|
import json |
|
import os |
|
from tabnanny import check |
|
|
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import pytorch_kinematics as pk |
|
import torch |
|
import torch.nn |
|
import transforms3d |
|
import trimesh as tm |
|
import urdf_parser_py.urdf as URDF_PARSER |
|
from plotly import graph_objects as go |
|
from pytorch_kinematics.urdf_parser_py.urdf import (URDF, Box, Cylinder, Mesh, Sphere) |
|
from .rot6d import * |
|
from .utils_math import * |
|
import trimesh.sample |
|
|
|
|
|
|
|
|
|
|
|
|
|
class HandModel: |
|
def __init__(self, robot_name, urdf_filename, mesh_path, |
|
batch_size=1, |
|
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'), |
|
mesh_nsp=128, |
|
hand_scale=2. |
|
): |
|
self.device = device |
|
self.robot_name = robot_name |
|
self.batch_size = batch_size |
|
|
|
self.robot = pk.build_chain_from_urdf(open(urdf_filename).read()).to(dtype=torch.float, device=self.device) |
|
self.robot_full = URDF_PARSER.URDF.from_xml_file(urdf_filename) |
|
|
|
|
|
|
|
|
|
self.global_translation = None |
|
self.global_rotation = None |
|
self.softmax = torch.nn.Softmax(dim=-1) |
|
|
|
|
|
self.contact_point_basis = {} |
|
self.contact_normals = {} |
|
self.surface_points = {} |
|
self.surface_points_normal = {} |
|
visual = URDF.from_xml_string(open(urdf_filename).read()) |
|
self.mesh_verts = {} |
|
self.mesh_faces = {} |
|
|
|
self.canon_verts = [] |
|
self.canon_faces = [] |
|
self.idx_vert_faces = [] |
|
self.face_normals = [] |
|
verts_bias = 0 |
|
|
|
for i_link, link in enumerate(visual.links): |
|
print(f"Processing link #{i_link}: {link.name}") |
|
|
|
if len(link.visuals) == 0: |
|
continue |
|
if type(link.visuals[0].geometry) == Mesh: |
|
|
|
if robot_name == 'shadowhand' or robot_name == 'allegro' or robot_name == 'barrett': |
|
filename = link.visuals[0].geometry.filename.split('/')[-1] |
|
elif robot_name == 'allegro': |
|
filename = f"{link.visuals[0].geometry.filename.split('/')[-2]}/{link.visuals[0].geometry.filename.split('/')[-1]}" |
|
else: |
|
filename = link.visuals[0].geometry.filename |
|
mesh = tm.load(os.path.join(mesh_path, filename), force='mesh', process=False) |
|
elif type(link.visuals[0].geometry) == Cylinder: |
|
mesh = tm.primitives.Cylinder( |
|
radius=link.visuals[0].geometry.radius, height=link.visuals[0].geometry.length) |
|
elif type(link.visuals[0].geometry) == Box: |
|
mesh = tm.primitives.Box(extents=link.visuals[0].geometry.size) |
|
elif type(link.visuals[0].geometry) == Sphere: |
|
mesh = tm.primitives.Sphere( |
|
radius=link.visuals[0].geometry.radius) |
|
else: |
|
print(type(link.visuals[0].geometry)) |
|
raise NotImplementedError |
|
try: |
|
scale = np.array( |
|
link.visuals[0].geometry.scale).reshape([1, 3]) |
|
except: |
|
scale = np.array([[1, 1, 1]]) |
|
try: |
|
rotation = transforms3d.euler.euler2mat(*link.visuals[0].origin.rpy) |
|
translation = np.reshape(link.visuals[0].origin.xyz, [1, 3]) |
|
|
|
|
|
|
|
except AttributeError: |
|
rotation = transforms3d.euler.euler2mat(0, 0, 0) |
|
translation = np.array([[0, 0, 0]]) |
|
|
|
|
|
|
|
|
|
if self.robot_name == 'shadowhand': |
|
pts, pts_face_index = trimesh.sample.sample_surface_even(mesh=mesh, count=64) |
|
pts_normal = np.array([mesh.face_normals[x] for x in pts_face_index], dtype=float) |
|
else: |
|
pts, pts_face_index = trimesh.sample.sample_surface_even(mesh=mesh, count=128) |
|
pts_normal = np.array([mesh.face_normals[x] for x in pts_face_index], dtype=float) |
|
|
|
if self.robot_name == 'barrett': |
|
if link.name in ['bh_base_link']: |
|
pts = trimesh.sample.volume_mesh(mesh=mesh, count=1024) |
|
pts_normal = np.array([[0., 0., 1.] for x in range(pts.shape[0])], dtype=float) |
|
if self.robot_name == 'ezgripper': |
|
if link.name in ['left_ezgripper_palm_link']: |
|
pts = trimesh.sample.volume_mesh(mesh=mesh, count=1024) |
|
pts_normal = np.array([[1., 0., 0.] for x in range(pts.shape[0])], dtype=float) |
|
if self.robot_name == 'robotiq_3finger': |
|
if link.name in ['gripper_palm']: |
|
pts = trimesh.sample.volume_mesh(mesh=mesh, count=1024) |
|
pts_normal = np.array([[0., 0., 1.] for x in range(pts.shape[0])], dtype=float) |
|
|
|
pts *= scale |
|
|
|
|
|
|
|
if robot_name == 'shadowhand': |
|
pts = pts[:, [0, 2, 1]] |
|
pts_normal = pts_normal[:, [0, 2, 1]] |
|
pts[:, 1] *= -1 |
|
pts_normal[:, 1] *= -1 |
|
|
|
pts = np.matmul(rotation, pts.T).T + translation |
|
|
|
pts = np.concatenate([pts, np.ones([len(pts), 1])], axis=-1) |
|
pts_normal = np.concatenate([pts_normal, np.ones([len(pts_normal), 1])], axis=-1) |
|
self.surface_points[link.name] = torch.from_numpy(pts).to( |
|
device).float().unsqueeze(0).repeat(batch_size, 1, 1) |
|
self.surface_points_normal[link.name] = torch.from_numpy(pts_normal).to( |
|
device).float().unsqueeze(0).repeat(batch_size, 1, 1) |
|
|
|
|
|
self.mesh_verts[link.name] = np.array(mesh.vertices) * scale |
|
if robot_name == 'shadowhand': |
|
self.mesh_verts[link.name] = self.mesh_verts[link.name][:, [0, 2, 1]] |
|
self.mesh_verts[link.name][:, 1] *= -1 |
|
self.mesh_verts[link.name] = np.matmul(rotation, self.mesh_verts[link.name].T).T + translation |
|
self.mesh_faces[link.name] = np.array(mesh.faces) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.revolute_joints = [] |
|
for i in range(len(self.robot_full.joints)): |
|
if self.robot_full.joints[i].joint_type == 'revolute': |
|
self.revolute_joints.append(self.robot_full.joints[i]) |
|
self.revolute_joints_q_mid = [] |
|
self.revolute_joints_q_var = [] |
|
self.revolute_joints_q_upper = [] |
|
self.revolute_joints_q_lower = [] |
|
for i in range(len(self.robot.get_joint_parameter_names())): |
|
for j in range(len(self.revolute_joints)): |
|
if self.revolute_joints[j].name == self.robot.get_joint_parameter_names()[i]: |
|
joint = self.revolute_joints[j] |
|
assert joint.name == self.robot.get_joint_parameter_names()[i] |
|
self.revolute_joints_q_mid.append( |
|
(joint.limit.lower + joint.limit.upper) / 2) |
|
self.revolute_joints_q_var.append( |
|
((joint.limit.upper - joint.limit.lower) / 2) ** 2) |
|
self.revolute_joints_q_lower.append(joint.limit.lower) |
|
self.revolute_joints_q_upper.append(joint.limit.upper) |
|
|
|
self.revolute_joints_q_lower = torch.Tensor( |
|
self.revolute_joints_q_lower).repeat([self.batch_size, 1]).to(device) |
|
self.revolute_joints_q_upper = torch.Tensor( |
|
self.revolute_joints_q_upper).repeat([self.batch_size, 1]).to(device) |
|
|
|
self.current_status = None |
|
|
|
self.scale = hand_scale |
|
|
|
|
|
def update_kinematics(self, q): |
|
self.global_translation = q[:, :3] |
|
|
|
self.global_rotation = robust_compute_rotation_matrix_from_ortho6d(q[:,3:9]) |
|
self.current_status = self.robot.forward_kinematics(q[:,9:]) |
|
|
|
|
|
|
|
|
|
def get_meshes_from_q(self, q=None, i=0): |
|
data = [] |
|
if q is not None: self.update_kinematics(q) |
|
for idx, link_name in enumerate(self.mesh_verts): |
|
trans_matrix = self.current_status[link_name].get_matrix() |
|
trans_matrix = trans_matrix[min(len(trans_matrix) - 1, i)].detach().cpu().numpy() |
|
v = self.mesh_verts[link_name] |
|
transformed_v = np.concatenate([v, np.ones([len(v), 1])], axis=-1) |
|
transformed_v = np.matmul(trans_matrix, transformed_v.T).T[..., :3] |
|
transformed_v = np.matmul(self.global_rotation[i].detach().cpu().numpy(), |
|
transformed_v.T).T + np.expand_dims( |
|
self.global_translation[i].detach().cpu().numpy(), 0) |
|
transformed_v = transformed_v * self.scale |
|
f = self.mesh_faces[link_name] |
|
data.append(tm.Trimesh(vertices=transformed_v, faces=f)) |
|
return data |
|
|
|
def get_plotly_data(self, q=None, i=0, color='lightblue', opacity=1.): |
|
data = [] |
|
if q is not None: self.update_kinematics(q) |
|
for idx, link_name in enumerate(self.mesh_verts): |
|
trans_matrix = self.current_status[link_name].get_matrix() |
|
trans_matrix = trans_matrix[min(len(trans_matrix) - 1, i)].detach().cpu().numpy() |
|
v = self.mesh_verts[link_name] |
|
transformed_v = np.concatenate([v, np.ones([len(v), 1])], axis=-1) |
|
transformed_v = np.matmul(trans_matrix, transformed_v.T).T[..., :3] |
|
transformed_v = np.matmul(self.global_rotation[i].detach().cpu().numpy(), |
|
transformed_v.T).T + np.expand_dims( |
|
self.global_translation[i].detach().cpu().numpy(), 0) |
|
transformed_v = transformed_v * self.scale |
|
f = self.mesh_faces[link_name] |
|
data.append( |
|
go.Mesh3d(x=transformed_v[:, 0], y=transformed_v[:, 1], z=transformed_v[:, 2], i=f[:, 0], j=f[:, 1], |
|
k=f[:, 2], color=color, opacity=opacity)) |
|
return data |
|
|
|
|