Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
koalazf99 commited on
Commit
a23c843
·
verified ·
1 Parent(s): 0528b75

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -6
README.md CHANGED
@@ -29,21 +29,26 @@ MegaMath is curated via the following three efforts:
29
 
30
  ## MegaMath Compared to Existing Datasets
31
  MegaMath is the largest open math pre-training dataset to date, surpassing DeepSeekMath (120B) tokens.
32
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/628f6e5ab90dde28ef57d293/_yAulJQ1lcL56Dvqnxr4W.png)
 
 
 
33
 
34
  ## MegaMath Delivers with High Quality
35
  During development, we use extensive experiments to find optimal practice for text extraction, deduplication, fasttext training, etc. Training MegaMath data shows better performance than existing open datasets.
36
 
37
- <p float="left">
38
- <img src="https://cdn-uploads.huggingface.co/production/uploads/628f6e5ab90dde28ef57d293/Cft-qAGA4xNsqTVuRIend.png" width="45%" />
39
- <img src="https://cdn-uploads.huggingface.co/production/uploads/628f6e5ab90dde28ef57d293/XSBJ_wVexM-0rk9bcpU5Q.png" width="45%" />
40
- </p>
41
 
42
 
43
  ## Training MegaMath on Latest LMs
44
  We also release two proof-of-concept models which is based on [Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) and [LLama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B).
45
  Training MegaMath on Llama-3.2-1B and LLama-3.2-3B brings about 15% ~ 20% performance boost on 10 downstream benchmarks, demonstrateing its high data quality.
46
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/628f6e5ab90dde28ef57d293/EIReQ8TIbyn1V3JfsEKiL.png)
 
 
47
 
48
  ## Detailed Statistics
49
  | **Category** | **# Sample(M)** | **# Toks(B)** | **Avg. (# Toks)** |
 
29
 
30
  ## MegaMath Compared to Existing Datasets
31
  MegaMath is the largest open math pre-training dataset to date, surpassing DeepSeekMath (120B) tokens.
32
+ <div style="display: flex; justify-content: center; gap: 20px;">
33
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/628f6e5ab90dde28ef57d293/_yAulJQ1lcL56Dvqnxr4W.png" width="75%" />
34
+ </div>
35
+ ![image/png]()
36
 
37
  ## MegaMath Delivers with High Quality
38
  During development, we use extensive experiments to find optimal practice for text extraction, deduplication, fasttext training, etc. Training MegaMath data shows better performance than existing open datasets.
39
 
40
+ <div style="display: flex; justify-content: center; gap: 20px;">
41
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/628f6e5ab90dde28ef57d293/-E1tZP-vbU1ZPzy56cl4s.png" width="30%" />
42
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/628f6e5ab90dde28ef57d293/XSBJ_wVexM-0rk9bcpU5Q.png" width="30%" />
43
+ </div>
44
 
45
 
46
  ## Training MegaMath on Latest LMs
47
  We also release two proof-of-concept models which is based on [Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) and [LLama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B).
48
  Training MegaMath on Llama-3.2-1B and LLama-3.2-3B brings about 15% ~ 20% performance boost on 10 downstream benchmarks, demonstrateing its high data quality.
49
+ <div style="display: flex; justify-content: center; gap: 20px;">
50
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/628f6e5ab90dde28ef57d293/EIReQ8TIbyn1V3JfsEKiL.png" width="30%" />
51
+ </div>
52
 
53
  ## Detailed Statistics
54
  | **Category** | **# Sample(M)** | **# Toks(B)** | **Avg. (# Toks)** |