File size: 4,353 Bytes
88237d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import torch
import pytorch_kinematics.transforms as tf
def test_transform():
N = 20
mats = tf.random_rotations(N, dtype=torch.float64, device="cpu", requires_grad=True)
assert list(mats.shape) == [N, 3, 3]
# test batch conversions
quat = tf.matrix_to_quaternion(mats)
assert list(quat.shape) == [N, 4]
mats_recovered = tf.quaternion_to_matrix(quat)
assert torch.allclose(mats, mats_recovered)
quat_identity = tf.quaternion_multiply(quat, tf.quaternion_invert(quat))
assert torch.allclose(tf.quaternion_to_matrix(quat_identity), torch.eye(3, dtype=torch.float64).repeat(N, 1, 1))
def test_translations():
t = tf.Translate(1, 2, 3)
points = torch.tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.5, 0.0]]).view(
1, 3, 3
)
points_out = t.transform_points(points)
points_out_expected = torch.tensor(
[[2.0, 2.0, 3.0], [1.0, 3.0, 3.0], [1.5, 2.5, 3.0]]
).view(1, 3, 3)
assert torch.allclose(points_out, points_out_expected)
N = 20
points = torch.randn((N, N, 3))
translation = torch.randn((N, 3))
transforms = tf.Transform3d(pos=translation)
translated_points = transforms.transform_points(points)
assert torch.allclose(translated_points, translation.repeat(N, 1, 1).transpose(0, 1) + points)
returned_points = transforms.inverse().transform_points(translated_points)
assert torch.allclose(returned_points, points, atol=1e-6)
def test_rotate_axis_angle():
t = tf.Transform3d().rotate_axis_angle(90.0, axis="Z")
points = torch.tensor([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 1.0]]).view(
1, 3, 3
)
normals = torch.tensor(
[[1.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 0.0, 0.0]]
).view(1, 3, 3)
points_out = t.transform_points(points)
normals_out = t.transform_normals(normals)
points_out_expected = torch.tensor(
[[0.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [-1.0, 0.0, 1.0]]
).view(1, 3, 3)
normals_out_expected = torch.tensor(
[[0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0]]
).view(1, 3, 3)
assert torch.allclose(points_out, points_out_expected)
assert torch.allclose(normals_out, normals_out_expected)
def test_rotate():
R = tf.so3_exp_map(torch.randn((1, 3)))
t = tf.Transform3d().rotate(R)
points = torch.tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.5, 0.0]]).view(
1, 3, 3
)
normals = torch.tensor(
[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 1.0, 0.0]]
).view(1, 3, 3)
points_out = t.transform_points(points)
normals_out = t.transform_normals(normals)
points_out_expected = torch.bmm(points, R.transpose(-1, -2))
normals_out_expected = torch.bmm(normals, R.transpose(-1, -2))
assert torch.allclose(points_out, points_out_expected)
assert torch.allclose(normals_out, normals_out_expected)
for i in range(3):
assert torch.allclose(points_out[0, i], R @ points[0, i])
assert torch.allclose(normals_out[0, i], R @ normals[0, i])
def test_transform_combined():
R = tf.so3_exp_map(torch.randn((1, 3)))
tr = torch.randn((1, 3))
t = tf.Transform3d(rot=R, pos=tr)
N = 10
points = torch.randn((N, 3))
normals = torch.randn((N, 3))
points_out = t.transform_points(points)
normals_out = t.transform_normals(normals)
for i in range(N):
assert torch.allclose(points_out[i], R @ points[i] + tr)
assert torch.allclose(normals_out[i], R @ normals[i])
def test_euler():
euler_angles = torch.tensor([1, 0, 0.5])
t = tf.Transform3d(rot=euler_angles)
sxyz_matrix = torch.tensor([[0.87758256, -0.47942554, 0., 0., ],
[0.25903472, 0.47415988, -0.84147098, 0.],
[0.40342268, 0.73846026, 0.54030231, 0.],
[0., 0., 0., 1.]])
# from tf.transformations import euler_matrix
# print(euler_matrix(*euler_angles, "rxyz"))
# print(t.get_matrix())
assert torch.allclose(sxyz_matrix, t.get_matrix())
def test_quaternions():
n = 10
q = tf.random_quaternions(n)
q_tf = tf.wxyz_to_xyzw(q)
assert torch.allclose(q, tf.xyzw_to_wxyz(q_tf))
if __name__ == "__main__":
test_transform()
test_translations()
test_rotate_axis_angle()
test_rotate()
test_euler()
test_quaternions()
|