Update README.md
Browse files
README.md
CHANGED
|
@@ -22,6 +22,7 @@ size_categories:
|
|
| 22 |
- 1K<n<10K
|
| 23 |
---
|
| 24 |
# VALERIE22 - A photorealistic, richly metadata annotated dataset of urban environments
|
|
|
|
| 25 |
|
| 26 |
## Dataset Description
|
| 27 |
|
|
@@ -30,9 +31,27 @@ size_categories:
|
|
| 30 |
|
| 31 |
### Dataset Summary
|
| 32 |
|
| 33 |
-
The VALERIE22 dataset was generated with the VALERIE procedural tools pipeline providing a photorealistic sensor simulation rendered from automatically synthesized scenes. The dataset provides a uniquely rich set of metadata, allowing extraction of specific scene and semantic features (like pixel-accurate occlusion rates, positions in the scene and distance + angle to the camera). This enables a multitude of possible tests on the data and we hope to stimulate research on understanding performance of DNNs.
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
- pedestrian detection
|
| 38 |
- 2d object-detection
|
|
@@ -84,7 +103,7 @@ Train/Validation/Test splits are provided
|
|
| 84 |
|
| 85 |
### Licensing Information
|
| 86 |
|
| 87 |
-
|
| 88 |
|
| 89 |
### Citation Information
|
| 90 |
Relevant publications:
|
|
|
|
| 22 |
- 1K<n<10K
|
| 23 |
---
|
| 24 |
# VALERIE22 - A photorealistic, richly metadata annotated dataset of urban environments
|
| 25 |
+
<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/teaser_c.png">
|
| 26 |
|
| 27 |
## Dataset Description
|
| 28 |
|
|
|
|
| 31 |
|
| 32 |
### Dataset Summary
|
| 33 |
|
| 34 |
+
The VALERIE22 dataset was generated with the VALERIE procedural tools pipeline (see image below) providing a photorealistic sensor simulation rendered from automatically synthesized scenes. The dataset provides a uniquely rich set of metadata, allowing extraction of specific scene and semantic features (like pixel-accurate occlusion rates, positions in the scene and distance + angle to the camera). This enables a multitude of possible tests on the data and we hope to stimulate research on understanding performance of DNNs.
|
| 35 |
|
| 36 |
+
<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/VALERIE_overview1.png">
|
| 37 |
+
|
| 38 |
+
Each sequence of the dataset contains for each scene two rendered images. One is rendered with the default Blender tonemapping (/png) whereas the second is renderd with our photorealistic sensor simulation (see hagn2022optimized). The image below shows the difference of the two methods.
|
| 39 |
+
|
| 40 |
+
<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/SensorSimulation.png">
|
| 41 |
+
|
| 42 |
+
Following are some example images showing the unique characteristics of the different sequences.
|
| 43 |
+
|
| 44 |
+
|Sequence0052|Sequence0054|Sequence0057|Sequence0058|
|
| 45 |
+
|:---:|:---:|:---:|:---:|
|
| 46 |
+
|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq52_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq54_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq57_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq58_1.png" width="500">|
|
| 47 |
+
|
| 48 |
+
|Sequence0059|Sequence0060|Sequence0062|
|
| 49 |
+
|:---:|:---:|:---:|
|
| 50 |
+
|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq59_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq60_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq62_1.jpg" width="500">|
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
### Supported Tasks
|
| 55 |
|
| 56 |
- pedestrian detection
|
| 57 |
- 2d object-detection
|
|
|
|
| 103 |
|
| 104 |
### Licensing Information
|
| 105 |
|
| 106 |
+
CC BY 4.0
|
| 107 |
|
| 108 |
### Citation Information
|
| 109 |
Relevant publications:
|