Update README.md
Browse files
README.md
CHANGED
@@ -56,6 +56,47 @@ configs:
|
|
56 |
data_files:
|
57 |
- split: test
|
58 |
path: ms.jsonl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
---
|
60 |
# Dataset Description
|
61 |
This is the [MKQA](https://github.com/apple/ml-mkqa?tab=readme-ov-file) ***with query embeddings***, which can be used jointly with [Multilingual Embeddings for Wikipedia in 300+ Languages](https://huggingface.co/datasets/Cohere/wikipedia-2023-11-embed-multilingual-v3) for doing multilingual passage retrieval, since the vectors are calculated via the same embedder [Cohere Embed v3](https://cohere.com/blog/introducing-embed-v3).
|
|
|
56 |
data_files:
|
57 |
- split: test
|
58 |
path: ms.jsonl
|
59 |
+
- config_name: nl
|
60 |
+
data_files:
|
61 |
+
- split: test
|
62 |
+
path: nl.jsonl
|
63 |
+
- config_name: 'no'
|
64 |
+
data_files:
|
65 |
+
- split: test
|
66 |
+
path: 'no.jsonl'
|
67 |
+
- config_name: pl
|
68 |
+
data_files:
|
69 |
+
- split: test
|
70 |
+
path: pl.jsonl
|
71 |
+
- config_name: pt
|
72 |
+
data_files:
|
73 |
+
- split: test
|
74 |
+
path: pt.jsonl
|
75 |
+
- config_name: ru
|
76 |
+
data_files:
|
77 |
+
- split: test
|
78 |
+
path: ru.jsonl
|
79 |
+
- config_name: sv
|
80 |
+
data_files:
|
81 |
+
- split: test
|
82 |
+
path: sv.jsonl
|
83 |
+
- config_name: th
|
84 |
+
data_files:
|
85 |
+
- split: test
|
86 |
+
path: th.jsonl
|
87 |
+
- config_name: tr
|
88 |
+
data_files:
|
89 |
+
- split: test
|
90 |
+
path: tr.jsonl
|
91 |
+
- config_name: vi
|
92 |
+
data_files:
|
93 |
+
- split: test
|
94 |
+
path: vi.jsonl
|
95 |
+
- config_name: zh
|
96 |
+
data_files:
|
97 |
+
- split: test
|
98 |
+
path: zh.jsonl
|
99 |
+
|
100 |
---
|
101 |
# Dataset Description
|
102 |
This is the [MKQA](https://github.com/apple/ml-mkqa?tab=readme-ov-file) ***with query embeddings***, which can be used jointly with [Multilingual Embeddings for Wikipedia in 300+ Languages](https://huggingface.co/datasets/Cohere/wikipedia-2023-11-embed-multilingual-v3) for doing multilingual passage retrieval, since the vectors are calculated via the same embedder [Cohere Embed v3](https://cohere.com/blog/introducing-embed-v3).
|