""" https://github.com/xingyizhou/CenterTrack Modified by Xiaoyu Zhao https://github.com/xingyizhou/CenterTrack/blob/master/src/tools/convert_mot_to_coco.py There are extra many convert_X_to_coco.py https://cocodataset.org/#format-data """ import os import numpy as np import json import cv2 from tqdm import tqdm DATA_PATH = "PATH/TO/sportsmot" OUT_PATH = os.path.join(DATA_PATH, "annotations") os.makedirs(OUT_PATH) SPLITS = ["train", "val", "test"] HALF_VIDEO = False CREATE_SPLITTED_ANN = True USE_DET = False CREATE_SPLITTED_DET = False for split in SPLITS: data_path = os.path.join(DATA_PATH, split) out_path = os.path.join(OUT_PATH, "{}.json".format(split)) out = { "images": [], "annotations": [], "videos": [], "categories": [{ "id": 1, "name": "pedestrian" }] } video_list = os.listdir(data_path) image_cnt = 0 ann_cnt = 0 video_cnt = 0 for seq in tqdm(sorted(video_list)): if ".DS_Store" in seq: continue video_cnt += 1 # video sequence number. out["videos"].append({"id": video_cnt, "file_name": seq}) seq_path = os.path.join(data_path, seq) img_path = os.path.join(seq_path, "img1") ann_path = os.path.join(seq_path, "gt/gt.txt") images = os.listdir(img_path) num_images = len([image for image in images if "jpg" in image]) # half and half if HALF_VIDEO and ("half" in split): image_range = [0, num_images // 2] if "train" in split else \ [num_images // 2 + 1, num_images - 1] else: image_range = [0, num_images - 1] for i in range(num_images): if i < image_range[0] or i > image_range[1]: continue img = cv2.imread( os.path.join(data_path, "{}/img1/{:06d}.jpg".format(seq, i + 1))) height, width = img.shape[:2] image_info = { "file_name": "{}/img1/{:06d}.jpg".format(seq, i + 1), # image name. "id": image_cnt + i + 1, # image number in the entire training set. "frame_id": i + 1 - image_range[ 0], # image number in the video sequence, starting from 1. "prev_image_id": image_cnt + i if i > 0 else -1, # image number in the entire training set. "next_image_id": image_cnt + i + 2 if i < num_images - 1 else -1, "video_id": video_cnt, "height": height, "width": width } out["images"].append(image_info) print("{}: {} images".format(seq, num_images)) if split != "test": det_path = os.path.join(seq_path, "det/det.txt") anns = np.loadtxt(ann_path, dtype=np.float32, delimiter=",") if USE_DET: dets = np.loadtxt(det_path, dtype=np.float32, delimiter=",") if CREATE_SPLITTED_ANN and ("half" in split): anns_out = np.array([ anns[i] for i in range(anns.shape[0]) if int(anns[i][0]) - 1 >= image_range[0] and int(anns[i][0]) - 1 <= image_range[1] ], np.float32) anns_out[:, 0] -= image_range[0] gt_out = os.path.join(seq_path, "gt/gt_{}.txt".format(split)) fout = open(gt_out, "w") for o in anns_out: fout.write( "{:d},{:d},{:d},{:d},{:d},{:d},{:d},{:d},{:.6f}\n". format(int(o[0]), int(o[1]), int(o[2]), int(o[3]), int(o[4]), int(o[5]), int(o[6]), int(o[7]), o[8])) fout.close() if CREATE_SPLITTED_DET and ("half" in split) and USE_DET: dets_out = np.array([ dets[i] for i in range(dets.shape[0]) if int(dets[i][0]) - 1 >= image_range[0] and int(dets[i][0]) - 1 <= image_range[1] ], np.float32) dets_out[:, 0] -= image_range[0] det_out = os.path.join(seq_path, "det/det_{}.txt".format(split)) dout = open(det_out, "w") for o in dets_out: dout.write( "{:d},{:d},{:.1f},{:.1f},{:.1f},{:.1f},{:.6f}\n". format(int(o[0]), int(o[1]), float(o[2]), float(o[3]), float(o[4]), float(o[5]), float(o[6]))) dout.close() print("{} ann images".format(int(anns[:, 0].max()))) for i in range(anns.shape[0]): frame_id = int(anns[i][0]) if frame_id - 1 < image_range[0] or frame_id - 1 > image_range[ 1]: continue track_id = int(anns[i][1]) cat_id = int(anns[i][7]) ann_cnt += 1 if not ("15" in DATA_PATH): if not (float(anns[i][8]) >= 0.25): # visibility. continue if not (int(anns[i][6]) == 1): # whether ignore. continue if int(anns[i][7]) in [3, 4, 5, 6, 9, 10, 11]: # Non-person continue if int(anns[i][7]) in [2, 7, 8, 12]: # Ignored person category_id = -1 else: category_id = 1 # pedestrian(non-static) else: category_id = 1 ann = { "id": ann_cnt, "category_id": category_id, "image_id": image_cnt + frame_id, "track_id": track_id, "bbox": anns[i][2:6].tolist(), "conf": float(anns[i][6]), "iscrowd": 0, "area": float(anns[i][4] * anns[i][5]) } out["annotations"].append(ann) image_cnt += num_images print("loaded {} for {} images and {} samples".format( split, len(out["images"]), len(out["annotations"]))) with open(out_path, "w") as f: json.dump(out, f, indent=2)