IQA-Dataset / demo_pytorch.py
j565xu's picture
Upload 27 files
0f41da0 verified
raw
history blame
547 Bytes
from torch.utils.data import DataLoader
from torchvision import transforms
from load_dataset import load_dataset_pytorch
if __name__ == '__main__':
transform = transforms.Compose([transforms.RandomCrop(size=64), transforms.ToTensor()])
dataset = load_dataset_pytorch("LIVE", dataset_root="data", download=True, transform=transform)
dataloader = DataLoader(dataset, batch_size=10, shuffle=False)
for i, sample in enumerate(dataloader):
print(f"(batch {i+1}/{len(dataloader)}), shape(dis img)={sample['dis_img'].shape}")