MrPotato commited on
Commit
1f6b229
·
1 Parent(s): f63ddad

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +0 -0
  2. docbank.py +251 -0
README.md ADDED
File without changes
docbank.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # TODO: Address all TODOs and remove all explanatory comments
15
+ """TODO: Add a description here."""
16
+
17
+ import csv
18
+ import os
19
+ import numpy as np
20
+ from PIL import Image
21
+
22
+ import datasets
23
+
24
+ # TODO: Add BibTeX citation
25
+ # Find for instance the citation on arxiv or on the dataset repo/website
26
+ _CITATION = """\
27
+ @InProceedings{huggingface:dataset,
28
+ title = {A great new dataset},
29
+ author={huggingface, Inc.
30
+ },
31
+ year={2020}
32
+ }
33
+ """
34
+
35
+ # TODO: Add description of the dataset here
36
+ # You can copy an official description
37
+ _DESCRIPTION = """\
38
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
39
+ """
40
+
41
+ # TODO: Add a link to an official homepage for the dataset here
42
+ _HOMEPAGE = ""
43
+
44
+ # TODO: Add the licence for the dataset here if you can find it
45
+ _LICENSE = ""
46
+
47
+ # TODO: Add link to the official dataset URLs here
48
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
49
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
50
+ _URLS = {
51
+ "sample": "http://hyperion.bbirke.de/data/docbank/sample.zip",
52
+ "full": "",
53
+ }
54
+
55
+ _FEATURES = datasets.Features(
56
+ {
57
+ "id": datasets.Value("string"),
58
+ "tokens": datasets.Sequence(datasets.Value("string")),
59
+ "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
60
+ "RGBs": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
61
+ "fonts": datasets.Sequence(datasets.Value("string")),
62
+ "image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
63
+ "original_image": datasets.features.Image(),
64
+ "labels": datasets.Sequence(datasets.features.ClassLabel(
65
+ names=['abstract', 'author', 'caption', 'date', 'equation', 'figure', 'footer', 'list', 'paragraph',
66
+ 'reference', 'section', 'table', 'title']
67
+ ))
68
+ # These are the features of your dataset like images, labels ...
69
+ }
70
+ )
71
+
72
+ _DEFUNCT_FILE_IDS = [
73
+ '126.tar_1706.03360.gz_dispersion_v2_7', '119.tar_1606.07466.gz_20160819Draft_8',
74
+ '167.tar_1412.4821.gz_IDM_TD_Paper_16', '17.tar_1701.07437.gz_muon-beam-dump_final_2',
75
+ '31.tar_1702.04307.gz_held-karp_21', '7.tar_1401.4493.gz_ReversibleNoise_2'
76
+ ]
77
+
78
+
79
+ def load_image(image_path, size=None):
80
+ image = Image.open(image_path).convert("RGB")
81
+ w, h = image.size
82
+ if size is not None:
83
+ # resize image
84
+ image = image.resize((size, size))
85
+ image = np.asarray(image)
86
+ image = image[:, :, ::-1] # flip color channels from RGB to BGR
87
+ image = image.transpose(2, 0, 1) # move channels to first dimension
88
+ return image, (w, h)
89
+
90
+
91
+ def normalize_bbox(bbox, size):
92
+ return [
93
+ int(1000 * int(bbox[0]) / size[0]),
94
+ int(1000 * int(bbox[1]) / size[1]),
95
+ int(1000 * int(bbox[2]) / size[0]),
96
+ int(1000 * int(bbox[3]) / size[1]),
97
+ ]
98
+
99
+
100
+ def simplify_bbox(bbox):
101
+ return [
102
+ min(bbox[0::2]),
103
+ min(bbox[1::2]),
104
+ max(bbox[2::2]),
105
+ max(bbox[3::2]),
106
+ ]
107
+
108
+
109
+ def merge_bbox(bbox_list):
110
+ x0, y0, x1, y1 = list(zip(*bbox_list))
111
+ return [min(x0), min(y0), max(x1), max(y1)]
112
+
113
+
114
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
115
+ class Docbank(datasets.GeneratorBasedBuilder):
116
+ """TODO: Short description of my dataset."""
117
+
118
+ VERSION = datasets.Version("1.0.0")
119
+
120
+ # This is an example of a dataset with multiple configurations.
121
+ # If you don't want/need to define several sub-sets in your dataset,
122
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
123
+
124
+ # If you need to make complex sub-parts in the datasets with configurable options
125
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
126
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
127
+
128
+ # You will be able to load one or the other configurations in the following list with
129
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
130
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
131
+ BUILDER_CONFIGS = [
132
+ datasets.BuilderConfig(name="sample", version=VERSION,
133
+ description="This part of my dataset covers a first domain"),
134
+ datasets.BuilderConfig(name="full", version=VERSION,
135
+ description="This part of my dataset covers a second domain"),
136
+ ]
137
+
138
+ DEFAULT_CONFIG_NAME = "small" # It's not mandatory to have a default configuration. Just use one if it make sense.
139
+
140
+ def _info(self):
141
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
142
+
143
+ return datasets.DatasetInfo(
144
+ # This is the description that will appear on the datasets page.
145
+ description=_DESCRIPTION,
146
+ # This defines the different columns of the dataset and their types
147
+ features=_FEATURES, # Here we define them above because they are different between the two configurations
148
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
149
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
150
+ # supervised_keys=("sentence", "label"),
151
+ # Homepage of the dataset for documentation
152
+ homepage=_HOMEPAGE,
153
+ # License for the dataset if available
154
+ license=_LICENSE,
155
+ # Citation for the dataset
156
+ citation=_CITATION,
157
+ )
158
+
159
+ def _split_generators(self, dl_manager):
160
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
161
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
162
+
163
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
164
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
165
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
166
+ urls = _URLS[self.config.name]
167
+ data_dir = dl_manager.download_and_extract(urls)
168
+ with open(os.path.join(data_dir, "train.csv")) as f:
169
+ files_train = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
170
+ 'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
171
+ csv.DictReader(f, skipinitialspace=True)]
172
+ with open(os.path.join(data_dir, "test.csv")) as f:
173
+ files_test = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
174
+ 'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
175
+ csv.DictReader(f, skipinitialspace=True)]
176
+ with open(os.path.join(data_dir, "validation.csv")) as f:
177
+ files_validation = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
178
+ 'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
179
+ csv.DictReader(f, skipinitialspace=True)]
180
+ return [
181
+ datasets.SplitGenerator(
182
+ name=datasets.Split.TRAIN,
183
+ # These kwargs will be passed to _generate_examples
184
+ gen_kwargs={
185
+ "filepath": files_train,
186
+ "split": "train",
187
+ },
188
+ ),
189
+ datasets.SplitGenerator(
190
+ name=datasets.Split.VALIDATION,
191
+ # These kwargs will be passed to _generate_examples
192
+ gen_kwargs={
193
+ "filepath": files_validation,
194
+ "split": "validation",
195
+ },
196
+ ),
197
+ datasets.SplitGenerator(
198
+ name=datasets.Split.TEST,
199
+ # These kwargs will be passed to _generate_examples
200
+ gen_kwargs={
201
+ "filepath": files_test,
202
+ "split": "test"
203
+ },
204
+ ),
205
+ ]
206
+
207
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
208
+ def _generate_examples(self, filepath, split):
209
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
210
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
211
+ #print(filepath)
212
+ for key, f in enumerate(filepath):
213
+ #print(f)
214
+ f_id = f['id']
215
+ f_fp_txt = f['filepath_txt']
216
+ f_fp_img = f['filepath_img']
217
+ tokens = []
218
+ bboxes = []
219
+ rgbs = []
220
+ fonts = []
221
+ labels = []
222
+
223
+ image, size = load_image(f_fp_img, size=224)
224
+ original_image, _ = load_image(f_fp_img)
225
+
226
+ try:
227
+ with open(f_fp_txt, newline='', encoding='utf-8') as csvfile:
228
+ reader = csv.reader(csvfile, delimiter='\t', quotechar=' ')
229
+ for row in reader:
230
+ #if f_id == '121.tar_1606.08710.gz_mutualEnergy_05_77':
231
+ # print(row[0])
232
+ tokens.append(row[0])
233
+ bboxes.append(normalize_bbox(row[1:5], size))
234
+ rgbs.append(row[5:8])
235
+ fonts.append(row[8])
236
+ labels.append(row[9])
237
+ except:
238
+ continue
239
+
240
+ yield key, {
241
+ "id": f_id,
242
+ "tokens": tokens,
243
+ "bboxes": bboxes,
244
+ "RGBs": rgbs,
245
+ "fonts": fonts,
246
+ "image": image,
247
+ "original_image": original_image,
248
+ "labels": labels
249
+ }
250
+
251
+