|
from torch.utils.data import DataLoader |
|
from torchvision import transforms |
|
|
|
from load_dataset import load_dataset_pytorch |
|
|
|
if __name__ == '__main__': |
|
|
|
transform = transforms.Compose([transforms.RandomCrop(size=64), transforms.ToTensor()]) |
|
dataset = load_dataset_pytorch("LIVE", dataset_root="data", download=True, transform=transform) |
|
dataloader = DataLoader(dataset, batch_size=10, shuffle=False) |
|
|
|
for i, sample in enumerate(dataloader): |
|
print(f"(batch {i+1}/{len(dataloader)}), shape(dis img)={sample['dis_img'].shape}") |
|
|