"""EMT dataset.""" import os import datasets _HOMEPAGE = "https://github.com/AV-Lab/emt-dataset" _LICENSE = "CC-BY-SA 4.0" _CITATION = """ @article{EMTdataset2025, title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region}, author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji}, year={2025}, eprint={2502.19260}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2502.19260} } """ _DESCRIPTION = """\ A multi-task dataset for detection, tracking, prediction, and intention prediction. This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection and tracking. """ # Annotation repository _ANNOTATION_REPO = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/annotations" # Tar file URLs for images _TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz" _TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz" class EMT(datasets.GeneratorBasedBuilder): """EMT dataset.""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="full_size", description="All images are in their original size.", version=datasets.Version("1.0.0"), ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "objects": datasets.Sequence( { "bbox": datasets.Sequence(datasets.Value("float32"), length=4), "class_id": datasets.Value("int32"), "track_id": datasets.Value("int32"), "class_name": datasets.Value("string"), } ), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Download train/test images and annotations.""" image_urls = { "train": _TRAIN_IMAGE_ARCHIVE_URL, "test": _TEST_IMAGE_ARCHIVE_URL, } # Download the individual annotation files for train and test annotation_urls = { "train": _ANNOTATION_REPO + "/train/", "test": _ANNOTATION_REPO + "/test/", } # Download image files images = { "train": dl_manager.iter_archive(image_urls["train"]), "test": dl_manager.iter_archive(image_urls["test"]), } # Download annotation files annotations = { "train": dl_manager.download_and_extract(annotation_urls["train"]), "test": dl_manager.download_and_extract(annotation_urls["test"]), } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": images["train"], "annotation_path": annotations["train"], }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "images": images["test"], "annotation_path": annotations["test"], }, ), ] def _generate_examples(self, images, annotation_path): """Generate dataset examples by matching images to their corresponding annotations.""" annotations = {} # Load all annotations into memory for ann_file in os.listdir(annotation_path): video_name = os.path.splitext(ann_file)[0] # Get video folder name ann_path = os.path.join(annotation_path, ann_file) with open(ann_path, "r", encoding="utf-8") as f: for line in f: parts = line.strip().split() if len(parts) < 8: continue frame_id, track_id, class_name = parts[:3] bbox = list(map(float, parts[4:8])) class_id = _GT_OBJECT_CLASSES.get(class_name, -1) img_name = f"{frame_id}.jpg" # Store annotation in a dictionary key = f"{video_name}/{img_name}" if key not in annotations: annotations[key] = [] annotations[key].append( { "bbox": bbox, "class_id": class_id, "track_id": int(track_id), "class_name": class_name, } ) # Yield dataset entries idx = 0 for file_path, file_obj in images: img_name = os.path.basename(file_path) video_name = os.path.basename(os.path.dirname(file_path)) # Match the video folder key = f"{video_name}/{img_name}" if key in annotations: yield idx, { "image": {"path": file_path, "bytes": file_obj.read()}, "objects": annotations[key], } idx += 1