"""EMT dataset.""" import os import datasets _HOMEPAGE = "https://github.com/AV-Lab/emt-dataset" _LICENSE = "CC-BY-SA 4.0" _CITATION = """ @article{EMTdataset2025, title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region}, author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji}, year={2025}, eprint={2502.19260}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2502.19260} } """ _DESCRIPTION = """\ A multi-task dataset for detection, tracking, prediction, and intention prediction. This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection + tracking. """ # Annotation repository _ANNOTATION_REPO = "https://huggingface.co/datasets/Murdism/EMT/resolve/main/labels" # Tar file URLs for images _TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/blob/main/train_images.tar.gz" _TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/blob/main/test_images.tar.gz" class EMT(datasets.GeneratorBasedBuilder): """EMT dataset.""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="full_size", description="All images are in their original size.", version=datasets.Version("1.0.0"), ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "objects": datasets.Sequence( { "bbox": datasets.Sequence(datasets.Value("float32"), length=4), "class_id": datasets.Value("int32"), "track_id": datasets.Value("int32"), "class_name": datasets.Value("string"), } ), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Download and extract train/test images and annotations.""" image_paths = { "train": dl_manager.download_and_extract(_TRAIN_IMAGE_ARCHIVE_URL), "test": dl_manager.download_and_extract(_TEST_IMAGE_ARCHIVE_URL), } annotation_paths = { "train": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/train/"), "test": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/test/"), } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": dl_manager.iter_archive(image_paths["train"]), "annotation_path": annotation_paths["train"], }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "images": dl_manager.iter_archive(image_paths["test"]), "annotation_path": annotation_paths["test"], }, ), ] def _generate_examples(self, images, annotation_path): """Generate dataset examples by matching images to their corresponding annotations.""" annotations = {} for file_path, file_obj in images: img_name = os.path.basename(file_path) # e.g., "000001.jpg" video_name = os.path.basename(os.path.dirname(file_path)) # e.g., "video_1112" ann_file = os.path.join(annotation_path, f"{video_name}.txt") if os.path.exists(ann_file): if ann_file not in annotations: annotations[ann_file] = {} if img_name not in annotations[ann_file]: annotations[ann_file][img_name] = [] with open(ann_file, "r", encoding="utf-8") as f: for line in f: parts = line.strip().split() if len(parts) < 8: continue frame_id, track_id, class_name = parts[:3] bbox = list(map(float, parts[4:8])) class_id = _GT_OBJECT_CLASSES.get(class_name, -1) if f"{frame_id}.jpg" == img_name: annotations[ann_file][img_name].append( { "bbox": bbox, "class_id": class_id, "track_id": int(track_id), "class_name": class_name, } ) # Yield dataset entries idx = 0 for file_path, file_obj in images: img_name = os.path.basename(file_path) video_name = os.path.basename(os.path.dirname(file_path)) ann_file = os.path.join(annotation_path, f"{video_name}.txt") if ann_file in annotations and img_name in annotations[ann_file]: yield idx, { "image": {"path": file_path, "bytes": file_obj.read()}, "objects": annotations[ann_file][img_name], } idx += 1