Datasets:
File size: 4,378 Bytes
0edb09e 672ab5d 0edb09e 672ab5d 80bef96 b6c0679 0edb09e 38fd8ac 5e8320c 38fd8ac 672ab5d 9d9cfd2 ef855d6 9d9cfd2 ef855d6 9d9cfd2 ef855d6 9d9cfd2 ef855d6 9d9cfd2 7ae954a 64aecbd 7ae954a 9d9cfd2 38fd8ac 7ae954a 38fd8ac 7ae954a 672ab5d 7ae954a 672ab5d 7ae954a 672ab5d 7ae954a e9b704e 7ae954a de366b6 7bc88ee 38fd8ac 9d9cfd2 942f936 9d9cfd2 a836a3a 7d3bfbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---
language:
- en
license: apache-2.0
size_categories:
- n<1K
task_categories:
- multiple-choice
- visual-question-answering
- visual-document-retrieval
paperswithcode_id: mapeval-visual
configs:
- config_name: benchmark
data_files:
- split: test
path: dataset.json
tags:
- geospatial
---
# MapEval-Visual
This dataset was introduced in [MapEval: A Map-Based Evaluation of Geo-Spatial Reasoning in Foundation Models](https://arxiv.org/abs/2501.00316)
[Project page](https://mapeval.github.io/)
# Example

#### Query
I am presently visiting Mount Royal Park . Could you please inform me about the nearby historical landmark?
#### Options
1. Circle Stone
2. Secret pool
3. Maison William Caldwell Cottingham
4. Poste de cavalerie du Service de police de la Ville de Montreal
#### Correct Option
1. Circle Stone
# Prerequisite
Download the [Vdata.zip](https://huggingface.co/datasets/MapEval/MapEval-Visual/resolve/main/Vdata.zip?download=true) and extract in the working directory. This directory contains all the images.
# Usage
```python
from datasets import load_dataset
import PIL.Image
# Load dataset
ds = load_dataset("MapEval/MapEval-Visual", name="benchmark")
for item in ds["test"]:
# Start with a clear task description
prompt = (
"You are a highly intelligent assistant. "
"Based on the given image, answer the multiple-choice question by selecting the correct option.
"
"Question:
" + item["question"] + "
"
"Options:
"
)
# List the options more clearly
for i, option in enumerate(item["options"], start=1):
prompt += f"{i}. {option}
"
# Add a concluding sentence to encourage selection of the answer
prompt += "
Select the best option by choosing its number."
# Load image from Vdata/ directory
img = PIL.Image.open(item["context"])
# Use the prompt as needed
print([prompt, img]) # Replace with your processing logic
# Then match the output with item["answer"] or item["options"][item["answer"]-1]
# If item["answer"] == 0: then it's unanswerable
```
# Leaderboard
| Model | Overall | Place Info | Nearby | Routing | Counting | Unanswerable |
|---------------------------|:-------:|:----------:|:------:|:-------:|:--------:|:------------:|
| Claude-3.5-Sonnet | **61.65** | **82.64** | 55.56 | **45.00** | **47.73** | **90.00** |
| GPT-4o | 58.90 | 76.86 | **57.78** | 50.00 | **47.73** | 40.00 |
| Gemini-1.5-Pro | 56.14 | 76.86 | 56.67 | 43.75 | 32.95 | 80.00 |
| GPT-4-Turbo | 55.89 | 75.21 | 56.67 | 42.50 | 44.32 | 40.00 |
| Gemini-1.5-Flash | 51.94 | 70.25 | 56.47 | 38.36 | 32.95 | 55.00 |
| GPT-4o-mini | 50.13 | 77.69 | 47.78 | 41.25 | 28.41 | 25.00 |
| Qwen2-VL-7B-Instruct | 51.63 | 71.07 | 48.89 | 40.00 | 40.91 | 40.00 |
| Glm-4v-9b | 48.12 | 73.55 | 42.22 | 41.25 | 34.09 | 10.00 |
| InternLm-Xcomposer2 | 43.11 | 70.41 | 48.89 | 43.75 | 34.09 | 10.00 |
| MiniCPM-Llama3-V-2.5 | 40.60 | 60.33 | 32.22 | 32.50 | 31.82 | 30.00 |
| Llama-3-VILA1.5-8B | 32.99 | 46.90 | 32.22 | 28.75 | 26.14 | 5.00 |
| DocOwl1.5 | 31.08 | 43.80 | 23.33 | 32.50 | 27.27 | 0.00 |
| Llava-v1.6-Mistral-7B-hf | 31.33 | 42.15 | 28.89 | 32.50 | 21.59 | 15.00 |
| Paligemma-3B-mix-224 | 30.58 | 37.19 | 25.56 | 38.75 | 23.86 | 10.00 |
| Llava-1.5-7B-hf | 20.05 | 22.31 | 18.89 | 13.75 | 28.41 | 0.00 |
| Human | 82.23 | 81.67 | 82.42 | 85.18 | 78.41 | 65.00 |
# Citation
If you use this dataset, please cite the original paper:
```
@article{dihan2024mapeval,
title={MapEval: A Map-Based Evaluation of Geo-Spatial Reasoning in Foundation Models},
author={Dihan, Mahir Labib and Hassan, Md Tanvir and Parvez, Md Tanvir and Hasan, Md Hasebul and Alam, Md Almash and Cheema, Muhammad Aamir and Ali, Mohammed Eunus and Parvez, Md Rizwan},
journal={arXiv preprint arXiv:2501.00316},
year={2024}
}
``` |