# """EMT dataset.""" | |
# import os | |
# import json | |
# import datasets | |
# _HOMEPAGE = "https://github.com/AV-Lab/emt-dataset" | |
# _LICENSE = "CC-BY-SA 4.0" | |
# _CITATION = """ | |
# @article{EMTdataset2025, | |
# title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region}, | |
# author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji}, | |
# year={2025}, | |
# eprint={2502.19260}, | |
# archivePrefix={arXiv}, | |
# primaryClass={cs.CV}, | |
# url={https://arxiv.org/abs/2502.19260} | |
# } | |
# """ | |
# _DESCRIPTION = """\ | |
# A multi-task dataset for detection, tracking, prediction, and intention prediction. | |
# This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection + tracking.", | |
# """ | |
# _LABEL_MAP = [ | |
# 'n01440764', | |
# 'n02102040', | |
# 'n02979186', | |
# 'n03000684', | |
# 'n03028079', | |
# 'n03394916', | |
# 'n03417042', | |
# 'n03425413', | |
# 'n03445777', | |
# 'n03888257', | |
# ] | |
# # _REPO = "https://huggingface.co/datasets/frgfm/imagenette/resolve/main/metadata" | |
# _REPO = "https://huggingface.co/datasets/Murdism/EMT/resolve/main/labels" | |
# class EMTConfig(datasets.BuilderConfig): | |
# """BuilderConfig for EMT.""" | |
# def __init__(self, data_url, metadata_urls, **kwargs): | |
# """BuilderConfig for EMT. | |
# Args: | |
# data_url: `string`, url to download the zip file from. | |
# matadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs | |
# **kwargs: keyword arguments forwarded to super. | |
# """ | |
# super(EMTConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) | |
# self.data_url = data_url | |
# self.metadata_urls = metadata_urls | |
# class EMT(datasets.GeneratorBasedBuilder): | |
# """Imagenette dataset.""" | |
# BUILDER_CONFIGS = [ | |
# EMTConfig( | |
# name="full_size", | |
# description="All images are in their original size.", | |
# data_url="https://huggingface.co/datasets/KuAvLab/EMT/blob/main/emt_images.tar.gz", | |
# metadata_urls={ | |
# "train": f"{_REPO}/train/", | |
# "test": f"{_REPO}/test/", | |
# }, | |
# ) | |
# ] | |
# def _info(self): | |
# return datasets.DatasetInfo( | |
# description=_DESCRIPTION + self.config.description, | |
# features=datasets.Features( | |
# { | |
# "image": datasets.Image(), | |
# "label": datasets.ClassLabel( | |
# names=[ | |
# "bbox", | |
# "class_id", | |
# "track_id", | |
# "class_name", | |
# ] | |
# ), | |
# } | |
# ), | |
# supervised_keys=None, | |
# homepage=_HOMEPAGE, | |
# license=_LICENSE, | |
# citation=_CITATION, | |
# ) | |
# def _split_generators(self, dl_manager): | |
# archive_path = dl_manager.download(self.config.data_url) | |
# metadata_paths = dl_manager.download(self.config.metadata_urls) | |
# archive_iter = dl_manager.iter_archive(archive_path) | |
# return [ | |
# datasets.SplitGenerator( | |
# name=datasets.Split.TRAIN, | |
# gen_kwargs={ | |
# "images": archive_iter, | |
# "metadata_path": metadata_paths["train"], | |
# }, | |
# ), | |
# datasets.SplitGenerator( | |
# name=datasets.Split.TEST, | |
# gen_kwargs={ | |
# "images": os.path.join(self.config.data_url, "test"), | |
# "metadata_path": metadata_paths["test"], | |
# }, | |
# ), | |
# ] | |
# def _generate_examples(self, images, metadata_path): | |
# with open(metadata_path, encoding="utf-8") as f: | |
# files_to_keep = set(f.read().split("\n")) | |
# idx = 0 | |
# for file_path, file_obj in images: | |
# if file_path in files_to_keep: | |
# label = _LABEL_MAP.index(file_path.split("/")[-2]) | |
# yield idx, { | |
# "image": {"path": file_path, "bytes": file_obj.read()}, | |
# "label": label, | |
# } | |
# idx += 1 | |
"""EMT dataset.""" | |
import os | |
import json | |
import pandas as pd | |
import datasets | |
_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset" | |
_LICENSE = "CC-BY-SA 4.0" | |
_CITATION = """ | |
@article{EMTdataset2025, | |
title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region}, | |
author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji}, | |
year={2025}, | |
eprint={2502.19260}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CV}, | |
url={https://arxiv.org/abs/2502.19260} | |
} | |
""" | |
_DESCRIPTION = """\ | |
A multi-task dataset for detection, tracking, prediction, and intention prediction. | |
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection + tracking.", | |
""" | |
_REPO = "https://huggingface.co/datasets/Murdism/EMT/resolve/main/annotations" | |
class EMTConfig(datasets.BuilderConfig): | |
"""BuilderConfig for EMT.""" | |
def __init__(self, data_url, annotation_url, **kwargs): | |
"""BuilderConfig for EMT. | |
Args: | |
data_url: `string`, URL to download the image archive (.tar file). | |
annotation_url: `string`, URL to download the annotations (Parquet file). | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(EMTConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) | |
self.data_url = data_url | |
self.annotation_url = annotation_url | |
class EMT(datasets.GeneratorBasedBuilder): | |
"""EMT dataset.""" | |
BUILDER_CONFIGS = [ | |
EMTConfig( | |
name="full_size", | |
description="All images are in their original size.", | |
data_url="https://huggingface.co/datasets/KuAvLab/EMT/blob/main/emt_images.tar.gz", | |
annotation_url="https://huggingface.co/datasets/Murdism/EMT/resolve/main/annotations/", | |
) | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION + self.config.description, | |
features=datasets.Features( | |
{ | |
"image": datasets.Image(), | |
"objects": datasets.Sequence( | |
{ | |
"bbox": datasets.Sequence(datasets.Float32()), | |
"class_id": datasets.Value("int32"), | |
"track_id": datasets.Value("int32"), | |
"class_name": datasets.Value("string"), | |
} | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
archive_path = dl_manager.download(self.config.data_url) | |
annotation_paths = { | |
"train": dl_manager.download_and_extract(self.config.annotation_url + "train_annotations.parquet"), | |
"test": dl_manager.download_and_extract(self.config.annotation_url + "test_annotations.parquet"), | |
} | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"images": dl_manager.iter_archive(archive_path), | |
"annotation_path": annotation_paths["train"], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"images": dl_manager.iter_archive(archive_path), | |
"annotation_path": annotation_paths["test"], | |
}, | |
), | |
] | |
def _generate_examples(self, images, annotation_path): | |
"""Generate examples from Parquet annotations and image archive.""" | |
# Load annotations from Parquet | |
df = pd.read_parquet(annotation_path) | |
# Convert DataFrame into a dictionary for faster lookups | |
annotation_dict = {} | |
for _, row in df.iterrows(): | |
img_path = row["file_path"].split("/")[-2] + "/" + row["file_path"].split("/")[-1] | |
print("img_path: ",img_path) | |
if img_path not in annotation_dict: | |
annotation_dict[img_path] = [] | |
annotation_dict[img_path].append( | |
{ | |
"bbox": row["bbox"], | |
"class_id": row["class_id"], | |
"track_id": row["track_id"], | |
"class_name": row["class_name"], | |
} | |
) | |
idx = 0 | |
for file_path, file_obj in images: | |
if file_path in annotation_dict: | |
yield idx, { | |
"image": {"path": file_path, "bytes": file_obj.read()}, | |
"objects": annotation_dict[file_path], | |
} | |
idx += 1 | |