IWmutlUmTJuWxxx7La6+9ln/84x9JkhNOOCFXX311dtttt/zP//xP2rRpk0svvTTdunXLM888s8j3LXmPl/lp3bp1+vfvn/79++ell17KiBEjctVVV+X111+v/aXn/vvvn9atW2e77bbLqquumv/7v//LpZdemuWXXz5nnXVWnf2deuqpOe2003Lfffdlxx13XOy5zjrrrNx3333Zeuutc8QRR2TDDTfMO++8k1GjRuWee+5p0KWvunfvngEDBuTSSy/NlClTssMOO+Rvf/tbrrrqquy5557p3bt3nfV79eqVa6+9NptsskntWRdbbLFF2rRpk3/+85/1ur9LUvYeL/Ozxhpr5Iwzzsipp56a//3f/83ll1+e6667rk54GT9+fK6++uokqb35+k9/+tMkH4WNb33rW0k+uq/RzTffnG9+85tZffXV88Ybb+SKK65ITU1Nrr766iy33HK1+7z//vvTu3fvep39kST//Oc/87vf/S5J8t577+Xxxx/PVVddlXXWWaf2/eenXbt22W+//XLBBRekqqoqa6+9dm6//fb53t+nvt+PC1LyHi/zs9FGG+Xcc8/N2WefXXvG0i233FInvDzzzDO59dZbk3x0/5OpU6fWflbdu3evvSTb+PHj069fv+y+++7p1KlTnn/++VxyySXZdNNN87Of/azO+44cOTIDBw7MlVdemUMPPXSB87Vs2TJ/+tOf0qdPn/Ts2TN77713evXqlTZt2uT111/PrbfempqamjqRckFWXHHFDB8+PN/61reyxRZb5IADDkiHDh1SU1OTO+64I9tvv30uvPDCJJ/+c6uvpeUeL3M/z+effz7JR5dje/jhh5MkP/7xj2vX69evX7p06ZINN9ww06ZNyxVXXJFXX301d9xxR9q2bVtsHgCApVIFAIDPlSuvvLKSpPL3v/99ntdmz55dWXvttStrr712ZdasWZVKpVJ55ZVXKv3796906tSp0rJly8pqq61W+cY3vlG54YYb6mz7zDPPVHbYYYdKq1atKquttlrljDPOqIwYMaKSpDJ27NjP4tAa5MMPP6zMnDmz9vn5559f2WqrrSqrrLJKpUWLFpXOnTtXDjnkkMpLL700z7Y//OEPK1VVVZUXXnih3u83YMCASps2beZZPmnSpMrRRx9d6dq1a6Vly5aVTp06VXbaaafKpZdeWrvO2LFjK0kqV155Ze2yoUOHVj75f9c//PDDymmnnVZZc801Ky1btqx07dq1MmTIkDrHOddFF11USVI58sgj6yzfeeedK0kq9957b72P7bM2ffr0Os/vu+++SpL5PnbYYYfa9f7yl79Udtlll9o/yyuttFJl1113ne+x3nbbbZUklUsuuWSR83zyPZs3b1754he/WPnOd75TmTRpUp11BwwYUOnWrVudZW+99VZln332qSy//PKVlVdeufLd73638txzz83zmVcq9f9+XFp88rOa+/Nnfo8BAwbUrvfOO+9U9thjj0qnTp0qyy23XGXNNdesnHjiiZVp06bN8x4XXHBBJUnlrrvuqtdMU6ZMqZx++umVzTffvLLCCitUlltuuUrXrl0r++67b+W2226b77zz+3lZqXz0Z69Pnz6Vdu3aVVq1alVZe+21K4ceemjlySefrLNefT63Bb3X3D/f9913X72Or7Et6PP95M+rs88+u7LBBhtUWrVqVVl55ZUru+++e+Xpp59unKEBAD5jVZVKPc+1BgCAZcRWW22Vbt265frrr2/sUVhCTjjhhPzhD3/Iyy+/nOrq6sYeh4Xo169fxo0bl7/97W+NPQoAANSLS40BAMDHTJs2Lf/4xz9y1VVXNfYoLEH33XdfTjnlFNFlKVepVHL//ffXXuYNAACaAme8AAAAAAAAFNKssQcAAAAAAAD4vBBeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAACmnR2AMsjebMmZN//etfadu2baqqqhp7HAAAAAAAoBFVKpW8++676dKlS5o1W/g5LcLLfPzrX/9K165dG3sMAAAAAABgKTJhwoR88YtfXOg6wst8tG3bNslHX8AVV1yxkacBAAAAAAAa07Rp09K1a9fafrAwwst8zL282Iorrii8AAAAAAAASVKv25Ms/EJkAAAAAAAA1JvwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUEiLxh4AgGVPzdSaTH5vcp1l7896P9Utqpv0sqVlDsfluJaGOZam42q/fPus3m71LEpj/GxaWr6+jstxLQ1zOC7HuqR/9i8t/x90afn6Oi7HtTTM4bgcV2PMUd+/H8CnIbwA8JmqmVqT9S9cPzNnzWzsUYBlRKsWrTJm0JiF/uXKzyaAz5dP/uz3cx6Auerz9wP4tFxqDIDP1OT3JvsLL/CZmjlr5jz/wvmT/GwC+Hz55M9+P+cBmKs+fz+AT0t4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKER4AQAAAAAAKKRFYw8AAABL1JSueeGZ1skb/130/vtJdfV/n78w5TOfCoAl6RM/+/2cB2BhamqSyZPrLvvk3xnqu2xxt1sSy9q3T1ZfPTQC4QUAgM+vKV2TC8fkkPNaL3y9zkm++5lMBMCSNr+f/X7OA7AANTXJ+usnM2c29iTltWqVjBkjvjQGlxoDAODz6732yaxFRBcAPl/87AegASZP/nxGl+Sj4/rkmTx8NoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQho1vDz44IP55je/mS5duqSqqio333xznderqqrm+/j5z3++wH2eeuqp86y/wQYbLOEjAQAAAAAAaOTwMmPGjHTv3j0XXXTRfF9/44036jyuuOKKVFVVZZ999lnofjfaaKM62z388MNLYnwAAAAAAIA6WjTmm/ft2zd9+/Zd4OudOnWq8/yWW25J7969s9Zaay10vy1atJhnWwAAAAAAgCWtydzjZdKkSbnjjjvy7W9/e5HrvvTSS+nSpUvWWmutHHzwwampqVno+u+//36mTZtW5wEAAAAAANBQTSa8XHXVVWnbtm323nvvha639dZbZ+TIkbnrrrsyfPjwjB07Nr169cq77767wG2GDRuWdu3a1T66du1aenwAAAAAAGAZ0GTCyxVXXJGDDz44rVq1Wuh6ffv2zX777ZdNN900ffr0yZ133pkpU6bkuuuuW+A2Q4YMydSpU2sfEyZMKD0+AAAAAACwDGjUe7zU10MPPZQxY8bkj3/8Y4O3XWmllbLeeuvl5ZdfXuA61dXVqa6u/jQjAgAAAAAANI0zXkaMGJEePXqke/fuDd52+vTpeeWVV9K5c+clMBkAAAAAAMB/NWp4mT59ekaPHp3Ro0cnScaOHZvRo0enpqamdp1p06bl+uuvz+GHHz7ffey000658MILa58fd9xxeeCBBzJu3Lg8+uij2WuvvdK8efMceOCBS/RYAAAAAAAAGvVSY08++WR69+5d+3zw4MFJkgEDBmTkyJFJkmuvvTaVSmWB4eSVV17J5MmTa5+/9tprOfDAA/P222+nQ4cO6dmzZx5//PF06NBhyR0IAAAAAABAGjm87LjjjqlUKgtd5zvf+U6+853vLPD1cePG1Xl+7bXXlhgNAAAAAACgwZrEPV4AAAAAAACaAuEFAAAAAACgEOEFAAAAAACgEOEFAAAAAACgEOEFAAAAAACgEOEFAAAAAACgEOEFAAAAAACgEOEFAAAAAACgEOEFAAAAAACgEOEFAAAAAACgEOEFAAAAAACgkBaNPQCwbKipSSZPrrvs/feT6uoyy0rua2laNr912rdPVl+97rIl/fUtueyFKQEAAACAzy3hBVjiamqS9ddPZs5s7Ek+H1q1SsaM+W98aXJf385JvtvYQwAAAADAkuFSY8ASN3lyE4oCTcDMmXXPbvH1BQAAAIClh/ACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQSIvGHgCAhnvhhfn/NwAAAAALMaVrXnimdfLGR0+Xtd+r1NQkkyfXXda+fbL66o0zz+eV8ALQBB1ySGNPAAAAANDETOmaXDgmh5zXurEnaRQ1Ncn66yczZ9Zd3qpVMmaM+FKSS40BAAAAAPD59177ZNayGV2Sj850+WR0ST5a9smzYPh0hBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBCGjW8PPjgg/nmN7+ZLl26pKqqKjfffHOd1w899NBUVVXVeey2226L3O9FF12UNdZYI61atcrWW2+dv/3tb0voCAAAAAAAAP6rUcPLjBkz0r1791x00UULXGe33XbLG2+8Ufv4wx/+sNB9/vGPf8zgwYMzdOjQjBo1Kt27d0+fPn3y5ptvlh4fAAAAAACgjhaN+eZ9+/ZN3759F7pOdXV1OnXqVO99/upXv8oRRxyRgQMHJkkuueSS3HHHHbniiity0kknfap5AQAAAAAAFmapv8fL/fffn1VXXTXrr79+jjzyyLz99tsLXPeDDz7IU089lZ133rl2WbNmzbLzzjvnscceW+B277//fqZNm1bnAQAAAAAATdkLLySjRn30eOGFxp5m2dGoZ7wsym677Za99947a665Zl555ZWcfPLJ6du3bx577LE0b958nvUnT56c2bNnp2PHjnWWd+zYMS+++OIC32fYsGE57bTTis8PAAAAAACN5ZBDGnuCZdNSHV4OOOCA2v/eZJNNsummm2bttdfO/fffn5122qnY+wwZMiSDBw+ufT5t2rR07dq12P4BAAAAAIBlw1J/qbGPW2uttdK+ffu8/PLL8329ffv2ad68eSZNmlRn+aRJkxZ6n5jq6uqsuOKKdR4AAAAAAAAN1aTCy2uvvZa33347nTt3nu/ryy23XHr06JF77723dtmcOXNy7733Ztttt/2sxgQAAAAAAJZRjRpepk+fntGjR2f06NFJkrFjx2b06NGpqanJ9OnTc/zxx+fxxx/PuHHjcu+992aPPfbIOuuskz59+tTuY6eddsqFF15Y+3zw4MG57LLLctVVV+WFF17IkUcemRkzZmTgwIGf9eEBAAAAAADLmEa9x8uTTz6Z3r171z6fe5+VAQMGZPjw4XnmmWdy1VVXZcqUKenSpUt23XXXnHHGGamurq7d5pVXXsnkyZNrn++///5566238pOf/CQTJ07MZpttlrvuuisdO3b87A4MAAAAAABYJjVqeNlxxx1TqVQW+Pr//u//LnIf48aNm2fZoEGDMmjQoE8zGgAAAAAAQIM1qXu8AAAAAAAALM2EFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgEJaNPYAfB7UJJn8iWXvJ6kuuKx9ktWX4PuWnre+xzA/S8txlfyat07ypQAAAAAAS5euXWvSuvUnf+dX399lMj/CC59STZL1k8xcwu/TKsmY/Peb/bN635I+eQzzszQdV8mv+eZJRhWaCwAAAAAooWvXmowZs35at/7k7/zq87tMFsSlxviUJueziQQzU/dMi8/qfUv65DHMz9J0XJ+HrzkAAAAAsCDt20+eT3RJ6ve7TBZEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAACikUcPLgw8+mG9+85vp0qVLqqqqcvPNN9e+9uGHH+bEE0/MJptskjZt2qRLly7p379//vWvfy10n6eeemqqqqrqPDbYYIMlfCQAAAAAAACNHF5mzJiR7t2756KLLprntffeey+jRo3KKaecklGjRuWmm27KmDFjsvvuuy9yvxtttFHeeOON2sfDDz+8JMYHAAAAAACoo0Vjvnnfvn3Tt2/f+b7Wrl273H333XWWXXjhhdlqq61SU1OT1VdffYH7bdGiRTp16lR0VgAAAAAAgEVpUvd4mTp1aqqqqrLSSistdL2XXnopXbp0yVprrZWDDz44NTU1C13//fffz7Rp0+o8AAAAAAAAGqrJhJeZM2fmxBNPzIEHHpgVV1xxgettvfXWGTlyZO66664MHz48Y8eOTa9evfLuu+8ucJthw4alXbt2tY+uXbsuiUMAAAAAAAA+55pEePnwww/Tr1+/VCqVDB8+fKHr9u3bN/vtt1823XTT9OnTJ3feeWemTJmS6667boHbDBkyJFOnTq19TJgwofQhAAAAAAAAy4BGvcdLfcyNLuPHj89f//rXhZ7tMj8rrbRS1ltvvbz88ssLXKe6ujrV1dWfdlQAAAAAAGAZt1Sf8TI3urz00ku555578oUvfKHB+5g+fXpeeeWVdO7ceQlMCAAAAAAA8F+NGl6mT5+e0aNHZ/To0UmSsWPHZvTo0ampqcmHH36YfffdN08++WR+//vfZ/bs2Zk4cWImTpyYDz74oHYfO+20Uy688MLa58cdd1weeOCBjBs3Lo8++mj22muvNG/ePAceeOBnfXgAAAAAAMAyplEvNfbkk0+md+/etc8HDx6cJBkwYEBOPfXU3HrrrUmSzTbbrM529913X3bcccckySuvvJLJkyfXvvbaa6/lwAMPzNtvv50OHTqkZ8+eefzxx9OhQ4clezAAAAAAAMAyr1HDy4477phKpbLA1xf22lzjxo2r8/zaa6/9tGMBAAAAAAAslqX6Hi8AAAAAAABNifACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQSIvGHgDq74UF/DdLjq85AAAAAEBDCC80IYc09gDLIF9zAAAAAICGcKkxAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQoQXAAAAAACAQj51eJk9e3ZGjx6df//73yXmAQAAAAAAaLIaHF6OOeaYjBgxIslH0WWHHXbIFltska5du+b+++8vPR8AAAAAAECT0eDwcsMNN6R79+5Jkttuuy1jx47Niy++mGOPPTY/+tGPig8IAAAAAADQVDQ4vEyePDmdOnVKktx5553Zb7/9st566+Wwww7Ls88+W3xAAAAAAACApqLB4aVjx475v//7v8yePTt33XVXdtlllyTJe++9l+bNmxcfEAAAAAAAoKlo0dANBg4cmH79+qVz586pqqrKzjvvnCR54oknssEGGxQfEAAAAAAAoKlocHg59dRTs/HGG2fChAnZb7/9Ul1dnSRp3rx5TjrppOIDAgAAAAAANBUNDi9Jsu+++86zbMCAAZ96GAAAAAAAgKZsscLLvffem3vvvTdvvvlm5syZU+e1K664oshgAAAAAAAATU2Dw8tpp52W008/PVtuuWXtfV4AAAAAAABYjPByySWXZOTIkfnWt761JOYBAAAAAABospo1dIMPPvgg22233ZKYBQAAAAAAoElrcHg5/PDDc8011yyJWQAAAAAAAJq0Bl9qbObMmbn00ktzzz33ZNNNN03Lli3rvP6rX/2q2HAAAAAAAABNSYPDyzPPPJPNNtssSfLcc8/Vea2qqqrIUAAAAAAAAE1Rg8PLfffdtyTmAAAAAAAAaPIafI+Xj3vttdfy2muvlZoFAAAAAACgSWtweJkzZ05OP/30tGvXLt26dUu3bt2y0kor5YwzzsicOXOWxIwAAAAAAABNQoMvNfajH/0oI0aMyFlnnZXtt98+SfLwww/n1FNPzcyZM3PmmWcWHxIAAAAAAKApaHB4ueqqq3L55Zdn9913r1226aabZrXVVstRRx0lvAAAAAAAAMusBoeXd955JxtssME8yzfYYIO88847RYaCZUdNkskfe/5CYw0CAAAAAEABDb7HS/fu3XPhhRfOs/zCCy9M9+7diwwFy4aaJOsn6fGxxyGNOhEAAAAAAJ9Og894Oeecc/L1r38999xzT7bddtskyWOPPZYJEybkzjvvLD4gfH5NTjKzsYcAAAAAAKCgBp/xssMOO+Sf//xn9tprr0yZMiVTpkzJ3nvvnTFjxqRXr15LYkYAAAAAAIAmocFnvCRJly5dcuaZZ5aeBQAAAAAAoEmrV3h55plnsvHGG6dZs2Z55plnFrrupptuWmQwAAAAAACApqZe4WWzzTbLxIkTs+qqq2azzTZLVVVVKpXKPOtVVVVl9uzZxYcEAAAAAABoCuoVXsaOHZsOHTrU/jcAAAAAAADzqld46datW+1/jx8/Ptttt11atKi76axZs/Loo4/WWRcAAAAAAGBZ0qyhG/Tu3TvvvPPOPMunTp2a3r17FxkKAAAAAACgKWpweKlUKqmqqppn+dtvv502bdoUGQoAAAAAAKApqtelxpJk7733TpJUVVXl0EMPTXV1de1rs2fPzjPPPJPtttuu/IQAAAAAAABNRL3DS7t27ZJ8dMZL27Zt07p169rXlltuuWyzzTY54ogjyk8IAAAAAADQRNQ7vFx55ZVJkjXWWCPHHXecy4oBAAAAAAB8Qr3Dy1xDhw5dEnMAAAAAAAA0eQ0OL0lyww035LrrrktNTU0++OCDOq+NGjWqyGAAAAAAAABNTbOGbvDrX/86AwcOTMeOHfP0009nq622yhe+8IW8+uqr6du375KYEQAAAAAAoElocHi5+OKLc+mll+aCCy7IcsstlxNOOCF33313fvCDH2Tq1KlLYkYAAAAAAIAmocHhpaamJtttt12SpHXr1nn33XeTJN/61rfyhz/8oex0AAAAAAAATUiDw0unTp3yzjvvJElWX331PP7440mSsWPHplKplJ0OAAAAAACgCWlwePnqV7+aW2+9NUkycODAHHvssdlll12y//77Z6+99io+IAAAAAAAQFPRoqEbXHrppZkzZ06S5Oijj84XvvCFPProo9l9993z3e9+t/iAAAAAAAAATUWDw8trr72Wrl271j4/4IADcsABB6RSqWTChAlZffXViw4IAAAAAADQVDT4UmNrrrlm3nrrrXmWv/POO1lzzTWLDAUAAAAAANAUNTi8VCqVVFVVzbN8+vTpadWqVZGhAAAAAAAAmqJ6X2ps8ODBSZKqqqqccsopWX755Wtfmz17dp544olsttlmxQcEAAAAAABoKuodXp5++ukkH53x8uyzz2a55ZarfW255ZZL9+7dc9xxx5WfEAAAAAAAoImod3i57777kiQDBw7M+eefnxVXXHGJDQUAAAAAANAU1Tu8zHXllVcuiTkAAAAAAACavAaHlxkzZuSss87KvffemzfffDNz5syp8/qrr75abDgAAAAAAICmpMHh5fDDD88DDzyQb33rW+ncuXOqqqqWxFwAAAAAAABNToPDy5///Ofccccd2X777ZfEPAAAAAAAAE1Ws4ZusPLKK2eVVVZZErMAAAAAAAA0aQ0OL2eccUZ+8pOf5L333lsS8wAAAAAAADRZDb7U2C9/+cu88sor6dixY9ZYY420bNmyzuujRo0qNhwAAAAAAEBT0uDwsueeey6BMQAAAAAAAJq+BoeXoUOHFnvzBx98MD//+c/z1FNP5Y033sif/vSnOmGnUqlk6NChueyyyzJlypRsv/32GT58eNZdd92F7veiiy7Kz3/+80ycODHdu3fPBRdckK222qrY3AAAAAAAAPPT4Hu8JMmUKVNy+eWXZ8iQIXnnnXeSfHSJsddff71B+5kxY0a6d++eiy66aL6vn3POOfn1r3+dSy65JE888UTatGmTPn36ZObMmQvc5x//+McMHjw4Q4cOzahRo9K9e/f06dMnb775ZoNmAwAAAAAAaKgGn/HyzDPPZOedd067du0ybty4HHHEEVlllVVy0003paamJr/97W/rva++ffumb9++832tUqnkvPPOy49//OPsscceSZLf/va36dixY26++eYccMAB893uV7/6VY444ogMHDgwSXLJJZfkjjvuyBVXXJGTTjqpgUcLAAAAAABQfw0+42Xw4ME59NBD89JLL6VVq1a1y7/2ta/lwQcfLDbY2LFjM3HixOy88861y9q1a5ett946jz322Hy3+eCDD/LUU0/V2aZZs2bZeeedF7hNkrz//vuZNm1anQcsGS8kGfX/Hy808iwAAAAAAJTW4PDy97//Pd/97nfnWb7aaqtl4sSJRYZKUruvjh071lnesWPHBb7P5MmTM3v27AZtkyTDhg1Lu3btah9du3b9lNPDghySpMf/fxzSyLMAAAAAAFBag8NLdXX1fM8I+ec//5kOHToUGeqzNmTIkEydOrX2MWHChMYeCQAAAAAAaIIaHF523333nH766fnwww+TJFVVVampqcmJJ56YffbZp9hgnTp1SpJMmjSpzvJJkybVvvZJ7du3T/PmzRu0TfJRTFpxxRXrPAAAAAAAABqqweHll7/8ZaZPn55VV101//nPf7LDDjtknXXWSdu2bXPmmWcWG2zNNddMp06dcu+999YumzZtWp544olsu+22891mueWWS48ePepsM2fOnNx7770L3AYAAAAAAKCUFg3doF27drn77rvzyCOP5B//+EemT5+eLbbYos4N7etr+vTpefnll2ufjx07NqNHj84qq6yS1VdfPcccc0x++tOfZt11182aa66ZU045JV26dMmee+5Zu81OO+2UvfbaK4MGDUqSDB48OAMGDMiWW26ZrbbaKuedd15mzJiRgQMHNng+AAAAAACAhmhweJlr++23z/bbb58kmTJlymLt48knn0zv3r1rnw8ePDhJMmDAgIwcOTInnHBCZsyYke985zuZMmVKevbsmbvuuiutWrWq3eaVV17J5MmTa5/vv//+eeutt/KTn/wkEydOzGabbZa77rorHTt2XKwZAQAAAAAA6qvB4eXss8/OGmuskf333z9J0q9fv9x4443p1KlT7rzzznTv3r3e+9pxxx1TqVQW+HpVVVVOP/30nH766QtcZ9y4cfMsGzRoUO0ZMAAAAAAAAJ+VBt/j5ZJLLknXrl2TJHfffXfuvvvu/PnPf07fvn1z/PHHFx8QAAAAAACgqWjwGS8TJ06sDS+33357+vXrl1133TVrrLFGtt566+IDAgAAAAAANBUNPuNl5ZVXzoQJE5Ikd911V3beeeckSaVSyezZs8tOBwAAAAAA0IQ0+IyXvffeOwcddFDWXXfdvP322+nbt2+S5Omnn84666xTfEAAAAAAAICmosHh5dxzz80aa6yRCRMm5JxzzskKK6yQJHnjjTdy1FFHFR8QAAAAAACgqWhweGnZsmWOO+64eZYfe+yxRQYCAAAAAABoqhp8j5ckufrqq9OzZ8906dIl48ePT5Kcd955ueWWW4oOBwAAAAAA0JQ0OLwMHz48gwcPTt++fTNlypTMnj07SbLSSivlvPPOKz0fAAAAAABAk9Hg8HLBBRfksssuy49+9KM0b968dvmWW26ZZ599tuhwAAAAAAAATUmDw8vYsWOz+eabz7O8uro6M2bMKDIUAAAAAABAU9Tg8LLmmmtm9OjR8yy/66678qUvfanETAAAAAAAAE1Si4ZuMHjw4Bx99NGZOXNmKpVK/va3v+UPf/hDhg0blssvv3xJzAgAAAAAANAkNDi8HH744WndunV+/OMf57333stBBx2ULl265Pzzz88BBxywJGYEAAAAAABoEhoUXmbNmpVrrrkmffr0ycEHH5z33nsv06dPz6qrrrqk5gMAAAAAAGgyGnSPlxYtWuR73/teZs6cmSRZfvnlRRcAAAAAAID/r0HhJUm22mqrPP3000tiFgAAAAAAgCatwfd4Oeqoo/LDH/4wr732Wnr06JE2bdrUeX3TTTctNhwAAAAAAEBT0uDwcsABByRJfvCDH9Quq6qqSqVSSVVVVWbPnl1uOgAAAAAAgCakweFl7NixS2IOAAAAAACAJq/B4aVbt25LYg4AAAAAAIAmr8HhJUnGjBmTCy64IC+88EKS5Etf+lK+//3vZ/311y86HAAAAAAAQFPSrKEb3Hjjjdl4443z1FNPpXv37unevXtGjRqVjTfeODfeeOOSmBEAAAAAAKBJaPAZLyeccEKGDBmS008/vc7yoUOH5oQTTsg+++xTbDgAAAAAAICmpMFnvLzxxhvp37//PMsPOeSQvPHGG0WGAgAAAAAAaIoaHF523HHHPPTQQ/Msf/jhh9OrV68iQwEAAAAAADRFDb7U2O67754TTzwxTz31VLbZZpskyeOPP57rr78+p512Wm699dY66wIAAAAAACwrGhxejjrqqCTJxRdfnIsvvni+ryVJVVVVZs+e/SnHAwAAAAAAaDoaHF7mzJmzJOYAAAAAAABo8hp8j5ePmzlzZqk5AAAAAAAAmrwGh5fZs2fnjDPOyGqrrZYVVlghr776apLklFNOyYgRI4oPCAAAAAAA0FQ0OLyceeaZGTlyZM4555wst9xytcs33njjXH755UWHAwAAAAAAaEoaHF5++9vf5tJLL83BBx+c5s2b1y7v3r17XnzxxaLDAQAAAAAANCUNDi+vv/561llnnXmWz5kzJx9++GGRoQAAAAAAAJqiBoeXDTfcMA899NA8y2+44YZsvvnmRYYCAAAAAABoilo0dIOf/OQnGTBgQF5//fXMmTMnN910U8aMGZPf/va3uf3225fEjAAAAAAAAE1Cg8942WOPPXLbbbflnnvuSZs2bfKTn/wkL7zwQm677bbssssuS2JGAAAAAACAJqFBZ7zMmjUrP/vZz3LYYYfl7rvvXlIzAQAAAAAANEkNOuOlRYsWOeecczJr1qwlNQ8AAAAAAECT1eBLje2000554IEHlsQsAAAAAAAATVqDLjWWJH379s1JJ52UZ599Nj169EibNm3qvL777rsXGw4AAAAAAKApaXB4Oeqoo5Ikv/rVr+Z5raqqKrNnz/70UwEAAAAAADRBDQ4vc+bMWRJzAAAAAAAANHkNvscLAAAAAAAA8ye8AAAAAAAAFCK8AAAAAAAAFCK8AAAAAAAAFCK8AAAAAAAAFCK8AAAAAAAAFNKivis2a9YsVVVVC12nqqoqs2bN+tRDAQAAAAAANEX1Di9/+tOfFvjaY489ll//+teZM2dOkaEAAAAAAACaonqHlz322GOeZWPGjMlJJ52U2267LQcffHBOP/30osMBAAAAAAA0JYt1j5d//etfOeKII7LJJptk1qxZGT16dK666qp069at9HwAAAAAAABNRoPCy9SpU3PiiSdmnXXWyfPPP5977703t912WzbeeOMlNR8AAAAAAECTUe9LjZ1zzjk5++yz06lTp/zhD3+Y76XHAAAAAAAAlmX1Di8nnXRSWrdunXXWWSdXXXVVrrrqqvmud9NNNxUbDgAAAAAAoCmpd3jp379/qqqqluQsAAAAAAAATVq9w8vIkSOX4BgAAAAAAABNX7PGHgAAAAAAAODzQngBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAopEVjD0BTU5Nk8seev9BYgwAAAAAAwFJHeKEBapKsn2RmYw8CAAAAAABLJZcaowEmR3QBAAAAAIAFE14AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKWerDyxprrJGqqqp5HkcfffR81x85cuQ867Zq1eoznhoAAAAAAFgWtWjsARbl73//e2bPnl37/Lnnnssuu+yS/fbbb4HbrLjiihkzZkzt86qqqiU6IwAAAAAAQNIEwkuHDh3qPD/rrLOy9tprZ4cddljgNlVVVenUqdOSHg0AAAAAAKCOpf5SYx/3wQcf5He/+10OO+ywhZ7FMn369HTr1i1du3bNHnvskeeff36h+33//fczbdq0Og8AAAAAAICGalLh5eabb86UKVNy6KGHLnCd9ddfP1dccUVuueWW/O53v8ucOXOy3Xbb5bXXXlvgNsOGDUu7du1qH127dl0C0wMAAAAAAJ93TSq8jBgxIn379k2XLl0WuM62226b/v37Z7PNNssOO+yQm266KR06dMhvfvObBW4zZMiQTJ06tfYxYcKEJTE+AAAAAADwObfU3+NlrvHjx+eee+7JTTfd1KDtWrZsmc033zwvv/zyAteprq5OdXX1px0RAAAAAABYxjWZM16uvPLKrLrqqvn617/eoO1mz56dZ599Np07d15CkwEAAAAAAHykSYSXOXPm5Morr8yAAQPSokXdk3T69++fIUOG1D4//fTT85e//CWvvvpqRo0alUMOOSTjx4/P4Ycf/lmPDQAAAAAALGOaxKXG7rnnntTU1OSwww6b57Wampo0a/bffvTvf/87RxxxRCZOnJiVV145PXr0yKOPPpoNN9zwsxwZAAAAAABYBjWJ8LLrrrumUqnM97X777+/zvNzzz0355577mcwFQAAAAAAQF1N4lJjAAAAAAAATYHwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUIjwAgAAAAAAUMhSHV5OPfXUVFVV1XlssMEGC93m+uuvzwYbbJBWrVplk002yZ133vkZTQsAAAAAACzrlurwkiQbbbRR3njjjdrHww8/vMB1H3300Rx44IH59re/naeffjp77rln9txzzzz33HOf4cQAAAAAAMCyaqkPLy1atEinTp1qH+3bt1/guueff3522223HH/88fnSl76UM844I1tssUUuvPDCz3BiAAAAAABgWbXUh5eXXnopXbp0yVprrZWDDz44NTU1C1z3sccey84771xnWZ8+ffLYY48t9D3ef//9TJs2rc4DAAAAAACgoZbq8LL11ltn5MiRueuuuzJ8+PCMHTs2vXr1yrvvvjvf9SdOnJiOHTvWWdaxY8dMnDhxoe8zbNiwtGvXrvbRtWvXYscAAAAAAAAsO5bq8NK3b9/st99+2XTTTdOnT5/ceeedmTJlSq677rqi7zNkyJBMnTq19jFhwoSi+wcAAAAAAJYNLRp7gIZYaaWVst566+Xll1+e7+udOnXKpEmT6iybNGlSOnXqtND9VldXp7q6uticAAAAAADAsmmpPuPlk6ZPn55XXnklnTt3nu/r2267be699946y+6+++5su+22n8V4AAAAAADAMm6pDi/HHXdcHnjggYwbNy6PPvpo9tprrzRv3jwHHnhgkqR///4ZMmRI7fr/8z//k7vuuiu//OUv8+KLL+bUU0/Nk08+mUGDBjXWIQAAAAAAAMuQpfpSY6+99loOPPDAvP322+nQoUN69uyZxx9/PB06dEiS1NTUpFmz/7aj7bbbLtdcc01+/OMf5+STT866666bm2++ORtvvHFjHQIAAAAAALAMWarDy7XXXrvQ1++///55lu23337Zb7/9ltBEAAAAAAAAC7ZUX2oMAAAAAACgKRFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAChFeAAAAAAAAClmqw8uwYcPy5S9/OW3bts2qq66aPffcM2PGjFnoNiNHjkxVVVWdR6tWrT6jiQEAAAAAgGXZUh1eHnjggRx99NF5/PHHc/fdd+fDDz/MrrvumhkzZix0uxVXXDFvvPFG7WP8+PGf0cQAAAAAAMCyrEVjD7Awd911V53nI0eOzKqrrpqnnnoqX/nKVxa4XVVVVTp16rSkxwMAAAAAAKhjqT7j5ZOmTp2aJFlllVUWut706dPTrVu3dO3aNXvssUeef/75ha7//vvvZ9q0aXUeAAAAAAAADdVkwsucOXNyzDHHZPvtt8/GG2+8wPXWX3/9XHHFFbnlllvyu9/9LnPmzMl2222X1157bYHbDBs2LO3atat9dO3adUkcAgAAAAAA8DnXZMLL0Ucfneeeey7XXnvtQtfbdttt079//2y22WbZYYcdctNNN6VDhw75zW9+s8BthgwZkqlTp9Y+JkyYUHp8AAAAAABgGbBU3+NlrkGDBuX222/Pgw8+mC9+8YsN2rZly5bZfPPN8/LLLy9wnerq6lRXV3/aMQEAAAAAgGXcUn3GS6VSyaBBg/KnP/0pf/3rX7Pmmms2eB+zZ8/Os88+m86dOy+BCQEAAAAAAP5rqT7j5eijj84111yTW265JW3bts3EiROTJO3atUvr1q2TJP37989qq62WYcOGJUlOP/30bLPNNllnnXUyZcqU/PznP8/48eNz+OGHN9pxAAAAAAAAy4alOrwMHz48SbLjjjvWWX7llVfm0EMPTZLU1NSkWbP/nrjz73//O0cccUQmTpyYlVdeOT169Mijjz6aDTfc8LMaGwAAAAAAWEYt1eGlUqkscp3777+/zvNzzz0355577hKaCAAAAAAAYMGW6nu8AAAAAAAANCXCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAAAAQCHCCwAAAPD/2jvT8KiqdG2/VRlJQogEyABksJEDEWyZSRiVIdBcNiA2KEcjqCgqfRpRJpkaVARtD3oUcWpQDtDQtmA3yqANAYRAI4GAEMLQTAokgK0JMkRInu9HvlQsSfC02bve1F7PfV31o2qFuvfDW3n3ylq7qgghhBBCiEX4xcbL3LlzJSkpSUJDQ6VDhw6yffv26/78+++/L82aNZPQ0FBp2bKlrFq1ykdHSgghhBBCCCGEEEIIIYQQk6nxGy/Lli2TMWPGyLRp02Tnzp3yy1/+UtLT0+XMmTOV/nxWVpbcc8898uCDD8quXbtkwIABMmDAANm7d6+Pj5wQQgghhBBCCCGEEEIIIaZR4zde/vu//1tGjBghw4cPl5SUFHnjjTckLCxM5s+fX+nPv/LKK9KnTx8ZO3asNG/eXJ555hlp3bq1vPbaaz4+ckIIIYQQQgghhBBCCCGEmEag9gFcj++//16ys7Nl4sSJnsfcbrf07NlTtm7dWum/2bp1q4wZM8brsfT0dPnwww+r9BQXF0txcbHnfmFhoYiIFBUVVePonch32gdA/JTvvisREf4+kf9P6Xcil7UPghBiDN//H89B7E2EEOIcKuv97POEEEJE/u9/HxhEScl3UvUy+HfC/68KyvcLAPzkz9bojZdz585JSUmJxMTEeD0eExMjeXl5lf6b/Pz8Sn8+Pz+/Ss/zzz8v06dPv+bxxo0b/4yjJoRcyx4RqaN9EKSmUCAis7QPghBiDv/HcxB7EyGEOIhKej/7PCGEEBHhGtW17NkjUqfK/5JuvjwUv+H8+fNSp+r/NBGp4RsvvmLixIle75IpLS2Vf/3rXxIdHS0ul0vxyMylqKhIGjduLF9++aVERkY62suszvQyqzO9zOo8p5aXWZ3pZVZnek1xanmZ1ZleZnWml1md59TyMqszvczqXC+pAICcP39e4uPjf/Jna/TGS7169SQgIEAKCgq8Hi8oKJDY2NhK/01sbOy/9fMiIiEhIRISEuL1WFRU1M87aGIpkZGRKo1Ew8uszvQyqzO9zOo8p5aXWZ3pZVZnek1xanmZ1ZleZnWml1md59TyMqszvczqXC8p46fe6VKO2+bjqBbBwcHSpk0bWbduneex0tJSWbdunaSmplb6b1JTU71+XkTk008/rfLnCSGEEEIIIYQQQgghhBBCrKJGv+NFRGTMmDFy//33S9u2baV9+/by8ssvy4ULF2T48OEiIpKRkSENGzaU559/XkREfve730m3bt3kpZdekn79+snSpUtlx44d8tZbb2nGIIQQQgghhBBCCCGEEEKIAdT4jZchQ4bI2bNnZerUqZKfny+33nqrrFmzRmJiYkRE5MSJE+J2V7xxJy0tTZYsWSKTJ0+Wp59+Wm666Sb58MMPpUWLFloRyM8gJCREpk2bds1HwDnRy6zO9DKrM73M6jynlpdZnellVmd6TXFqeZnVmV5mdaaXWZ3n1PIyqzO9zOpcL/l5uABA+yAIIYQQQgghhBBCCCGEEEKcQI3+jhdCCCGEEEIIIYQQQgghhBB/ghsvhBBCCCGEEEIIIYQQQgghFsGNF0IIIYQQQgghhBBCCCGEEIvgxgshhBBCCCGEEEIIIYQQQohFcOOFEEIIIYQQQgghhBBCCCHEIrjxQtTJzs7WPgRiAybVlVmdiUlZTYJ1JYQQQgghxPlw3u9MTKqrSVmdCjdeiDrt2rWTJk2ayMyZM+XUqVPah+Phm2++kYULF1r6nB988IFcvHjR0ue0ggsXLsimTZssfc6aWldmrR7Mqo8pvcmOmorUzLraUVORmllXZq0+NTFrQUGBzJgxw/Lnfemll+T48eOWP291MKUHizBrdWFWfezoTTWxL4mwrtWlJtbVpHMr5/3Vpyb+vppUV5Oykn8TEKKMy+XCiBEj0KBBAwQGBqJfv35YsWIFrl69qnpcOTk5cLvdlj6ny+VCZGQkRowYgW3btln63NXBrqwm1ZVZmdVXmNKb7MgJ1My62pnVpLoyqx52Zg0ICEDPnj2xdOlSFBcXW+74dzGlBwPMWl2YVR+7sta0vgSwrtWlJtaV59bqw3m/Lqxr9amJWcm/B9/xQmoEzz77rJw8eVKWLl0qAOSuu+6Shg0byvjx4+XgwYO2OIuKiq57O3/+vC3ep556Snbs2CGpqanSokULefnll+Xrr7+2xaWNRl21YFZmtQr2JvvxdV21airi+7oyqzOz7tmz57q3AwcO2OZ+5513JDw8XO677z6Jj4+X0aNHy969e23zmdSDmZVZrUQjq1Zv8nVfEmFdnVhXk86tmnDez7/n/B2TsjoStS0fQv4/LpcLBQUFXo999dVXmDFjBm688Ua43W506dLFFq/b7a7yVj5utbM8644dO/Doo48iKioKISEh+M1vfoNPPvnEUl85N9xww3VvkZGRtmYtxxd1ZVZmtQr2Jnt7k0ZNAZ26atS03OvrujKrs7O6XK5rbr7KWlBQgNmzZ6NZs2Zwu91o164d3nrrLRQVFVnuNKEHl3uZlVmtcmpm9WVv0uhL5V7W1Vl1Nencynm/M+eHJtXVpKzEWlwAoL35Q8wmICBATp8+LQ0aNKh0fN26dTJ//nxZvHixpd46derIpEmTpEOHDpWOHzp0SB555BEpKSmxzOl2uyU/P98r6+XLl+X999+X+fPny6ZNmyQhIUGOHj1qmVNEJDw8XB599FFp2bJlpePHjx+X6dOnW5pVq67MWgGzVg/2Jnt7k0ZNRXTqqlFTEZ26MmsFTspar149eeGFF6RHjx6Vju/bt0/uuOMOn2QVEfnss8/kj3/8o/zlL38REZHvvvvOMqcpPViEWX8Is1YPrawavUmjL4mwrj/EKXU16dzKeX8FTpofmlRXk7ISi9He+SGksh1cX9C9e3fMnj27yvGcnBy4XC5LnW63+7pZDx06hKefftpSJwCkpaXh5ZdfrnLcrs/J1agrs1bArNWDvakCO3qTRk0Bnbpq1BTQqSuzVuCkrL1798YzzzxT5bhW1sLCQrz11luWOk3pwQCz/hBmrR5aWTV6k0ZfAljXH+KUupp0buW8vwInzQ9NqqtJWYm1BGpv/BCSmZkpdevW9bl36NChcunSpSrHY2NjZdq0aZY68RNvMGvSpIk899xzljpFRPr16yfffvttleN169aVjIwMS51adWXWCpi1erA3VWBHb9KoqYhOXTVqKqJTV2atwElZR44cKRcuXKhyPCEhQRYsWGCpU+Sns0ZGRsqIESMsdZrSg0WY9Ycwa/XQyqrRmzT6kgjr+kOcUleTzq2c91fgpPmhSXU1KSuxFn7UGCE+5Pjx45KQkCAul0v7UAghxAN7kzMxqa7MSvwZk2rKrM7EpKwmwboS4j/w95WQmgk3XkiN4Pvvv5cPP/xQtm7dKvn5+SJSdiVAWlqa9O/fX4KDg5WPkPwcTKorszIr8R9YV0IIIYQQQpwP5/3OxKS6mpTViXDjhahz+PBhSU9Pl1OnTkmHDh0kJiZGREQKCgrkH//4hzRq1EhWr14tTZo0sdx97tw5mT9/fqUNbNiwYVK/fn1HOEV836w168qszGoF7E32OzUmkVp11er9pryWtLwmZc3NzZXXXnvtGmdqaqqMGjVKUlJSLHdqeflaYlZ/dmp5tbJq9Aitfsi6Oq+uJp1bOe93Zu83qa4mZSXWwY0Xok6vXr0kPDxcFi5cKJGRkV5jRUVFkpGRIZcuXZK1a9da6v38888lPT1dwsLCpGfPnl4NbN26dXLx4kVZu3attG3b1q+dIjrNWquuzMqsVsHeZK9TaxKpUVet3m/Ka0nLa1LW1atXy4ABA6R169aSnp7u5fz0008lOztb/vrXv0p6erplTi0vX0vM6s9OLa9WVo0eodUPWVfn1dWkcyvn/c7s/SbV1aSsxGJAiDK1atXCF198UeX4nj17UKtWLcu9HTp0wMMPP4zS0tJrxkpLS/Hwww+jY8eOfu8EgJ49e6J///4oLCy8ZqywsBD9+/dH7969LXVq1ZVZy2DW6sPeZK9To6aATl21er8pryUtr0lZb7nlFkyZMqXK8WnTpqFly5aWOrW8fC3Z62VWe51aXq2sGj1Cqx+yrhU4pa4mnVs57y/Dab3fpLqalJVYCzdeiDpxcXFYuXJlleN/+9vfEBcXZ7k3NDQU+/fvr3J8//79CA0N9XsnoNOsterKrBUwa/Vgb7LXqTWJ1KirVu835bWk5TUta15eXpXjeXl5tmX1tZevJXu9zGqvU8urmVWjR2j1Q9a1DKfU1aRzK+f9FTip95tUV5OyEmtxa7/jhpCHHnpIMjIyZM6cObJnzx4pKCiQgoIC2bNnj8yZM0eGDRsmDz/8sOXe2NhY2b59e5Xj27dv97x90J+dIiJRUVFy7NixKsePHTsmUVFRljq16sqsFTBr9WBvstepUVMRnbpq9X5TXktaXpOyJiUlyccff1zl+McffyyJiYmWOrW8fC3Z62VWe51aXq2sGj1Cqx+yrhU4pa4mnVs576/ASb3fpLqalJVYS6D2ARAyY8YMCQ8PlxdffFGefPJJcblcIiICQGJjY2X8+PEybtw4y71PPfWUPPzww5KdnS09evS45jMw3377bfnDH/7g906RimY9ZcqUSr3PPvus/Pa3v7XUqVVXZmVWq2BvstepUVMRnbpq9X5TXktaXpOyzpgxQ4YOHSobNmyo9HPD16xZI0uWLLHUqeXla4lZ/dmp5dXKqtEjtPoh6+q8upp0buW835m936S6mpSVWIzae20IqYQjR44gKysLWVlZOHLkiO2+pUuXokOHDggMDITL5YLL5UJgYCA6dOiAZcuWOcYJALNmzUJcXBxcLhfcbjfcbjdcLhfi4uIwe/Zs27yA7+vKrMxqNexN9jg1awr4tq5avd+U15KW16SsW7ZswZAhQ5CQkIDg4GAEBwcjISEBQ4YMQVZWli1OLS9fS8zqz04tr1ZWjR6h1Q9ZV+fV1aRzK+f9zuz9JtXVpKzEOlwAoL35Q8iP2bJli7Rt21ZCQkJ84rty5YqcO3dORETq1asnQUFBjnSKiBw9elTy8/NFpOztqMnJyT7xivi+rszqG5jVPkzpTZo1FfFtXbV6vymvJS2vSVlNgq8l5zm1vMxKrIR1Jf4M5/32w7/n7MWkrKT68DteSI2kb9++cvLkSZ/5goKCJC4uTjZs2CDff/+9Y50iIsnJyZKamiqlpaUSHx/vM6+I7+vKrL6BWe3DlN6kWVMR39ZVq/eb8lrS8pqUtZxZs2bJt99+61Onr718LTnPqeVlVt+h0Zt87WRd6fRnL+f9zvSaVFeTshIL0H7LDSGVERERgX/+858+99auXdvnXg2nltekujKr/TArnVahUVeTej+zOtPLrM5zanmZ1ZleZnWml1md59Tyct7vTC/raj9aaxLk58F3vBDyA6DwyXsaTk2vBszqTJiVTn/GpN7PrM70MqvznFpeZnWml1md6WVW5zm1vJz3O9PLuhLiDTdeSI3kzTfflJiYGO3DIBZjUl2Z1ZmYlNUkWFdCCCGEEEKcD+f9zsSkupqU1Qm4wC06UsMoLi4WEVH5oqjNmzdLu3btfOrWcIqILFmyRPr37y/h4eE+9WrArPazYcMG6dChg9SqVctnTpPqakpvYk2d6d28ebO0bdtWQkNDfebU8ppU1y+//FLi4+MlICDAZ04tryk9uNyr8Xuj1SNYV2c5Rcp6RMOGDcXt9t01phpOEbNew6bU1aRzq8a8X2utyaT5oUl/z5mUlfx8uPFCagSffvqpzJkzR7Zu3SpFRUUiIhIZGSmpqakyZswY6dmzp/IRkp/D7t27ZeXKlVK3bl0ZPHiw1KtXzzNWVFQko0ePlvnz5yseoXW888478tlnn0n37t1l+PDhsmzZMvn9738vxcXFct9998n06dN9diwamyDBwcGye/duad68uc+cdnPmzBlp0KCB535OTo7MmTNHDh8+LHFxcTJq1Cjp3r27T46luLhYvvrqK2nUqJHPJs4aTl/QsmVLGTx4sAwbNkwaN26seiwFBQUCQGJjYx3pLSkpkXPnzonb7Zb69evb6tL2FhYWSn5+voiIxMbGSp06dRztJc4GgJSWlvp0AU7DKSLy7rvvysCBA336u6PhNIlDhw7JiRMnJDExUZo0aeJYpwmUlJR49YTt27dLaWmptGrVyra5qYZTROTEiRNy+vRpcbvdcuONN0p0dLRtrprg9eUGCNeanAnXmnTWmsjPwI4vjiHk3+Hdd99FYGAg7r77bixYsACrVq3CqlWrsGDBAtxzzz0ICgrCwoULfX5cubm5SE5OdowzJycHzzzzDObOnYuzZ896jRUWFmL48OGW+tauXYvg4GDcfPPNSEhIQHR0NNavX+8Zz8/Ph9vtttRZzttvv42MjAzMnz8fALB06VI0a9YMycnJmDp1quW+OXPmIDw8HHfeeSfi4uLw7LPPIjo6Gs8++yymT5+OyMhIvPnmm5Z7qyIoKAi5ubm2PHerVq0qvblcLjRv3txz32oKCgq87u/atQsZGRlIS0vDoEGDkJmZabnT7XZ7vFu2bEFQUBC6deuGsWPHolevXggMDMTGjRst9y5YsABZWVkAgEuXLuGBBx5AQEAA3G43AgMD8cgjj+Dy5ct+72zRogVmzJiBEydOWPq8P4XL5UJ0dDQCAgKQnp6Ov/zlL7hy5Yqtzq+//hqDBg1C48aNMXLkSFy9ehUPPvggXC4X3G43UlNTcerUKcd4P/roI3Tp0gUhISFwu91wu92oU6cO7r33Xhw/ftxyn6b37bffRvPmzT2+8lvz5s3xzjvv2OLU9FZFTk6Obed0De/HH3+MBx98EGPHjsX+/fu9xv71r3/htttuc4TzypUrmDRpErp27eqZH73wwgsICwtDcHAwMjIyUFxc7PfO62HnnEnL+Y9//ANXr1713F+5ciW6du2K+Ph4tGnTBu+9954jnAAwc+ZM/P3vfwdQ9nvSo0cPuFwuz3muT58++Oabb/zeCZR9mfIDDzyALVu2WP7cNckJAMeOHUObNm0QEBCAPn36oLCwED179vT8P9944404cOCA3zsBYO7cuUhISLjmfN6pUyfs2LHDcp+m95NPPkHfvn0RFRXl8UVFRaFv37749NNPbXHWxLUmjXUmO72+XmcC9NaafL3OBNS8tSby78ONF6LOTTfdhNdee63K8blz56JJkyY+PKIyNBYR7HJqnJhSU1Px9NNPAwBKS0sxe/ZsREREYPXq1bY5AZ0TU7NmzbB48WIAwM6dOxEYGOi18PXOO++gTZs2ljoBnU2QwMBA9OnTB7///e89t2nTpsHtduOxxx7zPGY1GpsgLpfL4+zVqxceeOABr/Hf/e53uP322y11AkBycjK2bdsGAHjqqaeQlJSE5cuXY//+/fjwww/RtGlTjB071u+dGhsg5d6TJ09ixYoVuOOOOxAYGIj69evjySeftG0h7IEHHkCLFi3w6quvolu3bujfvz9uueUWbN68GVlZWWjXrh0yMjIc4V24cCFq166NJ598EpMmTUJsbCwmTJiAefPmoVu3bqhXrx4OHjxoqVPLW75YPGHCBGRmZiI3Nxe5ubnIzMzExIkTER4ejhdffNFSp6b3euTk5MDlcvnUaZd38eLFCAgIQL9+/dC5c2eEhoZi0aJFnnE75i8aTgCYPHkyYmJiMGbMGKSkpGDkyJFo1KgRFi1ahPfeew8NGzbE7Nmz/d4JADfccEOlN5fLhTp16nju+7sT8J4z/e1vf4Pb7UZGRgbmzp2Lhx56CIGBgVi+fLnfOwGgUaNG2LlzJwDgoYceQqtWrbBz505cunQJOTk56NixIx588EG/dwJl85ebb74ZLpcLzZo1wx/+8AecOXPGco+2EwAGDRqEbt26YeXKlRg8eDA6deqE7t2746uvvsKpU6eQnp6OAQMG+L3zxRdfRHx8PF599VXPBRUzZszA6tWrcd999yEsLAyff/65pU4tr9YGSE1ca3LSxSpaGyAaa01aGyBaa03EOrjxQtQJCQlBXl5eleN5eXkIDQ213PvEE09c93bvvfda3qw1nIDOiSkyMhKHDx/2emzx4sUIDw/HypUrbTsJa5yYatWq5XU1dUhICPbu3eu5f+jQIURFRVnqBHQ2QTZv3oxf/OIXmDp1KkpKSryOZd++fZa6fojGJsgPnXFxcdi6davX+N69e1GvXj1LnUDZ66f89dS0aVPP72k5GzduREJCgt87NTZAyr0/fAfVqVOnMHPmTNx0002ed4H88Y9/tNQZFxfnuVo0Pz8fLpcLn3zyiWd88+bNaNiwoaVOLW+zZs2wdOlSz/3PP/8cjRo1QmlpKQBgyJAhGDhwoKVOLW9CQgKWLVtW5fjSpUvRuHFjS51a3oEDB173dvvtt9tyTtfw3nrrrXjllVc895ctW4bw8HDPXMKO+YuGEwBuvPFGrFy5EkDZXMXtdnv9Hi1btgwtWrTweydQduV+v3798O6773puCxYsQEBAAJ577jnPY/7uBLzPc507d8aECRO8xp977jl07NjR751A2fzl2LFjAICkpKRrLsLZsWMH4uLi/N4JVPwf5+TkYNSoUahbty6Cg4Nx5513YtWqVZ7znb87AaB+/frYtWsXAODbb7+Fy+XCZ5995hnPzs5GTEyM3zuTkpKwatUqz/0DBw4gOjracyHSf/3Xf6FXr16WOrW8WhsgGmtNWms+Gl6ti2011pq0NkC01pqIdXDjhajTunXr615JPW7cOLRu3dpyr9vtRuvWrdG9e/dKb23btrW8WWs4AZ0TU/369St9m/Kf/vQnhIWFYd68ebZk1TgxRUdHey0UN2rUyPMHWbkzIiLCUiegtwny7bff4u6770aHDh08rytfbrz4ahPE5XLh8OHDKCwsRHJysufqxnIOHz6MsLAwS50AkJiY6LlSqGHDhtdccZabm4vw8HC/d2psgADeV+X+mMzMTNx7772WZw0LC/PqCUFBQfjiiy88948cOWK5U8tbq1YtHD161OuxwMBAnDx5EkDZx9HY8ceBhjc0NPS6m4T79u1DrVq1LHVqeQMDA9G3b18MGzas0tuvf/1rW87pGt7w8HAcOXLE67H169cjIiIC8+bNs2XOpOEEyl5LP/y4x9DQUK+POTty5Ahq167t906gbC5W/i6/8+fPex63c/6i4QS8z68NGjS4Zj6el5dneT/UcAJlF4t89NFHAMrevfvjj8TatWsXIiMj/d4JXDtvunz5MpYsWYIePXrA7XajUaNGmDJlit87AaB27dqenlhSUoLAwEDk5OR4xg8dOmR5n9BwhoWFec1dSktLERgY6PkY2JycHFv+htTwal1sq7HWpLXmo+HVuthWY61JawNEa62JWAc3Xog6mZmZCA8PR8uWLfHEE09g1qxZmDVrFp544gnccsstiIiIsOV7FJo2bYr//d//rXJ8165dljdrDSegc2Lq1atXlR91smTJEgQFBdmSVePE1KlTJ6+rNX/MypUrbbl6E9DZBCln/vz5iI2NxZtvvomgoCDbFxF8vQlS/lndbrcbLpcLb731ltf4X//6V1uuzHr66aeRmpqKb775BhMmTMAdd9zhWbC5cOECBg8ejN69e/u9U2MDBLh2EaEyCgsLLXX+8pe/9Fzlt2rVKtSuXRsvvfSSZ3zevHm29AgNb/PmzfH+++977mdnZyM4ONjz2f+HDh2ypa4a3i5duiAjI6PSj8i7evUqMjIy0LVrV0udWt6WLVte97tj7Jq/aHgr29wHgA0bNiAiIgKTJk1yhBMAYmJisGfPHs/9tLQ0fPXVV577+/fvt3wBWcNZzpUrVzBu3Dj84he/wObNmwHYP2fScLpcLmRmZmL37t1ITEzE9u3bvcbz8vIsnwtrOIGyj0xq3rw5Dh06hJdeegmpqame+fCRI0fQvXt33HXXXX7vBK4/bzp69CgmT55s+bsdNZwA0LFjR0yePBlA2d8bMTExXu+imjFjhuVXlms4b731Vq+/L9atW4ewsDDPO4ny8vJs2YjW8GpdbKux1qS15qPh1brYVmOtSWsDRHOtiVgDN15IjeDo0aMYN24cunbtiqZNm6Jp06bo2rUrxo8ff80VrFYxdOhQjB49uspxOz43XMMJ6JyYli9fft2sixcvRvfu3S11Ajonps2bN3veml4Zc+fOxauvvmqp88f4chPkhxw8eBDt2rWDy+WyfRHB15sgGzZs8Lr9+As1X375ZbzwwguWOgGguLgYv/71r3HDDTegV69eCA0NRVhYGG666SaEh4cjISHB8i/31HBqbIAAwLBhw1BUVGT5816PRYsWISAgAE2aNEFISAjef/99xMfHY/Dgwbj77rsRHBx83Y9f8Cfva6+9hjp16mDcuHGYOnUq4uPjvT7rftGiRZZ/95SWd/fu3YiNjUV0dDQGDhyIkSNHYuTIkRg4cCCio6MRFxfn9Q4jf/YOGzYMjz32WJXjubm5SEpKstSp5e3fv3+VX5BavoBj9ZxJwwkAt91223U/6urPf/6z5QuNGs4fs27dOiQkJGDixIk+mzP50lk+Zyr/UvA5c+Z4jf/pT39CSkqK3zvL+e1vf4ugoCA0a9YMoaGhcLvdCA4OhtvtRtu2bXH69GlHOP8v8yarP/pLwwkAa9asQWhoKIKDgxEaGoqNGzeiadOmaN++PTp27IiAgIDrfuSmvziXLVuGoKAgDB48GBkZGYiIiPDa7HnjjTeQmppqqVPLq3WxLeD7tSatNR8Nr9bFthprTVobIDVhrYlUDxcACCEGkp+fL8XFxZKYmOhop4jIihUrZNOmTTJnzpxKx5csWSJvv/22ZGZm+vS47GDLli0SHh4ut956a6Xjr7/+upSWlsqoUaN8e2A+4NChQ/Kf//mfsmPHDtm7d6+kpKT4xFtaWirnz5+XyMhIcblctjg2btzodT8uLk6aNm3quf/KK6/I999/L2PHjrXFr8GaNWtk5cqVcuTIESktLZW4uDjp1KmTDB06VMLDw/3eOXz4cPmf//kfqV27tqXPW1PZsmWLbNu2TVJTUyUtLU1yc3Nl1qxZcvHiRbnjjjvk/vvvd4x33rx5smjRIikuLpb09HSZMmWKhIaGikhZnyopKZFmzZo5wnv+/HlZtGiRbNu2TfLz80VEJDY2VlJTU2Xo0KESGRlpqU/LW1xcLCUlJRIWFmbp89ZE78aNGyUrK0smTpxY6XhmZqYsXLhQFixY4NdOEZGDBw9KUFCQJCcnVzq+ZMkSCQwMlMGDB/u1szK+/vprGTFihGRmZsq2bdvkP/7jP2z1+dJ5/Phxr/sRERESHR3tub9w4UIREcnIyPBr5w/Zv3+/fPTRR9fMX3r27Gnb3NTXzunTp8vYsWN92g81nOUcO3ZMsrOzpU2bNpKUlCQFBQUyd+5cuXjxovTr109uu+02RzhXr17tNXcZMWKEZ+zrr78WEfH6XfJn77Fjx2TevHmVzl1GjhwpSUlJlvq00Frz0fBynakCJ68zkerBjRdSY7h69ars27fPcxKOi4uT5s2bS1BQkPKRkerw47rGxsZKSkqKI+taE7L6YhNEpGZk9RUmZTUJ1pUQQgghhBBCCCF2Eah9AISUlpbK1KlTZe7cuVJYWOg1VqdOHRk1apRMnz5d3G63LX6NxTetBT9fek2qK7OWwazWYkpv8rVTs64m9H5Np6a3Mq5cuSKnT5+WhIQEx3uvXr0qp06d8nlWDa8pTi0vszrTq5VVox9q9X6T6mpKVpP+f+3k9ddfl+XLl0vdunXlkUcekR49enjGzp07J+3bt5cjR44oHiH5OZhUV5OyOhLdTzojBBg7dizq16+PN954A0ePHsXFixdx8eJFHD16FG+++SYaNGiAcePGWe4tKSnBpEmTEBUV5fk84vJbVFQUJk+ejJKSEr93anlNqiuzMquVmNKbtPqhRl1N6v0mZf0pcnJybPlc65roZVbnObW8zOpML7M608usznPa6Z07dy569OiB3/zmN/j73//uNXb27FkkJydb7nzllVcQFhaGxx9/HPfeey+Cg4Mxc+ZMz3h+fr5jsmp5WdcynJaVWAc3Xog6MTExWLNmTZXja9asQYMGDSz3aiy+aS3kanhNqiuzVsCs1ceU3qTVDzXqalLvNynrT+G0BZOa5tTymuLU8jKrM73M6kwvszrPaZdXa/E4JSUFixcv9tzfsmUL6tevjylTptjm1cqq4WVdnZmVWAu/44WoEx4eLtu2bZOWLVtWOr5nzx5JS0uT7777zlJvbGysvPfee5Kenl7p+Nq1ayUjI0MKCgr82qnlNamuzFoBs1YfU3qTVj/UqKtJvd+krK1bt77u+KVLl+TgwYNSUlJimVPLy6zOc2p5mdVep5aXWe11anmZ1XlOLe/NN98skyZNkqFDh4qISFZWlgwYMEBGjhwpM2bMkIKCAomPj7c8a1hYmOTm5kpSUpLnsb1790rPnj1l+PDhMnr0aMu9Wlk1vKyrM7MSa+F3vBB1unfvLk899ZQsXrxY6tWr5zV27tw5GT9+vHTv3t1y7/nz5yU+Pr7K8bi4OLlw4YLfO7W8JtWVWctgVmswpTdp9UONuprU+03KmpubK3fffbckJydXOn769Gk5ePCgpU4tL7M6z6nlZVZ7nVpeZrXXqeVlVuc5tbxHjx6VtLQ0z/20tDRZv3699OzZU65cuSKjR4+21FdOvXr15Msvv/RatG7RooWsX79ebr/9djl16pTlTq2sGl7W1ZlZicVov+WGkBMnTqBFixYIDAxEq1at0KdPH/Tp0wetWrVCYGAgbrnlFpw4ccJy769+9Sv07t0bZ8+evWbs7Nmz6NOnD/r16+f3Ti2vSXVlVma1ElN6k1Y/1KirSb3fpKxt2rTB66+/XuX4rl27bHnrv4aXWZ3n1PIyq71OLS+z2uvU8jKr85xa3saNG2PTpk3XPL5v3z7ExMQgIyPDlqz33HMPRo8eXenY3r17Ub9+fcdk1fCyrs7MSqyF73gh6jRu3Fh2794ta9eulW3btkl+fr6IiLRv315mzpwpvXv3Frfbbbn3jTfekF/96lcSFxcnLVu2lJiYGBERKSgokC+++EJSUlLko48+8nunltekujIrs1qJKb1Jqx9q1NWk3m9S1k6dOsmBAweqHK9du7Z07drVUqeWl1md59TyMqu9Ti0vs9rr1PIyq/OcWt7OnTvL8uXLpUuXLl6Pp6SkyLp16+S2226z1FfOhAkTJDs7u9Kxm2++WdavXy8ffPCBpU6trBpe1tWZWYm18DteiNGUlpZes/gWGxsrqampti2qajg1vRowK7P6O6b0JtbUmb3fpKyEEEIIIeT67NmzR7Kzs2X48OGVju/du1c++OADmTZtmo+PzHq0smp4WdcKnJSVWAs3XkiNYfv27bJ161avxZK0tDRp166d8pGR6mBSXZmVWYn/wLoSQgghhBDifCqb96empkr79u2Vj4xUB5PqalJWp8GNF6LOmTNnZNCgQbJlyxZJSEjw+niQEydOSKdOneSDDz6QBg0a2OLXWHzTWvDzpdekujIrs9qBKb3J107NuprQ+zWdWl6tP4Q0vMzqPKeWl1mZ1d+9zMqs/uzU8vraeebMGbnzzjslKyurRsz7WVdrMKmumlmJRWh+wQwhADBo0CCkpqYiLy/vmrG8vDykpaXhrrvustxbUFCAzp07w+VyITExEe3bt0f79u2RmJgIl8uFzp07o6CgwO+dWl6T6sqsZTCrNZjSm7T6oUZdTer9zMqs/u41xanlZVZm9XcvszKrPzu1vAUFBejUqZMx836NrBpe1tWZWYm1cOOFqBMREYGdO3dWOb5jxw5ERERY7tVoYFpNU8NrUl2ZtQJmrT6m9CatfqhRV5N6P7Pa69TyMqvznFpeZrXXqeVlVnudWl5mdZ5Ty8t5fxmsqzWYVFetNQliHdx4IepER0djw4YNVY5nZmYiOjracq9GA9Nqmhpek+rKrBUwa/UxpTdp9UONuprU+5nVXqeWl1md59TyMqu9Ti0vs9rr1PIyq/OcWl7O+ytgXauPSXXVWpMg1uHW/qgzQoYMGSL333+/rFixQoqKijyPFxUVyYoVK2T48OFyzz33WO4NCQnx8v2Y8+fPS0hIiN87tbwm1ZVZmdVKTOlNWv1Qo64m9X5mtdep5WVW5zm1vMxqr1PLy6z2OrW8zOo8p5aX8/4KWNfqY1JdtdYkiIVo7/wQcvnyZYwcORLBwcFwu90IDQ1FaGgo3G43goOD8eijj+Ly5cuWex977DEkJiZi+fLlKCws9DxeWFiI5cuXIykpCaNGjfJ7p5bXpLoyK7NaiSm9SasfatTVpN7PrMzq715TnFpeZmVWf/cyK7P6s1PLy3k/62olJtVVa02CWAc3XkiNobCwEOvXr8eSJUuwZMkSrF+/3quhWY1GA9NqmprN2oS6lsOszGoFpvQm7UmkL+tqUu9nVmb1d68pTi0vszKrv3uZlVn92anl5byfdbUDE+pajq/XJIh1uABA+103hGhSVFQk2dnZkp+fLyIisbGx0qZNG4mMjHSUU9OrAbMyq79jSm9iTZ3Z+5mVWf3da4pTy8uszOrvXmZlVn92ank572dd/R2TshJr4MYLqRFcunRJsrOzpW7dupKSkuI1dvnyZfnzn/8sGRkZSkdHfi4m1ZVZy2BW4g+wroQQQgghhDgfzvudiUl1NSmrE3FrHwAhBw8elObNm0vXrl2lZcuW0q1bNzl16pRnvLCwUIYPH26L+9KlS7J582bJzc29Zuzy5cuycOFCRzg1vCbVlVmZ1WpM6U0aTq26mtL7tZxaXma116nlNcWp5WVWe51aXma116nlZVbnObW8nPeXwbpWH5PqqrkmQSxC95POCAEGDBiAfv364ezZszh06BD69euH5ORkHD9+HACQn58Pt9ttuffAgQNITEyEy+WC2+1G165dcfLkSc+4HV4Np5bXpLoyK7NaiSm9SasfatTVpN7PrMzq715TnFpeZmVWf/cyK7P6s1PLy3k/62olJtVVa02CWAff8ULUycrKkueff17q1asnTZo0kZUrV0p6erp06dJFjhw5Ypt3/Pjx0qJFCzlz5owcOHBAateuLZ07d5YTJ044yqnlNamuzMqsVmJKb9Lqhxp1Nan3Myuz+rvXFKeWl1mZ1d+9zMqs/uzU8nLez7paiUl11VqTIBaivfNDSO3atZGbm3vN448//jgaNWqETZs22bKD26BBA+zZs8dzv7S0FCNHjkRCQgL++c9/2rJzrOHU8ppUV2ZlVisxpTdp9UONuprU+5mVWf3da4pTy8uszOrvXmZlVn92ank572ddrcSkumqtSRDr4MYLUaddu3ZYuHBhpWOPP/44oqKiHNPAtJqmhtekujJrhZdZq48pvUmrH2rU1aTez6zM6u9eU5xaXmZlVn/3Miuz+rNTy8t5P+tqJSbVVWtNglgHN16IOjNnzkTfvn2rHH/00Ufhcrks92o0MK2mqeE1qa7MWgGzVh9TepNWP9Soq0m9n1ntdWp5mdV5Ti0vs9rr1PIyq71OLS+zOs+p5eW8vwzW1RpMqqvWmgSxDm68EGPRaGBaTdOkZs2sFTCrf2JKb2JNK3BS72dWe51aXmZ1nlPLy6z2OrW8zGqvU8vLrM5zank576+AdfVPTMpKrMUFANrfM0MIIYQQQgghhBBCCCGEEOIE3NoHQAghhBBCCCGEEEIIIYQQ4hS48UIIIYQQQgghhBBCCCGEEGIR3HghhBBCCCGEEEIIIYQQQgixCG68EEIIIYQQQgghhBBCCCGEWAQ3XgghhBBCCCGEEEIIIYQQQiyCGy+EEEIIIYQQQgghhBBCCCEWwY0XQgghhBBCCCGEEEIIIYQQi/h/Gm1bGKK2hRQAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "assert dataset_path.exists(), dataset_path\n", "representations = [x.name for x in dataset_path.iterdir() if x.is_dir()]\n", "print(representations)\n", "data = {}\n", "date_to_representations = {}\n", "for representation in representations:\n", " data[representation] = [f.stem for f in (dataset_path / representation).iterdir() if f.suffix == \".npz\"]\n", " assert len(data[representation]) > 0, f\"No files found for representation '{representation}'\"\n", " for item in data[representation]:\n", " date_to_representations.setdefault(item, []).append(representation)\n", "date_to_representations = {k: v for k, v in sorted(date_to_representations.items(), key=lambda item: item[0])}\n", "make_figure_of_date_to_representations(date_to_representations, representations)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "19 213\n", "17 26\n", "13 25\n", "18 14\n", "16 3\n", "12 2\n", "8 1\n", "10 1\n", "11 1\n", "15 1\n", "Name: count, dtype: int64" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.Series({k: len(v) for k, v in date_to_representations.items()}).value_counts()" ] } ], "metadata": { "kernelspec": { "display_name": "nasa", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }