import json import argparse import sys import numpy as np import jieba import nltk from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction from nltk import ngrams def bleu(data): """ compute rouge score Args: data (list of dict including reference and candidate): Returns: res (dict of list of scores): rouge score """ res = {} for i in range(1, 5): res["sentence-bleu-%d"%i] = [] res["corpus-bleu-%d"%i] = nltk.translate.bleu_score.corpus_bleu([[d["reference"].strip().split()] for d in data], [d["candidate"].strip().split() for d in data], weights=tuple([1./i for j in range(i)])) for tmp_data in data: origin_candidate = tmp_data['candidate'] origin_reference = tmp_data['reference'] assert isinstance(origin_candidate, str) if not isinstance(origin_reference, list): origin_reference = [origin_reference] for i in range(1, 5): res["sentence-bleu-%d"%i].append(sentence_bleu(references=[r.strip().split() for r in origin_reference], hypothesis=origin_candidate.strip().split(), weights=tuple([1./i for j in range(i)]))) for key in res: if "sentence" in key: res[key] = np.mean(res[key]) return res def distinct(eval_data): result = {} for i in range(1, 5): all_ngram, all_ngram_num = {}, 0. for k, tmp_data in enumerate(eval_data): ngs = ["_".join(c) for c in ngrams(tmp_data["candidate"].strip().split(), i)] all_ngram_num += len(ngs) for s in ngs: if s in all_ngram: all_ngram[s] += 1 else: all_ngram[s] = 1 result["distinct-%d"%i] = len(all_ngram) / float(all_ngram_num) return result def load_file(filename): data = [] with open(filename, "r") as f: for line in f.readlines(): data.append(json.loads(line)) f.close() return data def proline(line): return " ".join([w for w in jieba.cut("".join(line.strip().split()))]) def compute(golden_file, pred_file, return_dict=True): golden_data = load_file(golden_file) pred_data = load_file(pred_file) if len(golden_data) != len(pred_data): raise RuntimeError("Wrong Predictions") eval_data = [{"reference": proline(g["plot"]), "candidate": proline(p["plot"])} for g, p in zip(golden_data, pred_data)] res = bleu(eval_data) res.update(distinct(eval_data)) for key in res: res[key] = "_" return res def main(): argv = sys.argv print("预测结果:{}, 测试集: {}".format(argv[1], argv[2])) print(compute(argv[2], argv[1])) if __name__ == '__main__': main()