Datasets:

Tasks:
Other
Modalities:
Text
Formats:
parquet
Languages:
French
Libraries:
Datasets
pandas
License:
Mathilde commited on
Commit
f4ce2fa
·
1 Parent(s): fa65fc6

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +154 -0
README.md ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gpl-3.0
3
+ multilinguality:
4
+ - monolingual
5
+ language:
6
+ - fr
7
+ task_categories:
8
+ - other
9
+ task_ids:
10
+ - word-sense-disambiguation
11
+ dataset_info:
12
+ features:
13
+ - name: document_id
14
+ dtype: string
15
+ - name: sentence_id
16
+ dtype: string
17
+ - name: surface_forms
18
+ sequence: string
19
+ - name: fine_pos
20
+ sequence: string
21
+ - name: lemmas
22
+ sequence: string
23
+ - name: pos
24
+ sequence: string
25
+ - name: instance_surface_forms
26
+ sequence: string
27
+ - name: instance_fine_pos
28
+ sequence: string
29
+ - name: instance_lemmas
30
+ sequence: string
31
+ - name: instance_pos
32
+ sequence: string
33
+ splits:
34
+ - name: FSE
35
+ num_bytes: 2781427
36
+ num_examples: 3121
37
+ - name: wiki_FSE
38
+ num_bytes: 43227879
39
+ num_examples: 58508
40
+ download_size: 0
41
+ dataset_size: 46009306
42
+ ---
43
+ # FrenchSemEval
44
+
45
+ ## Dataset Description
46
+
47
+ - **Homepage:**
48
+ - **Repository:**
49
+ - **https://aclanthology.org/W19-0422.pdf**
50
+ - **Leaderboard:**
51
52
+
53
+ ### Dataset Summary
54
+
55
+ This dataset correspond to the FrenchSemEval, in which verb occurences where manually annotated with Wiktionary senses.
56
+
57
+ ### Supported Tasks and Leaderboards
58
+
59
+ Verb Sense Disambiguation for French verbs.
60
+
61
+ ### Language
62
+
63
+ French
64
+
65
+ ## Dataset Structure
66
+
67
+ ### Data Instances
68
+
69
+ Each instance of the dataset has the following fields and these following types of field.
70
+
71
+ ```json
72
+ {
73
+ "document_id": "d001",
74
+ "sentence_id": "d001.s001",
75
+ "surface_forms": ['Il', 'rend', 'hommage', 'au', 'roi', 'de', 'France', 'et', 'des', 'négociations', 'au', 'traité', 'du', 'Goulet', ',', 'formalisant', 'la', 'paix', 'entre', 'les', 'deux', 'pays', '.'],
76
+ "fine_pos": ['CLS', 'V', 'NC', 'P+D', 'NC', 'P', 'NPP', 'CC', 'DET', 'NC', 'P+D', 'NC', 'P+D', 'NPP', 'PONCT', 'VPR', 'DET', 'NC', 'P', 'DET', 'ADJ', 'NC', 'PONCT'],
77
+ "lemmas": ['il', 'rendre', 'hommage', 'à', 'roi', 'de', 'France', 'et', 'un', 'négociation', 'à', 'traité', 'de', 'Goulet', ',', 'formaliser', 'le', 'paix', 'entre', 'le', 'deux', 'pays', '.'],
78
+ "pos": ['CL', 'V', 'N', 'P+D', 'N', 'P', 'N', 'C', 'D', 'N', 'P+D', 'N', 'P+D', 'N', 'PONCT', 'V', 'D', 'N', 'P', 'D', 'A', 'N', 'PONCT'],
79
+ "instance_surface_forms":['aboutissent'],
80
+ "instance_fine_pos":['V'],
81
+ "instance_lemmas":['aboutir'],
82
+ "instance_pos":['V']
83
+ }
84
+
85
+ ```
86
+
87
+ ### Data Fields
88
+
89
+ Each sentence has the following fields: **document_id**, **sentence_id**, **surface_forms**, **fine_pos**, **lemmas**, **pos**, **instance_surface_forms**, **instance_fine_pos**, **instance_lemmas**, **instance_pos**.
90
+
91
+ ### Data Splits
92
+
93
+ No splits provided.
94
+
95
+ ## Dataset Creation
96
+
97
+ ### Source Data
98
+
99
+ #### Initial Data Collection and Normalization
100
+
101
+ To build the FrenchSemEval dataset, the authors focused on annotating moderately frequent and moderately ambiguous verbs by selecting verbs appearing between 50 and 1000 times into the French Wikipedia (2016-12-12 fr dump). For those verbs, the authors extracted 50 occurences with other annotations thanks to the French TreeBank [Abeillé and Barrier, 2004](http://ftb.linguist.univ-paris-diderot.fr/index.php?langue=en) and the Sequoia Treebank [Candito and Seddah, 2012](https://www.rocq.inria.fr/alpage-wiki/tiki-index.php?page=CorpusSequoia).
102
+
103
+ ### Annotations
104
+
105
+ #### Annotation process
106
+
107
+ To annotate FrenchSemEval, the annotators used [WebAnno](https://webanno.github.io/webanno/) an open-source adaptable annotation tool. Sentences have been pre-processed into CoNLL format and then annotated into WebAnno. The annotators where asked to only annotate marked occurences using the sense inventory from Wiktionnary.
108
+
109
+ #### Who are the annotators?
110
+
111
+ The annotation has been performed by 3 French students, with no prior experience in dataset annotation.
112
+
113
+ ### Dataset statistics
114
+
115
+ |Type|#|
116
+ |---|---|
117
+ |Number of sentences|3121|
118
+ | Number of annoatated verb tokens | 3199 |
119
+ | Number of annotated verb types | 66 |
120
+ | Mean number of annotations per verb type | 48.47 |
121
+ | Mean number of senses per verb type | 3.83 |
122
+
123
+ ### Licensing Information
124
+
125
+ ```
126
+ GNU Lesser General Public License
127
+ ```
128
+
129
+ ### Citation Information
130
+
131
+ ```bibtex
132
+ @inproceedings{segonne-etal-2019-using,
133
+ title = "Using {W}iktionary as a resource for {WSD} : the case of {F}rench verbs",
134
+ author = "Segonne, Vincent and
135
+ Candito, Marie and
136
+ Crabb{\'e}, Beno{\^\i}t",
137
+ booktitle = "Proceedings of the 13th International Conference on Computational Semantics - Long Papers",
138
+ month = may,
139
+ year = "2019",
140
+ address = "Gothenburg, Sweden",
141
+ publisher = "Association for Computational Linguistics",
142
+ url = "https://aclanthology.org/W19-0422",
143
+ doi = "10.18653/v1/W19-0422",
144
+ pages = "259--270",
145
+ abstract = "As opposed to word sense induction, word sense disambiguation (WSD) has the advantage of us-ing interpretable senses, but requires annotated data, which are quite rare for most languages except English (Miller et al. 1993; Fellbaum, 1998). In this paper, we investigate which strategy to adopt to achieve WSD for languages lacking data that was annotated specifically for the task, focusing on the particular case of verb disambiguation in French. We first study the usability of Eurosense (Bovi et al. 2017) , a multilingual corpus extracted from Europarl (Kohen, 2005) and automatically annotated with BabelNet (Navigli and Ponzetto, 2010) senses. Such a resource opened up the way to supervised and semi-supervised WSD for resourceless languages like French. While this perspective looked promising, our evaluation on French verbs was inconclusive and showed the annotated senses{'} quality was not sufficient for supervised WSD on French verbs. Instead, we propose to use Wiktionary, a collaboratively edited, multilingual online dictionary, as a resource for WSD. Wiktionary provides both sense inventory and manually sense tagged examples which can be used to train supervised and semi-supervised WSD systems. Yet, because senses{'} distribution differ in lexicographic examples found in Wiktionary with respect to natural text, we then focus on studying the impact on WSD of the training data size and senses{'} distribution. Using state-of-the art semi-supervised systems, we report experiments of Wiktionary-based WSD for French verbs, evaluated on FrenchSemEval (FSE), a new dataset of French verbs manually annotated with wiktionary senses.",
146
+ }
147
+
148
+ ```
149
+
150
+ ### Contributions
151
+
152
153
154