Update EMT.py
Browse files
EMT.py
CHANGED
@@ -1,12 +1,9 @@
|
|
1 |
-
"""EMT dataset."""
|
2 |
-
|
3 |
import os
|
4 |
import datasets
|
|
|
5 |
|
6 |
_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
7 |
-
|
8 |
_LICENSE = "CC-BY-SA 4.0"
|
9 |
-
|
10 |
_CITATION = """
|
11 |
@article{EMTdataset2025,
|
12 |
title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},
|
@@ -31,6 +28,10 @@ _ANNOTATION_REPO = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/ann
|
|
31 |
_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
|
32 |
_TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"
|
33 |
|
|
|
|
|
|
|
|
|
34 |
|
35 |
class EMT(datasets.GeneratorBasedBuilder):
|
36 |
"""EMT dataset."""
|
@@ -72,10 +73,10 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
72 |
"test": _TEST_IMAGE_ARCHIVE_URL,
|
73 |
}
|
74 |
|
75 |
-
# Download the
|
76 |
annotation_urls = {
|
77 |
-
"train":
|
78 |
-
"test":
|
79 |
}
|
80 |
|
81 |
# Download image files
|
@@ -84,7 +85,7 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
84 |
"test": dl_manager.iter_archive(image_urls["test"]),
|
85 |
}
|
86 |
|
87 |
-
# Download annotation files
|
88 |
annotations = {
|
89 |
"train": dl_manager.download_and_extract(annotation_urls["train"]),
|
90 |
"test": dl_manager.download_and_extract(annotation_urls["test"]),
|
@@ -112,35 +113,38 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
112 |
|
113 |
annotations = {}
|
114 |
|
115 |
-
#
|
116 |
for ann_file in os.listdir(annotation_path):
|
117 |
video_name = os.path.splitext(ann_file)[0] # Get video folder name
|
118 |
ann_path = os.path.join(annotation_path, ann_file)
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
|
145 |
# Yield dataset entries
|
146 |
idx = 0
|
|
|
|
|
|
|
1 |
import os
|
2 |
import datasets
|
3 |
+
import tarfile
|
4 |
|
5 |
_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
|
|
6 |
_LICENSE = "CC-BY-SA 4.0"
|
|
|
7 |
_CITATION = """
|
8 |
@article{EMTdataset2025,
|
9 |
title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},
|
|
|
28 |
_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
|
29 |
_TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"
|
30 |
|
31 |
+
# Tar file URLs for annotations
|
32 |
+
_TRAIN_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_annotation.tar.gz"
|
33 |
+
_TEST_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_annotation.tar.gz"
|
34 |
+
|
35 |
|
36 |
class EMT(datasets.GeneratorBasedBuilder):
|
37 |
"""EMT dataset."""
|
|
|
73 |
"test": _TEST_IMAGE_ARCHIVE_URL,
|
74 |
}
|
75 |
|
76 |
+
# Download the tar file for annotations
|
77 |
annotation_urls = {
|
78 |
+
"train": _TRAIN_ANNOTATION_ARCHIVE_URL,
|
79 |
+
"test": _TEST_ANNOTATION_ARCHIVE_URL,
|
80 |
}
|
81 |
|
82 |
# Download image files
|
|
|
85 |
"test": dl_manager.iter_archive(image_urls["test"]),
|
86 |
}
|
87 |
|
88 |
+
# Download annotation files and extract them
|
89 |
annotations = {
|
90 |
"train": dl_manager.download_and_extract(annotation_urls["train"]),
|
91 |
"test": dl_manager.download_and_extract(annotation_urls["test"]),
|
|
|
113 |
|
114 |
annotations = {}
|
115 |
|
116 |
+
# Extract the tar.gz file and read the annotations
|
117 |
for ann_file in os.listdir(annotation_path):
|
118 |
video_name = os.path.splitext(ann_file)[0] # Get video folder name
|
119 |
ann_path = os.path.join(annotation_path, ann_file)
|
120 |
|
121 |
+
# Read annotation file
|
122 |
+
with tarfile.open(ann_path, "r:gz") as tar:
|
123 |
+
for member in tar.getmembers():
|
124 |
+
with tar.extractfile(member) as file:
|
125 |
+
for line in file:
|
126 |
+
parts = line.strip().split()
|
127 |
+
if len(parts) < 8:
|
128 |
+
continue
|
129 |
+
|
130 |
+
frame_id, track_id, class_name = parts[:3]
|
131 |
+
bbox = list(map(float, parts[4:8]))
|
132 |
+
class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
|
133 |
+
img_name = f"{frame_id}.jpg"
|
134 |
|
135 |
+
# Store annotation in a dictionary
|
136 |
+
key = f"{video_name}/{img_name}"
|
137 |
+
if key not in annotations:
|
138 |
+
annotations[key] = []
|
139 |
|
140 |
+
annotations[key].append(
|
141 |
+
{
|
142 |
+
"bbox": bbox,
|
143 |
+
"class_id": class_id,
|
144 |
+
"track_id": int(track_id),
|
145 |
+
"class_name": class_name,
|
146 |
+
}
|
147 |
+
)
|
148 |
|
149 |
# Yield dataset entries
|
150 |
idx = 0
|