|
import os |
|
|
|
import pandas as pd |
|
from PIL import Image |
|
from torch.utils.data import Dataset |
|
|
|
|
|
class IQADatasetPyTorch(Dataset): |
|
def __init__(self, csv_file, name, dataset_root, attributes, transform): |
|
|
|
self.df = pd.read_csv(csv_file, dtype=str) |
|
self.name = name |
|
self.dataset_root = dataset_root |
|
self.attributes = attributes |
|
self.transform = transform |
|
|
|
self.length = len(self.df) |
|
|
|
def __str__(self): |
|
return f"IQADataset ({self.name}), attributes: {self.attributes}" |
|
|
|
def __len__(self): |
|
return self.length |
|
|
|
def __getitem__(self, idx): |
|
|
|
sample = {} |
|
for attr in self.attributes: |
|
sample[attr] = self.df[attr][idx] |
|
if attr == "dis_img_path": |
|
sample["dis_img"] = self.transform(Image.open(os.path.join(self.dataset_root, self.df[attr][idx]))) |
|
elif attr == "ref_img_path": |
|
sample["ref_img"] = self.transform(Image.open(os.path.join(self.dataset_root, self.df[attr][idx]))) |
|
elif attr == "score": |
|
sample[attr] = float(self.df[attr][idx]) |
|
else: |
|
pass |
|
|
|
return sample |
|
|