Update EMT.py
Browse files
EMT.py
CHANGED
|
@@ -1,12 +1,9 @@
|
|
| 1 |
-
"""EMT dataset."""
|
| 2 |
-
|
| 3 |
import os
|
| 4 |
import datasets
|
|
|
|
| 5 |
|
| 6 |
_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
| 7 |
-
|
| 8 |
_LICENSE = "CC-BY-SA 4.0"
|
| 9 |
-
|
| 10 |
_CITATION = """
|
| 11 |
@article{EMTdataset2025,
|
| 12 |
title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},
|
|
@@ -31,6 +28,10 @@ _ANNOTATION_REPO = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/ann
|
|
| 31 |
_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
|
| 32 |
_TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
class EMT(datasets.GeneratorBasedBuilder):
|
| 36 |
"""EMT dataset."""
|
|
@@ -72,10 +73,10 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
| 72 |
"test": _TEST_IMAGE_ARCHIVE_URL,
|
| 73 |
}
|
| 74 |
|
| 75 |
-
# Download the
|
| 76 |
annotation_urls = {
|
| 77 |
-
"train":
|
| 78 |
-
"test":
|
| 79 |
}
|
| 80 |
|
| 81 |
# Download image files
|
|
@@ -84,7 +85,7 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
| 84 |
"test": dl_manager.iter_archive(image_urls["test"]),
|
| 85 |
}
|
| 86 |
|
| 87 |
-
# Download annotation files
|
| 88 |
annotations = {
|
| 89 |
"train": dl_manager.download_and_extract(annotation_urls["train"]),
|
| 90 |
"test": dl_manager.download_and_extract(annotation_urls["test"]),
|
|
@@ -112,35 +113,38 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
| 112 |
|
| 113 |
annotations = {}
|
| 114 |
|
| 115 |
-
#
|
| 116 |
for ann_file in os.listdir(annotation_path):
|
| 117 |
video_name = os.path.splitext(ann_file)[0] # Get video folder name
|
| 118 |
ann_path = os.path.join(annotation_path, ann_file)
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
|
| 145 |
# Yield dataset entries
|
| 146 |
idx = 0
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import datasets
|
| 3 |
+
import tarfile
|
| 4 |
|
| 5 |
_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
|
|
|
| 6 |
_LICENSE = "CC-BY-SA 4.0"
|
|
|
|
| 7 |
_CITATION = """
|
| 8 |
@article{EMTdataset2025,
|
| 9 |
title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},
|
|
|
|
| 28 |
_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
|
| 29 |
_TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"
|
| 30 |
|
| 31 |
+
# Tar file URLs for annotations
|
| 32 |
+
_TRAIN_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_annotation.tar.gz"
|
| 33 |
+
_TEST_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_annotation.tar.gz"
|
| 34 |
+
|
| 35 |
|
| 36 |
class EMT(datasets.GeneratorBasedBuilder):
|
| 37 |
"""EMT dataset."""
|
|
|
|
| 73 |
"test": _TEST_IMAGE_ARCHIVE_URL,
|
| 74 |
}
|
| 75 |
|
| 76 |
+
# Download the tar file for annotations
|
| 77 |
annotation_urls = {
|
| 78 |
+
"train": _TRAIN_ANNOTATION_ARCHIVE_URL,
|
| 79 |
+
"test": _TEST_ANNOTATION_ARCHIVE_URL,
|
| 80 |
}
|
| 81 |
|
| 82 |
# Download image files
|
|
|
|
| 85 |
"test": dl_manager.iter_archive(image_urls["test"]),
|
| 86 |
}
|
| 87 |
|
| 88 |
+
# Download annotation files and extract them
|
| 89 |
annotations = {
|
| 90 |
"train": dl_manager.download_and_extract(annotation_urls["train"]),
|
| 91 |
"test": dl_manager.download_and_extract(annotation_urls["test"]),
|
|
|
|
| 113 |
|
| 114 |
annotations = {}
|
| 115 |
|
| 116 |
+
# Extract the tar.gz file and read the annotations
|
| 117 |
for ann_file in os.listdir(annotation_path):
|
| 118 |
video_name = os.path.splitext(ann_file)[0] # Get video folder name
|
| 119 |
ann_path = os.path.join(annotation_path, ann_file)
|
| 120 |
|
| 121 |
+
# Read annotation file
|
| 122 |
+
with tarfile.open(ann_path, "r:gz") as tar:
|
| 123 |
+
for member in tar.getmembers():
|
| 124 |
+
with tar.extractfile(member) as file:
|
| 125 |
+
for line in file:
|
| 126 |
+
parts = line.strip().split()
|
| 127 |
+
if len(parts) < 8:
|
| 128 |
+
continue
|
| 129 |
+
|
| 130 |
+
frame_id, track_id, class_name = parts[:3]
|
| 131 |
+
bbox = list(map(float, parts[4:8]))
|
| 132 |
+
class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
|
| 133 |
+
img_name = f"{frame_id}.jpg"
|
| 134 |
|
| 135 |
+
# Store annotation in a dictionary
|
| 136 |
+
key = f"{video_name}/{img_name}"
|
| 137 |
+
if key not in annotations:
|
| 138 |
+
annotations[key] = []
|
| 139 |
|
| 140 |
+
annotations[key].append(
|
| 141 |
+
{
|
| 142 |
+
"bbox": bbox,
|
| 143 |
+
"class_id": class_id,
|
| 144 |
+
"track_id": int(track_id),
|
| 145 |
+
"class_name": class_name,
|
| 146 |
+
}
|
| 147 |
+
)
|
| 148 |
|
| 149 |
# Yield dataset entries
|
| 150 |
idx = 0
|