"""EMT dataset.""" import os import datasets _HOMEPAGE = "https://github.com/AV-Lab/emt-dataset" _LICENSE = "CC-BY-SA 4.0" _CITATION = """ @article{EMTdataset2025, title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region}, author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji}, year={2025}, eprint={2502.19260}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2502.19260} } """ _DESCRIPTION = """\ A multi-task dataset for detection, tracking, prediction, and intention prediction. This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection + tracking. """ # Image archive URL _IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/emt_images.tar.gz" # Annotations URL (organized in train/test subfolders) _ANNOTATION_REPO = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/annotations" # "https://huggingface.co/datasets/Murdism/EMT/resolve/main/annotations" _GT_OBJECT_CLASSES = { 0: "Pedestrian", 1: "Cyclist", 2: "Motorbike", 3: "Small_motorised_vehicle", 4: "Car", 5: "Medium_vehicle", 6: "Large_vehicle", 7: "Bus", 8: "Emergency_vehicle", } # Update: Consider using a predefined set of object classes for easier filtering OBJECT_CLASSES = {v: k for k, v in _GT_OBJECT_CLASSES.items()} class EMT(datasets.GeneratorBasedBuilder): """EMT dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "objects": datasets.Sequence( { "bbox": datasets.Sequence(datasets.Value("float32")), "class_id": datasets.Value("int32"), "track_id": datasets.Value("int32"), "class_name": datasets.Value("string"), } ), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): archive_path = dl_manager.download(_IMAGE_ARCHIVE_URL) annotation_paths = { "train": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/train/"), "test": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/test/"), } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": dl_manager.iter_archive(archive_path), "annotation_path": annotation_paths["train"], }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "images": dl_manager.iter_archive(archive_path), "annotation_path": annotation_paths["test"], }, ), ] def _generate_examples(self, images, annotation_path): """Generate examples from annotations and image archive.""" # Dictionary to store annotations annotations = {} # Process each image in the dataset for file_path, file_obj in images: img_name = os.path.basename(file_path) # e.g., "000001.jpg" video_name = os.path.basename(os.path.dirname(file_path)) # e.g., "video_1112" # Expected annotation file ann_file = os.path.join(annotation_path, f"{video_name}.txt") # Read annotations only for the current video if os.path.exists(ann_file): with open(ann_file, "r", encoding="utf-8") as f: for line in f: parts = line.strip().split() if len(parts) < 8: # Ensure there are enough elements continue frame_id, track_id, class_name = parts[:3] bbox = list(map(float, parts[4:8])) # Extract bounding box class_id = _GT_OBJECT_CLASSES.get(class_name, -1) # Convert class_name to numeric ID # Match annotations to the correct image if f"{frame_id}.jpg" == img_name: if img_name not in annotations: annotations[img_name] = [] annotations[img_name].append( { "bbox": bbox, "class_id": class_id, "track_id": int(track_id), "class_name": class_name, } ) # Yield dataset entries idx = 0 for file_path, file_obj in images: img_name = os.path.basename(file_path) if img_name in annotations: yield idx, { "image": {"path": file_path, "bytes": file_obj.read()}, "objects": annotations[img_name], } idx += 1 # def _generate_examples(self, images, annotation_path): # """Generate examples from annotations and image archive.""" # # Load annotation files # annotations = {} # for root, _, files in os.walk(annotation_path): # for file in files: # with open(os.path.join(root, file), "r", encoding="utf-8") as f: # for line in f: # parts = line.strip().split() # frame_id, track_id, class_name = parts[:3] # bbox = list(map(float, parts[4:8])) # Extract bounding box # class_id = _GT_OBJECT_CLASSES.get(class_name, -1) # Convert class_name to numeric ID, default to -1 if not found # img_path = f"{frame_id}.jpg" # if img_path not in annotations: # annotations[img_path] = [] # annotations[img_path].append( # { # "bbox": bbox, # "class_id": class_id, # "track_id": int(track_id), # "class_name": class_name, # } # ) # # Yield dataset entries # idx = 0 # for file_path, file_obj in images: # img_name = os.path.basename(file_path) # if img_name in annotations: # yield idx, { # "image": {"path": file_path, "bytes": file_obj.read()}, # "objects": annotations[img_name], # } # idx += 1