File size: 11,990 Bytes
586e978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391d4a9
586e978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e9ef65
586e978
 
 
7bf90d1
faa6add
0157c3c
 
3e9ef65
586e978
 
7bdaba4
 
b9ec98e
 
 
5e177db
b9ec98e
 
 
 
 
 
 
786e261
6bb0ab7
b9ec98e
 
 
 
d98fbce
b9ec98e
3bd8cee
 
80f7843
3bd8cee
586e978
 
 
 
 
 
 
 
 
b9ec98e
586e978
 
 
b9ec98e
e0a73f6
b9ec98e
d98fbce
f275cf8
 
586e978
 
f275cf8
 
586e978
 
786e261
a40dcc3
 
 
cc80665
586e978
 
 
 
 
 
 
f275cf8
586e978
 
f275cf8
c46cab8
586e978
 
 
 
 
 
 
 
 
 
 
48f737e
 
 
 
 
 
 
e7be9f6
f275cf8
 
 
 
48f737e
3e9ef65
 
 
 
48f737e
3e9ef65
 
 
 
 
 
48f737e
 
 
3e9ef65
48f737e
 
 
 
 
 
 
586e978
070b7d8
 
4840694
fdc1a35
4840694
 
 
 
fdc1a35
 
586e978
 
 
fdc1a35
586e978
 
fe67c05
4840694
fdc1a35
 
586e978
465cc03
 
fdc1a35
465cc03
 
 
 
fdc1a35
 
465cc03
 
 
fdc1a35
465cc03
 
 
 
fdc1a35
 
465cc03
fdc1a35
070b7d8
 
48f737e
 
 
 
070b7d8
48f737e
 
070b7d8
 
 
 
 
 
 
3e9ef65
070b7d8
 
 
 
22ad057
 
586e978
 
48f737e
 
 
586e978
 
48f737e
 
586e978
48f737e
391d4a9
48f737e
 
 
 
 
3e9ef65
391d4a9
 
e5233d0
48f737e
 
391d4a9
 
 
 
 
48f737e
391d4a9
 
 
48f737e
f275cf8
48f737e
 
 
e389063
4840694
 
 
48f737e
465cc03
48f737e
 
 
 
465cc03
 
 
 
 
 
 
586e978
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""TODO: Add a description here."""

import csv
import json
import os
import datasets
import bz2

# Add BibTeX citation

_CITATION = """\

@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

_DESCRIPTION = """\
Test adding a dataset with challenge set to GEM benchmark .
"""

_HOMEPAGE = ""

_LICENSE = ""

# The HuggingFace dataset library doesn't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)

_URLs = {
    "validation": "validation.jsonl",
    "test": "test.jsonl",
    "validation.full": "validation.jsonl",
    "test.full": "test.jsonl",
    # NB: the "train" split file is defined dynamically inside the `_split_generators` method
}

_VERSION = datasets.Version("1.0.0", "")

class OpusparcusConfig(datasets.BuilderConfig):
    """BuilderConfig for Opusparcus."""

    def __init__(self, lang=None, quality=100, **kwargs):
        """BuilderConfig for Wikipedia.
        Args:
          language: string, the language code for the Wikipedia dump to use.
          date: string, date of the Wikipedia dump in YYYYMMDD format. A list of
            available dates can be found at https://dumps.wikimedia.org/enwiki/.
          **kwargs: keyword arguments forwarded to super.
        """
        super(OpusparcusConfig, self).__init__(
            name="{0}.{1}".format(lang, quality),
            description="Opusparcus dataset for {0}".format(lang),
            **kwargs,
        )
        self.lang = lang
        self.quality = quality

LANGS = [ "de", "en", "fi", "fr", "ru", "sv" ]

QUALITIES = [ 100, 95, 90, 85, 80, 75, 70, 65, 60 ]
    
class Opusparcus(datasets.GeneratorBasedBuilder):

    """TODO: Short description of my dataset."""

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    BUILDER_CONFIG_CLASS = OpusparcusConfig
    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        OpusparcusConfig(lang=lang, quality=quality, version=_VERSION) for lang in LANGS for quality in QUALITIES
    ]
    
    # There is no default configuration. User always needs to specify one:
    #DEFAULT_CONFIG_NAME = None

    def _info(self):
        # This method specifies the datasets.DatasetInfo object which
        # contains informations and typings for the dataset
        features = datasets.Features(
            {
                "lang": datasets.Value("string"),
                "sent1": datasets.Value("string"),
                "sent2": datasets.Value("string"),
                "annot_score": datasets.Value("float"),
                "gem_id": datasets.Value("string"),
            }
        )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset:
            supervised_keys=("sent1", "sent2"), # is this correct?
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,

            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # This method is tasked with downloading/extracting the data
        # and defining the splits depending on the configuration.
        # Several configurations are possible (listed in
        # BUILDER_CONFIGS), and the configuration selected by the user
        # is in self.config.name, which consists of two fields
        # separated by a period, containing the values of
        # self.config.lang and self.config.quality.

        if lang is None:
            # This is an error, nothing to do here
            return []
        
        # Select which file of the training data contains the matching data:
        if self.config.quality < 70:
            # We need to retrieve the largest training set file
            # containing the full training set for the desired language
            _URLs["train"] = "train_{0}.60.jsonl.bz2".format(self.config.lang)

        elif self.config.quality <= 95:
            # We can do with a smaller version of the training set
            # for the desired language
            _URLs["train"] = "train_{0}.70.jsonl.bz2".format(self.config.lang)

        # Otherwise, if the desired quality is above 95, we do not
        # download any training data, because there is no matching data.
        # The validation and test sets are so small that we do not perform
        # any filtering or optimization at this stage.
            
        # dl_manager is a datasets.download.DownloadManager, which
        # downloads and extracts the URLs
        # (It can accept any type or nested list/dict and will give
        # back the same structure with the url replaced with path to
        # local files.  By default the archives will be extracted and
        # a path to a cached folder where they are extracted is
        # returned instead of the archive.)
        data_dir = dl_manager.download_and_extract(_URLs)

        splits = [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "lang": self.config.lang,
                    "quality": 100,
                    "filepath": data_dir["test"],
                    "split": "test"
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "lang": self.config.lang,
                    "quality": 100,
                    "filepath": data_dir["validation"],
                    "split": "validation",
                },
            ),
            datasets.SplitGenerator(
                name="test.full",
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "lang": self.config.lang,
                    "quality": 100,
                    "filepath": data_dir["test.full"],
                    "split": "test.full"
                },
            ),
            datasets.SplitGenerator(
                name="validation.full",
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "lang": self.config.lang,
                    "quality": 100,
                    "filepath": data_dir["validation.full"],
                    "split": "validation.full",
                },
            ),
        ]            

        # If the desired quality value is 100, no subset of the
        # training set is good enough, and we only produce validation
        # and test sets, in order to save space and time.
            
        if self.config.quality <= 95:
            # In this case there is matching training data, so we produce
            # a train split.
            splits.append(
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "lang": self.config.lang,
                        "quality": self.config.quality,
                        "filepath": data_dir["train"],
                        "split": "train",
                    },
                )
            )

        return splits

    def _generate_examples(
            self, lang, quality, filepath, split
            # method parameters are unpacked from `gen_kwargs` as given in
            # `_split_generators`
    ):
        """ Yields examples as (key, example) tuples. """
        # This method handles input defined in _split_generators to
        # yield (key, example) tuples from the dataset.
        # The `key` is here for legacy reason (tfds) and is not important in itself.

        if split == datasets.Split.TRAIN:
            # Training sets are in compressed bz2 files.
            # They contain a field "quality" missing from the validation and test sets.
            # We also know that this file only contains the desired language,
            # because for the training sets the languages are in separate
            # files, and only the desired language has been downloaded. 
            with bz2.open(filepath, "rt", encoding="utf-8") as f:
                for id_, row in enumerate(f):
                    data = json.loads(row)
                    if data["quality"] < quality:
                        # The rest of this file contains too low quality data,
                        # because the data is sorted best first
                        break
                    yield id_, {
                        "lang": data["lang"],
                        "sent1": data["sent1"],
                        "sent2": data["sent2"],
                        "annot_score": 0.0,   # means there is no annotation
                        "gem_id": data["gem_id"],
                    }
        else:
            # The validation and test sets are in jsonl files.
            # They contain the fields "lang" and "annot_score" that we filter on.
            # If we ask for the full sets, we will keep all data entries, also
            # the sentence pairs that were not considered paraphrases by the
            # annotators:
            keep_all = (split == "validation.full" or split == "test.full")
            with open(filepath, encoding="utf-8") as f:
                for id_, row in enumerate(f):
                    data = json.loads(row)
                    if data["lang"] == lang: # only keep desired language
                        if keep_all or data["annot_score"] >= 3.0:
                            # for full sets keep all;
                            # for standard test and validation sets, keep only
                            # the paraphrases (annot_score >= 3.0 means "good
                            # or mostly good example of paraphrases")
                            yield id_, {
                                "lang": data["lang"],
                                "sent1": data["sent1"],
                                "sent2": data["sent2"],
                                "annot_score": data["annot_score"],
                                "gem_id": data["gem_id"],
                            }