TGIF / TGIF.py
Leyo's picture
loading script for locally hosted data
8a08000
raw
history blame
4.75 kB
# Lint as: python3
"""TGIF: A New Dataset and Benchmark on Animated GIF Description"""
import os
import csv
import datasets
_CITATION = """
@InProceedings{tgif-cvpr2016,
author = {Li, Yuncheng and Song, Yale and Cao, Liangliang and Tetreault, Joel and Goldberg, Larry and Jaimes, Alejandro and Luo, Jiebo},
title = "{TGIF: A New Dataset and Benchmark on Animated GIF Description}",
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2016}
}
"""
_DESCRIPTION = """\
The Tumblr GIF (TGIF) dataset contains 100K animated GIFs and 120K sentences describing visual content of the animated GIFs.
The animated GIFs have been collected from Tumblr, from randomly selected posts published between May and June of 2015.
We provide the URLs of animated GIFs in this release. The sentences are collected via crowdsourcing, with a carefully designed
annotationinterface that ensures high quality dataset. We provide one sentence per animated GIF for the training and validation splits,
and three sentences per GIF for the test split. The dataset shall be used to evaluate animated GIF/video description techniques.
"""
_URL_BASE = "http://raingo.github.io/TGIF-Release/"
_DL_PATH = "data.tar.gz"
class TGIFConfig(datasets.BuilderConfig):
"""BuilderConfig for TGIF."""
def __init__(self, **kwargs):
super(TGIFConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs)
class TGIF(datasets.GeneratorBasedBuilder):
DEFAULT_CONFIG_NAME = "all"
BUILDER_CONFIGS = [
TGIFConfig(name="all", description="All the TGIF dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"video_id": datasets.Value("string"),
"caption": datasets.features.Sequence(datasets.Value("string"))
}
),
supervised_keys=None,
homepage=_URL_BASE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download(_DL_PATH)
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
train_splits = [
datasets.SplitGenerator(
name="train",
gen_kwargs={
"local_extracted_archive": local_extracted_archive,
"files": dl_manager.iter_archive(_DL_PATH),
"split": "train"
},
)
]
dev_splits = [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"local_extracted_archive": local_extracted_archive,
"files": dl_manager.iter_archive(_DL_PATH),
"split": "dev"
},
)
]
test_splits = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"local_extracted_archive": local_extracted_archive,
"files": dl_manager.iter_archive(_DL_PATH),
"split": "test"
},
)
]
return train_splits + dev_splits + test_splits
def _generate_examples(self, files, local_extracted_archive, split):
"""This function returns the examples."""
dict = {}
for path, f in files:
if path.endswith(split + ".txt"):
print(path)
with open(path,'r') as txt_file:
for line in txt_file:
line = line[0:-1]
dict[line] = []
for path, f in files:
if path.endswith("tgif-v1.0.tsv"):
print(path)
with open(path, encoding="utf-8") as tsv_file:
tsv_reader = csv.reader(tsv_file, delimiter="\t", quotechar='"' )
for idx, (video_link, text) in enumerate(tsv_reader):
try:
dict[video_link].append(text)
except Exception:
pass
for idx, video_link in enumerate(dict):
yield idx, {
"video_id": video_link,
"captions": dict[video_link],
}