turn_into_zip (#1)
Browse files- :sparkles: added zip file (ca3bba9ef2b384038aa769b784bb1115eb5cf755)
- :sparkles: added support for zip file (c1fe403ea45786652da9a35ac76586af9d5ea378)
- TID2013.py +28 -19
- data.zip +3 -0
TID2013.py
CHANGED
|
@@ -33,6 +33,7 @@ _HOMEPAGE = "https://www.ponomarenko.info/tid2013.htm"
|
|
| 33 |
|
| 34 |
# _LICENSE = ""
|
| 35 |
|
|
|
|
| 36 |
class TID2013(datasets.GeneratorBasedBuilder):
|
| 37 |
"""TID2013 Image Quality Dataset"""
|
| 38 |
|
|
@@ -44,7 +45,7 @@ class TID2013(datasets.GeneratorBasedBuilder):
|
|
| 44 |
{
|
| 45 |
"reference": datasets.Image(),
|
| 46 |
"distorted": datasets.Image(),
|
| 47 |
-
"mos": datasets.Value("float")
|
| 48 |
}
|
| 49 |
)
|
| 50 |
return datasets.DatasetInfo(
|
|
@@ -57,32 +58,40 @@ class TID2013(datasets.GeneratorBasedBuilder):
|
|
| 57 |
)
|
| 58 |
|
| 59 |
def _split_generators(self, dl_manager):
|
| 60 |
-
data_path = dl_manager.download("
|
| 61 |
-
data = pd.read_csv(data_path, index_col=0)
|
| 62 |
-
|
| 63 |
-
reference_paths = data["Reference"].apply(lambda x: os.path.join("reference_images", x)).to_list()
|
| 64 |
-
distorted_paths = data["Distorted"].apply(lambda x: os.path.join("distorted_images", x)).to_list()
|
| 65 |
-
|
| 66 |
-
reference_paths = dl_manager.download(reference_paths)
|
| 67 |
-
distorted_paths = dl_manager.download(distorted_paths)
|
| 68 |
|
| 69 |
return [
|
| 70 |
datasets.SplitGenerator(
|
| 71 |
name=datasets.Split.TRAIN,
|
| 72 |
gen_kwargs={
|
| 73 |
-
"
|
| 74 |
-
"distorted": distorted_paths,
|
| 75 |
-
"mos": data["MOS"],
|
| 76 |
"split": "train",
|
| 77 |
},
|
| 78 |
)
|
| 79 |
]
|
| 80 |
|
| 81 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 82 |
-
def _generate_examples(self,
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
# _LICENSE = ""
|
| 35 |
|
| 36 |
+
|
| 37 |
class TID2013(datasets.GeneratorBasedBuilder):
|
| 38 |
"""TID2013 Image Quality Dataset"""
|
| 39 |
|
|
|
|
| 45 |
{
|
| 46 |
"reference": datasets.Image(),
|
| 47 |
"distorted": datasets.Image(),
|
| 48 |
+
"mos": datasets.Value("float"),
|
| 49 |
}
|
| 50 |
)
|
| 51 |
return datasets.DatasetInfo(
|
|
|
|
| 58 |
)
|
| 59 |
|
| 60 |
def _split_generators(self, dl_manager):
|
| 61 |
+
data_path = dl_manager.download("data.zip")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
return [
|
| 64 |
datasets.SplitGenerator(
|
| 65 |
name=datasets.Split.TRAIN,
|
| 66 |
gen_kwargs={
|
| 67 |
+
"data": dl_manager.download_and_extract(data_path),
|
|
|
|
|
|
|
| 68 |
"split": "train",
|
| 69 |
},
|
| 70 |
)
|
| 71 |
]
|
| 72 |
|
| 73 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 74 |
+
def _generate_examples(self, data, split):
|
| 75 |
+
df = pd.read_csv(os.path.join(data, "image_pairs_mos.csv"), index_col=0)
|
| 76 |
+
reference_paths = (
|
| 77 |
+
df["Reference"]
|
| 78 |
+
.apply(lambda x: os.path.join(data, "reference_images", x))
|
| 79 |
+
.to_list()
|
| 80 |
+
)
|
| 81 |
+
distorted_paths = (
|
| 82 |
+
df["Distorted"]
|
| 83 |
+
.apply(lambda x: os.path.join(data, "distorted_images", x))
|
| 84 |
+
.to_list()
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
for key, (ref, dist, m) in enumerate(
|
| 88 |
+
zip(reference_paths, distorted_paths, df["MOS"])
|
| 89 |
+
):
|
| 90 |
+
yield (
|
| 91 |
+
key,
|
| 92 |
+
{
|
| 93 |
+
"reference": ref,
|
| 94 |
+
"distorted": dist,
|
| 95 |
+
"mos": m,
|
| 96 |
+
},
|
| 97 |
+
)
|
data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:56b7bf4d6b4c498b80f52cb32422cb1b6c88d8095915582d4c7e465c5cad477f
|
| 3 |
+
size 1218738971
|