turn_into_zip (#1)
Browse files- :sparkles: Added zip file support for faster download and errorless csv reading (0674e0e203226d313757af0ddadc011f324fbe76)
- TID2008.py +29 -19
- data.zip +3 -0
TID2008.py
CHANGED
|
@@ -21,6 +21,7 @@ _HOMEPAGE = "https://www.ponomarenko.info/tid2008.htm"
|
|
| 21 |
|
| 22 |
# _LICENSE = ""
|
| 23 |
|
|
|
|
| 24 |
class TID2008(datasets.GeneratorBasedBuilder):
|
| 25 |
"""TID2008 Image Quality Dataset"""
|
| 26 |
|
|
@@ -32,7 +33,7 @@ class TID2008(datasets.GeneratorBasedBuilder):
|
|
| 32 |
{
|
| 33 |
"reference": datasets.Image(),
|
| 34 |
"distorted": datasets.Image(),
|
| 35 |
-
"mos": datasets.Value("float")
|
| 36 |
}
|
| 37 |
)
|
| 38 |
return datasets.DatasetInfo(
|
|
@@ -45,32 +46,41 @@ class TID2008(datasets.GeneratorBasedBuilder):
|
|
| 45 |
)
|
| 46 |
|
| 47 |
def _split_generators(self, dl_manager):
|
| 48 |
-
data_path = dl_manager.download("
|
| 49 |
-
data = pd.read_csv(data_path, index_col=0)
|
| 50 |
-
|
| 51 |
-
reference_paths = data["Reference"].apply(lambda x: os.path.join("reference_images", x)).to_list()
|
| 52 |
-
distorted_paths = data["Distorted"].apply(lambda x: os.path.join("distorted_images", x)).to_list()
|
| 53 |
-
|
| 54 |
-
reference_paths = dl_manager.download(reference_paths)
|
| 55 |
-
distorted_paths = dl_manager.download(distorted_paths)
|
| 56 |
|
| 57 |
return [
|
| 58 |
datasets.SplitGenerator(
|
| 59 |
name=datasets.Split.TRAIN,
|
| 60 |
gen_kwargs={
|
| 61 |
-
"
|
| 62 |
-
"distorted": distorted_paths,
|
| 63 |
-
"mos": data["MOS"],
|
| 64 |
"split": "train",
|
| 65 |
},
|
| 66 |
)
|
| 67 |
]
|
| 68 |
|
| 69 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 70 |
-
def _generate_examples(self,
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# _LICENSE = ""
|
| 23 |
|
| 24 |
+
|
| 25 |
class TID2008(datasets.GeneratorBasedBuilder):
|
| 26 |
"""TID2008 Image Quality Dataset"""
|
| 27 |
|
|
|
|
| 33 |
{
|
| 34 |
"reference": datasets.Image(),
|
| 35 |
"distorted": datasets.Image(),
|
| 36 |
+
"mos": datasets.Value("float"),
|
| 37 |
}
|
| 38 |
)
|
| 39 |
return datasets.DatasetInfo(
|
|
|
|
| 46 |
)
|
| 47 |
|
| 48 |
def _split_generators(self, dl_manager):
|
| 49 |
+
data_path = dl_manager.download("data.zip")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
return [
|
| 52 |
datasets.SplitGenerator(
|
| 53 |
name=datasets.Split.TRAIN,
|
| 54 |
gen_kwargs={
|
| 55 |
+
"data": dl_manager.download_and_extract(data_path),
|
|
|
|
|
|
|
| 56 |
"split": "train",
|
| 57 |
},
|
| 58 |
)
|
| 59 |
]
|
| 60 |
|
| 61 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 62 |
+
def _generate_examples(self, data, split):
|
| 63 |
+
df = pd.read_csv(os.path.join(data, "image_pairs_mos.csv"), index_col=0)
|
| 64 |
+
reference_paths = (
|
| 65 |
+
df["Reference"]
|
| 66 |
+
.apply(lambda x: os.path.join(data, "reference_images", x))
|
| 67 |
+
.to_list()
|
| 68 |
+
)
|
| 69 |
+
distorted_paths = (
|
| 70 |
+
df["Distorted"]
|
| 71 |
+
.apply(lambda x: os.path.join(data, "distorted_images", x))
|
| 72 |
+
.to_list()
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
for key, (ref, dist, m) in enumerate(
|
| 76 |
+
zip(reference_paths, distorted_paths, df["MOS"])
|
| 77 |
+
):
|
| 78 |
+
yield (
|
| 79 |
+
key,
|
| 80 |
+
{
|
| 81 |
+
"reference": ref,
|
| 82 |
+
"distorted": dist,
|
| 83 |
+
"mos": m,
|
| 84 |
+
},
|
| 85 |
+
)
|
| 86 |
+
|
data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c048c69418cb0146fe8363f637a35e16623ca6ce25a8b6bfcdd9fb47e85ecaf6
|
| 3 |
+
size 704640392
|