"""EMT dataset.""" import os import datasets _HOMEPAGE = "https://github.com/AV-Lab/emt-dataset" _LICENSE = "CC-BY-SA 4.0" _CITATION = """ @article{EMTdataset2025, title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region}, author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji}, year={2025}, eprint={2502.19260}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2502.19260} } """ _DESCRIPTION = """\ A multi-task dataset for detection, tracking, prediction, and intention prediction. This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection + tracking. """ # Image archive URL _IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/blob/main/emt_images.tar.gz" # Annotations URL (organized in train/test subfolders) _ANNOTATION_REPO = "https://huggingface.co/datasets/Murdism/EMT/resolve/main/annotations" class EMT(datasets.GeneratorBasedBuilder): """EMT dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "objects": datasets.Sequence( { "bbox": datasets.Sequence(datasets.Float32()), "class_id": datasets.Value("int32"), "track_id": datasets.Value("int32"), "class_name": datasets.Value("string"), } ), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): archive_path = dl_manager.download(_IMAGE_ARCHIVE_URL) annotation_paths = { "train": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/train/"), "test": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/test/"), } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": dl_manager.iter_archive(archive_path), "annotation_path": annotation_paths["train"], }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "images": dl_manager.iter_archive(archive_path), "annotation_path": annotation_paths["test"], }, ), ] def _generate_examples(self, images, annotation_path): """Generate examples from annotations and image archive.""" # Load annotation files annotations = {} for root, _, files in os.walk(annotation_path): for file in files: with open(os.path.join(root, file), "r", encoding="utf-8") as f: for line in f: parts = line.strip().split() frame_id, track_id, class_name = parts[:3] bbox = list(map(float, parts[4:8])) # Extract bounding box class_id = hash(class_name) % 1000 # Convert class_name to numeric ID img_path = f"{frame_id}.jpg" if img_path not in annotations: annotations[img_path] = [] annotations[img_path].append( { "bbox": bbox, "class_id": class_id, "track_id": int(track_id), "class_name": class_name, } ) # Yield dataset entries idx = 0 for file_path, file_obj in images: img_name = os.path.basename(file_path) if img_name in annotations: yield idx, { "image": {"path": file_path, "bytes": file_obj.read()}, "objects": annotations[img_name], } idx += 1