Datasets:

Modalities:
Tabular
Text
Formats:
csv
Languages:
English
DOI:
Libraries:
Datasets
pandas
License:
Geoweaver commited on
Commit
7021bb4
·
verified ·
1 Parent(s): 29ff99f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -24
README.md CHANGED
@@ -7,50 +7,59 @@ language:
7
 
8
  # Ozone Training Data
9
 
10
- ## Description
11
- This dataset contains atmospheric and environmental data used for training machine learning models to predict ozone levels. It includes various meteorological and chemical measurements collected across different locations and time periods. The dataset is designed for applications in air quality monitoring, environmental studies, and predictive modeling.
 
12
 
13
  ## Authors
14
  - Ziheng Sun
15
  - Yunyao Li
16
- - Daniel Tong
17
- - Siqi Ma
18
 
19
  ## Year
20
  2024
21
 
22
  ## Columns
23
 
24
- | Column Name | Unit | Data Type | Description |
25
- |----------------------|--------------|-----------|-----------------------------------------------------------------------------|
26
- | **Latitude** | Degrees | Float64 | Latitude of the observation location. |
27
- | **Longitude** | Degrees | Float64 | Longitude of the observation location. |
28
- | **YYYYMMDDHH** | - | Object | Date and time of the observation (formatted as year-month-day-hour). |
29
- | **CMAQ12KM_O3(ppb)** | ppb | Float64 | Ozone concentration in parts per billion (CMAQ model data). |
30
- | **CMAQ12KM_NO2(ppb)**| ppb | Float64 | Nitrogen dioxide concentration in parts per billion (CMAQ model data). |
31
- | **CMAQ12KM_CO(ppm)** | ppm | Float64 | Carbon monoxide concentration in parts per million (CMAQ model data). |
32
- | **CMAQ_OC(ug/m3)** | µg/m³ | Float64 | Organic carbon concentration in micrograms per cubic meter (CMAQ model data).|
33
- | **CO(moles/s)** | Moles/second | Float64 | Carbon monoxide emission rate. |
34
- | **PRSFC(Pa)** | Pascals | Float64 | Surface pressure. |
35
- | **PBL(m)** | Meters | Float64 | Planetary boundary layer height. |
36
- | **TEMP2(K)** | Kelvin | Float64 | Temperature at 2 meters above ground level. |
37
- | **WSPD10(m/s)** | m/s | Float64 | Wind speed at 10 meters above ground level. |
38
- | **WDIR10(degree)** | Degrees | Float64 | Wind direction at 10 meters above ground level. |
39
- | **RGRND(W/m2)** | W/| Float64 | Ground solar radiation. |
40
- | **CFRAC** | - | Float64 | Cloud fraction. |
41
- | **month** | - | Integer | Month of the observation (1-12). |
42
- | **day** | - | Integer | Day of the observation (1-31). |
43
- | **hours** | - | Integer | Hour of the observation (0-23). |
 
 
 
 
 
 
44
 
45
  ## License
46
  CC-BY-4.0
47
 
48
  ## Usage
 
49
  The dataset can be used for:
50
  - Training and testing machine learning models for air quality prediction.
51
  - Conducting research in atmospheric and environmental sciences.
52
  - Analyzing the relationship between meteorological factors and air pollutants.
53
 
 
54
  ## Citation
55
  If you use this dataset in your research or projects, please cite it as follows:
56
 
 
7
 
8
  # Ozone Training Data
9
 
10
+ ## Dataset Summary
11
+
12
+ The Ozone training dataset contains information about ozone levels, temperature, wind speed, pressure, and other related atmospheric variables across various geographic locations and time periods. It includes detailed daily observations from multiple data sources for comprehensive environmental and air quality analysis. Geographic coordinates (latitude and longitude) and timestamps (month, day, and hour) provide spatial and temporal context for the data.
13
 
14
  ## Authors
15
  - Ziheng Sun
16
  - Yunyao Li
17
+ - Daniel Tong
18
+ - Siqi Ma
19
 
20
  ## Year
21
  2024
22
 
23
  ## Columns
24
 
25
+ | Key | Unit | Data Type | Description |
26
+ |-----------------------|-----------|-----------|---------------------------------------------------|
27
+ | StationID | - | Int64 | Unique identifier for the station |
28
+ | Latitude_x | Degrees | Float64 | Latitude of the observation location |
29
+ | Longitude_x | Degrees | Float64 | Longitude of the observation location |
30
+ | AirNOW_O3 | ppb | Float64 | Ozone levels from AirNOW |
31
+ | Lat_airnow | Degrees | Float64 | Latitude from AirNOW data |
32
+ | Lon_airnow | Degrees | Float64 | Longitude from AirNOW data |
33
+ | Lat_cmaq | Degrees | Float64 | Latitude from CMAQ model |
34
+ | Lon_cmaq | Degrees | Float64 | Longitude from CMAQ model |
35
+ | Latitude_y | Degrees | Float64 | Latitude from secondary data source |
36
+ | Longitude_y | Degrees | Float64 | Longitude from secondary data source |
37
+ | CMAQ12KM_O3(ppb) | ppb | Float64 | Ozone levels from CMAQ model |
38
+ | CMAQ12KM_NO2(ppb) | ppb | Float64 | NO2 levels from CMAQ model |
39
+ | CMAQ12KM_CO(ppm) | ppm | Float64 | CO levels from CMAQ model |
40
+ | CMAQ_OC(ug/m3) | ug/m3 | Float64 | Organic carbon concentration from CMAQ model |
41
+ | PRSFC(Pa) | Pa | Float64 | Surface pressure |
42
+ | PBL(m) | m | Float64 | Planetary boundary layer height |
43
+ | TEMP2(K) | K | Float64 | Temperature at 2 meters |
44
+ | WSPD10(m/s) | m/s | Float64 | Wind speed at 10 meters |
45
+ | WDIR10(degree) | degree | Float64 | Wind direction at 10 meters |
46
+ | RGRND(W/m2) | W/m2 | Float64 | Ground radiation |
47
+ | CFRAC | - | Float64 | Cloud fraction |
48
+ | month | - | Int64 | Month of observation |
49
+ | day | - | Int64 | Day of observation |
50
+ | hours | - | Int64 | Hour of observation |
51
 
52
  ## License
53
  CC-BY-4.0
54
 
55
  ## Usage
56
+
57
  The dataset can be used for:
58
  - Training and testing machine learning models for air quality prediction.
59
  - Conducting research in atmospheric and environmental sciences.
60
  - Analyzing the relationship between meteorological factors and air pollutants.
61
 
62
+
63
  ## Citation
64
  If you use this dataset in your research or projects, please cite it as follows:
65