Commit
·
aeef0fc
1
Parent(s):
aa56e81
add dataset loading script
Browse files- spectrograms.py +62 -0
spectrograms.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import (
|
2 |
+
DatasetBuilder,
|
3 |
+
DownloadManager,
|
4 |
+
DatasetInfo,
|
5 |
+
Features,
|
6 |
+
Image,
|
7 |
+
ClassLabel,
|
8 |
+
Split,
|
9 |
+
SplitGenerator,
|
10 |
+
)
|
11 |
+
import pandas as pd
|
12 |
+
|
13 |
+
from pathlib import Path
|
14 |
+
|
15 |
+
|
16 |
+
_DESCRIPTION = """\
|
17 |
+
This dataset includes spectrograms of ~950 afrobeats songs and 1k rock songs.
|
18 |
+
The spectrograms were generated with `librosa`.
|
19 |
+
"""
|
20 |
+
|
21 |
+
_NAMES = [fdr.name for fdr in Path("./data").glob("*/")]
|
22 |
+
|
23 |
+
_URLS = {
|
24 |
+
"afrobeats": "https://huggingface.co/datasets/Kabilan108/spectrograms/resolve/main/data/afrobeats.zip",
|
25 |
+
"rock": "https://huggingface.co/datasets/Kabilan108/spectrograms/resolve/main/data/rock.zip",
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class SongSpectrograms(DatasetBuilder):
|
30 |
+
""" "Song-Spectrograms Images Dataset"""
|
31 |
+
|
32 |
+
def _info(self):
|
33 |
+
return DatasetInfo(
|
34 |
+
description=_DESCRIPTION,
|
35 |
+
features=Features({"image": Image(), "label": ClassLabel(names=_NAMES)}),
|
36 |
+
supervised_keys=("image", "label"),
|
37 |
+
)
|
38 |
+
|
39 |
+
def _split_generators(self, dl_manager: DownloadManager):
|
40 |
+
files = dl_manager.download_and_extract(_URLS)
|
41 |
+
|
42 |
+
return [
|
43 |
+
SplitGenerator(
|
44 |
+
name=Split.TRAIN,
|
45 |
+
gen_kwargs={
|
46 |
+
"afrobeats_dir": Path(files["afrobeats"]) / "afrobeats",
|
47 |
+
"rock_dir": Path(files["rock"]) / "rock",
|
48 |
+
},
|
49 |
+
)
|
50 |
+
]
|
51 |
+
|
52 |
+
def _generate_examples(self, afrobeats_dir, rock_dir):
|
53 |
+
for genre_dir, label in [(afrobeats_dir, "afrobeats"), (rock_dir, "rock")]:
|
54 |
+
metadata = pd.read_csv(Path(genre_dir) / "metadata.tsv", sep="\t")
|
55 |
+
|
56 |
+
for _, row in metadata.iterrows():
|
57 |
+
path = Path(genre_dir) / row["file_name"]
|
58 |
+
|
59 |
+
yield (
|
60 |
+
f"{label}_{row['file_name'].replace('.png', '')}",
|
61 |
+
{"image": str(path), "label": label},
|
62 |
+
)
|