---
language:
- en
license: mit
size_categories:
- n<1K
task_categories:
- text-generation
tags:
- math world problems
- math
- arithmetics
dataset_info:
- config_name: default
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: chain
    dtype: string
  - name: result
    dtype: string
  - name: result_float
    dtype: float64
  - name: equation
    dtype: string
  - name: problem_type
    dtype: string
  splits:
  - name: test
    num_bytes: 335744
    num_examples: 1000
  download_size: 116449
  dataset_size: 335744
- config_name: original-splits
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: chain
    dtype: string
  - name: result
    dtype: string
  - name: result_float
    dtype: float64
  - name: equation
    dtype: string
  - name: problem_type
    dtype: string
  splits:
  - name: test
    num_bytes: 335744
    num_examples: 1000
  download_size: 116449
  dataset_size: 335744
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
- config_name: original-splits
  data_files:
  - split: test
    path: original-splits/test-*
---



# Dataset Card for Calc-SVAMP


## Summary

The dataset is a collection of simple math word problems focused on arithmetics. It is derived from <https://github.com/arkilpatel/SVAMP/>.

The main addition in this dataset variant is the `chain` column. It was created by converting the solution to a simple html-like language that can be easily
parsed (e.g. by BeautifulSoup). The data contains 3 types of tags:

- gadget: A tag whose content is intended to be evaluated by calling an external tool (sympy-based calculator in this case)
- output: An output of the external tool
- result: The final answer to the mathematical problem (a number)


## Supported Tasks

This variant of the dataset is intended for training Chain-of-Thought reasoning models able to use external tools to enhance the factuality of their responses.
This dataset presents in-context scenarios where models can outsource the computations in the reasoning chain to a calculator.


## Construction process

We created the dataset by converting the **equation** attribute in the original dataset to a sequence (chain) of calculations, with final one being the result to the math problem.
We also perform in-dataset and cross-dataset data-leak detection within the [Calc-X collection](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483).
However, for SVAMP specifically, we detected no data leaks and filtered no data.

## Content and data splits

The dataset contains the same data instances as the original dataset except for a correction of inconsistency between `equation` and `answer` in one data instance.
To the best of our knowledge, the original dataset does not contain an official train-test split. We treat the whole dataset as a testing benchmark.


## Attributes:

- **id**: problem id from the original dataset
- **question**: the question intended to answer
- **chain**: series of simple operations (derived from `equation`) that leads to the solution
- **result**: the result (number) as a string
- **result_float**: result converted to a floating point
- **equation**: a nested expression that evaluates to the correct result
- **problem_type**: a category of the problem

Attributes **id**, **question**, **chain**, and **result** are present in all datasets in [Calc-X collection](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483).


## Related work

This dataset was created as a part of a larger effort in training models capable of using a calculator during inference, which we call Calcformers.

- [**Calc-X collection**](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483) - datasets for training Calcformers
- [**Calcformers collection**](https://huggingface.co/collections/MU-NLPC/calcformers-65367392badc497807b3caf5) - calculator-using models we trained and published on HF
- [**Calc-X and Calcformers paper**](https://arxiv.org/abs/2305.15017)
- [**Calc-X and Calcformers repo**](https://github.com/prompteus/calc-x)

Here are links to the original dataset:

- [**original SVAMP dataset and repo**](https://github.com/arkilpatel/SVAMP/)
- [**original SVAMP paper**](https://www.semanticscholar.org/paper/Are-NLP-Models-really-able-to-Solve-Simple-Math-Patel-Bhattamishra/13c4e5a6122f3fa2663f63e49537091da6532f35)


## Licence

MIT, consistent with the original source dataset linked above.


## Cite

If you use this version of dataset in research, please cite the original [SVAMP paper](https://www.semanticscholar.org/paper/Are-NLP-Models-really-able-to-Solve-Simple-Math-Patel-Bhattamishra/13c4e5a6122f3fa2663f63e49537091da6532f35), and [Calc-X collection](https://arxiv.org/abs/2305.15017) as follows:

```bibtex
@inproceedings{kadlcik-etal-2023-soft,
    title = "Calc-X and Calcformers: Empowering Arithmetical Chain-of-Thought through Interaction with Symbolic Systems",
    author = "Marek Kadlčík and Michal Štefánik and Ondřej Sotolář and Vlastimil Martinek",
    booktitle = "Proceedings of the The 2023 Conference on Empirical Methods in Natural Language Processing: Main track",
    month = dec,
    year = "2023",
    address = "Singapore, Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2305.15017",
}
```