import os from dataset import IQADataset def download_dataset(remote_tar_file, dataset_root): import tarfile import wget def bar_custom(current, total, width=80): output = f"[*] Downloading: {current / total * 100:.1f}% [{current / 10**6:.0f} MB / {total / 10**6:.0f} MB]" return output local_tar_file = os.path.join(dataset_root, os.path.basename(remote_tar_file)) wget.download(remote_tar_file, out=local_tar_file, bar=bar_custom) with tarfile.open(local_tar_file) as z: z.extractall(dataset_root) print(f"\n[*] Downloading finished, deleting the .tar file.") os.remove(local_tar_file) def prepare_dataset(name, dataset_root, attributes, download): score_synthesis_datasets = ["A57", "CIDIQ_MOS100", "CIDIQ_MOS50", "CSIQ", "LIVE", "LIVE_MD", "MDID2013", "MDID2016", "SDIVL", "MDIVL", "TID2008", "TID2013", "VCLFER", "KADID-10k", "Toyama", "PDAP-HDDS"] score_authentic_datasets = ["LIVE_Challenge", "CID2013", "KonIQ-10k", "SPAQ"] nonscore_synthesis_datasets = ["Waterloo_Exploration"] nonscore_authentic_datasets = [] available_datasets = score_synthesis_datasets + score_authentic_datasets + nonscore_synthesis_datasets + nonscore_authentic_datasets if name in score_synthesis_datasets: avail_attributes = ["dis_img_path", "dis_type", "ref_img_path", "score"] elif name in score_authentic_datasets: avail_attributes = ["dis_img_path", "dis_type", "score"] elif name in nonscore_synthesis_datasets: avail_attributes = ["dis_img_path", "dis_type", "ref_img_path"] elif name in nonscore_authentic_datasets: avail_attributes = ["dis_img_path", "dis_type"] else: raise NotImplementedError(f"Dataset '{name}' is not supported. Currently supported datasets are: {available_datasets}.") if attributes is not None: assert type(attributes) == list for attr in attributes: if attr not in avail_attributes: raise KeyError(f"[!] Attribute: {attr} is not available in {name}.") else: attributes = avail_attributes if not os.path.exists(dataset_root): os.makedirs(dataset_root) dataset_dir = os.path.join(dataset_root, name) if not os.path.exists(dataset_dir): if download is True: remote_tar_file = f"http://ivc.uwaterloo.ca/database/IQADataset/{name}.tar" print(f"[*] Cannnot find dataset '{name}'' in '{dataset_dir}', downloading it from '{remote_tar_file}'") download_dataset(remote_tar_file, dataset_root) else: raise FileNotFoundError(f"[!] Cannnot find dataset '{name}' in '{dataset_dir}', try setting 'download=True' or download it manually.") return attributes def load_dataset(name, dataset_root="data", attributes=None, download=True): csv_file = os.path.join("csv", name) + ".txt" attributes = prepare_dataset(name, dataset_root, attributes, download) return IQADataset(csv_file, name, dataset_root, attributes) def load_dataset_pytorch(name, dataset_root="data", attributes=None, download=True, transform=None): from torchvision import transforms from dataset_pytorch import IQADatasetPyTorch if transform is None: transform = transforms.ToTensor() csv_file = os.path.join("csv", name) + ".txt" attributes = prepare_dataset(name, dataset_root, attributes, download) return IQADatasetPyTorch(csv_file, name, dataset_root, attributes, transform)