import torch import pytorch_kinematics.transforms as tf def test_transform(): N = 20 mats = tf.random_rotations(N, dtype=torch.float64, device="cpu", requires_grad=True) assert list(mats.shape) == [N, 3, 3] # test batch conversions quat = tf.matrix_to_quaternion(mats) assert list(quat.shape) == [N, 4] mats_recovered = tf.quaternion_to_matrix(quat) assert torch.allclose(mats, mats_recovered) quat_identity = tf.quaternion_multiply(quat, tf.quaternion_invert(quat)) assert torch.allclose(tf.quaternion_to_matrix(quat_identity), torch.eye(3, dtype=torch.float64).repeat(N, 1, 1)) def test_translations(): t = tf.Translate(1, 2, 3) points = torch.tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.5, 0.0]]).view( 1, 3, 3 ) points_out = t.transform_points(points) points_out_expected = torch.tensor( [[2.0, 2.0, 3.0], [1.0, 3.0, 3.0], [1.5, 2.5, 3.0]] ).view(1, 3, 3) assert torch.allclose(points_out, points_out_expected) N = 20 points = torch.randn((N, N, 3)) translation = torch.randn((N, 3)) transforms = tf.Transform3d(pos=translation) translated_points = transforms.transform_points(points) assert torch.allclose(translated_points, translation.repeat(N, 1, 1).transpose(0, 1) + points) returned_points = transforms.inverse().transform_points(translated_points) assert torch.allclose(returned_points, points, atol=1e-6) def test_rotate_axis_angle(): t = tf.Transform3d().rotate_axis_angle(90.0, axis="Z") points = torch.tensor([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 1.0]]).view( 1, 3, 3 ) normals = torch.tensor( [[1.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 0.0, 0.0]] ).view(1, 3, 3) points_out = t.transform_points(points) normals_out = t.transform_normals(normals) points_out_expected = torch.tensor( [[0.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [-1.0, 0.0, 1.0]] ).view(1, 3, 3) normals_out_expected = torch.tensor( [[0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0]] ).view(1, 3, 3) assert torch.allclose(points_out, points_out_expected) assert torch.allclose(normals_out, normals_out_expected) def test_rotate(): R = tf.so3_exp_map(torch.randn((1, 3))) t = tf.Transform3d().rotate(R) points = torch.tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.5, 0.0]]).view( 1, 3, 3 ) normals = torch.tensor( [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 1.0, 0.0]] ).view(1, 3, 3) points_out = t.transform_points(points) normals_out = t.transform_normals(normals) points_out_expected = torch.bmm(points, R.transpose(-1, -2)) normals_out_expected = torch.bmm(normals, R.transpose(-1, -2)) assert torch.allclose(points_out, points_out_expected) assert torch.allclose(normals_out, normals_out_expected) for i in range(3): assert torch.allclose(points_out[0, i], R @ points[0, i]) assert torch.allclose(normals_out[0, i], R @ normals[0, i]) def test_transform_combined(): R = tf.so3_exp_map(torch.randn((1, 3))) tr = torch.randn((1, 3)) t = tf.Transform3d(rot=R, pos=tr) N = 10 points = torch.randn((N, 3)) normals = torch.randn((N, 3)) points_out = t.transform_points(points) normals_out = t.transform_normals(normals) for i in range(N): assert torch.allclose(points_out[i], R @ points[i] + tr) assert torch.allclose(normals_out[i], R @ normals[i]) def test_euler(): euler_angles = torch.tensor([1, 0, 0.5]) t = tf.Transform3d(rot=euler_angles) sxyz_matrix = torch.tensor([[0.87758256, -0.47942554, 0., 0., ], [0.25903472, 0.47415988, -0.84147098, 0.], [0.40342268, 0.73846026, 0.54030231, 0.], [0., 0., 0., 1.]]) # from tf.transformations import euler_matrix # print(euler_matrix(*euler_angles, "rxyz")) # print(t.get_matrix()) assert torch.allclose(sxyz_matrix, t.get_matrix()) def test_quaternions(): n = 10 q = tf.random_quaternions(n) q_tf = tf.wxyz_to_xyzw(q) assert torch.allclose(q, tf.xyzw_to_wxyz(q_tf)) if __name__ == "__main__": test_transform() test_translations() test_rotate_axis_angle() test_rotate() test_euler() test_quaternions()