# Outline-Conditioned Generation Dataset ### Data Example ``` { "story": "有个人把神像放在驴子背上,赶着进城。凡是遇见他们的人都对着神像顶礼膜拜。驴子以为人们是向它致敬,便洋洋得意,大喊大叫,再也不肯往前走了。结果挨了驴夫狠狠的一棍。", "outline": ["对着神像顶礼膜拜", "再也不肯往前走", "神像放在驴子", "赶着进城", "驴夫狠狠", "洋洋得意", "大喊大叫", "遇见"], "title": "运神像的驴子" } ``` - "title" (`str`):input story title - "outline"(`list of str`):input story outline (an out-of-order list of phrases) - "story" (`str`):the target story ### Evaluation The prediction result should have the same format with `test.jsonl` ```shell python eval.py prediction_file test.jsonl ``` We use bleu, distinct, coverage and order as the evaluation metrics. The output of the script `eval.py` is a dictionary as follows: ```python {'bleu-1': '_', 'bleu-2': '_', 'bleu-3': '_', 'bleu-4': '_', 'distinct-1': '_', 'distinct-2': '_', 'distinct-3': '_', 'distinct-4': '_', 'coverage': '_', 'order': '_'} ``` - Dependencies: rouge\=\=1.0.0, jieba=0.42.1, nltk=3.6.2, numpy=1.20.3